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1 Abstract

Spike-frequency adaptation is widespread in the central nervous system, but its functional role

remains unclear. In neocortical pyramidal neurons, adaptation manifests itself by an increase

in neuronal firing threshold and by adaptation currents triggered after each spike. Combining

electrophysiological recordings with modeling, we found that these adaptation processes last for

more than 20 seconds and decay over multiple time scales according to a power-law. The power-

law decay associated with adaptation mirrors and cancels the temporal correlations of input

current received in-vivo at the soma of L2/3 somatosensory pyramidal neurons. These findings

suggest that, in the cortex, spike-frequency adaptation causes temporal decorrelation of output

spikes (temporal whitening), an energy efficient coding procedure that, at high signal-to-noise

ratio, improves the information transfer.
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2 Introduction

Neural signaling requires a large amount of metabolic energy [1]. Consequently, neurons are

thought to communicate using efficient codes in which redundant information is discarded [2].

Theories of efficient coding [3] successfully predict several features of sensory systems. At early

stages of visual processing, inputs coming from the external world are decorrelated both in space

and time [4–7]; through sensory adaptation [8], codes are dynamically modified so as to maximize

information transmission [9–12]; and sensory adaptation on multiple timescales [11,13,14] could

possibly reflect the statistics of the external world [15].

Sensory adaptation is at least partially due to intrinsic properties of individual neurons and,

in particular, to spike-frequency adaptation (SFA). SFA is not only observed at the early stages

of sensory processing, but is also widespread in cortical neurons embedded in highly recurrent

networks. Often modeled by a single process with one specific timescale [16,17], SFA also occurs

on multiple timescales [18–20]. In pyramidal neurons of the rat somatosensory cortex, three

or more processing steps away from the sensory receptors, SFA is scale-free [21], meaning that

the effective speed at which individual neurons adapt is not fixed but depends on the input.

Scale-free adaptation can be captured by simple threshold models with a power-law decaying

spike-triggered process [22] that possibly describes the combined action of Na-channel inactiva-

tion [23–25] and ionic channels mediating adaptation currents [26–28].

Three questions therefore arise: First, can the temporal features of spike-triggered currents

and spike-triggered changes in firing threshold, possibly spanning multiple timescales, directly

be extracted from experimental data? Second, can SFA be explained by these spike-triggered

effects? And finally, do the timescales of SFA match the temporal statistics of the inputs received

by individual neurons? If temporal characteristics of inputs and SFA were matched, SFA could

lead to a perfect decorrelation of the information contained in one spike with that of the previous

one of the same neuron, a phenomenon called temporal whitening [29]. Temporal whitening in

turn implies that, at high signal-to-noise ratio, information transmission is enhanced [30].
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3 Results

The question of whether SFA is optimally designed for efficient coding can only be addressed if

both the dynamics of SFA and the statistical properties of the inputs generated in biologically

relevant situations are known. Therefore, the Results section is organized as follow. We start with

a combined theoretical and experimental approach so as to extract the dynamics of spike-triggered

processes and SFA directly from in-vitro recordings of cortical neurons. Then, we analyze the

synaptically driven membrane potential dynamics recorded in-vivo from somatosensory neurons

during active whisker sensation (data from [31]). Our overall goal is to study whether adaptation

optimally removes the temporal correlations in the input to single neurons embedded in the highly

recurrent network of the cortex.

3.1 Spike-frequency adaptation is mediated by power-law spike-triggered

processes

To reveal adaptation on multiple timescales, L5 somatosensory pyramidal neurons were stim-

ulated with sinusoidal noisy currents of period T (see Methods) chosen between 500 ms and

16 s (Fig. 1a). For each cell, the baseline I0 and the amplitude ∆Imean of the sinusoidal waves

were calibrated to produce an output firing rate oscillating between 2 and 6 Hz and a time-

averaged mean of r0 = 4 Hz. Single neurons responded with a firing rate r(t) characterized by

fast fluctuations around a sinusoidal mean rmean(t) given by the first-order approximation

rmean(t) = r0 + ĤA(w) ·∆Imean sin(wt+ ĤΦ(w)) (1)

where w = 2π/T is the angular frequency of the input modulation, r0 is the average firing rate,

ĤA(w) is the amplitude response and ĤΦ(w) is the phase response. In the Fourier domain, the

transfer function Ĥ(w) = ĤA(w)eiĤΦ(w) constitutes a linear model for the modulation of the

output firing rate (Fig. 1).

3



Nature Neuroscience (2013) - PREPRINT

Figure 1: Experimental protocol and spiking neuron model GLIF-ξ.To reveal SFA on multiple
timescales, synaptically isolated L5 pyramidal neurons (PYR Neuron) were repeatedly stimulated with
fluctuating currents (Input Current) generated by adding filtered Gaussian noise to sinusoidal waves
with different angular frequencies w = 2π/T (Mean Modulation). The horizontal bars (bottom left and
right) indicates the period T of modulation. The single neuron response (Spiking response, black) was
recorded intracellularly and the firing rate r(t) was estimated by counting the number of spikes in every
time bin (Firing Rate Modulation, gray). The periodic oscillations of the firing rate rmean(t) (Firing Rate
Modulation, black) is related to the mean input (Firing Rate Modulation, light gray) by a linear rate
model defined in the Fourier domain by the the transfer function Ĥ(w). The intracellular recordings
were used to fit the Generalized Leaky Integrate & Fire model GLIF-ξ (black-lined box, top). In this
model, the input current is first low-pass filtered by the membrane filter Km(t) and then transformed
into a firing intensity by an exponential nonlinearity. Spikes are emitted stochastically (Spiking response,
red) and trigger an adaptation process described by the effective adaptation kernel ξ(s).

Since SFA is at least partly due to spike-triggered effects, the simple firing rate picture

of Equation 1 must be complemented by a spike-based description. Intracellular recordings

were therefore used to fit a generalized leaky integrate-and-fire model (GLIF-ξ) with escape-

rate noise [32] for stochastic spike emission (Fig. 1a). To capture spike-triggered adaptation, the

model features an effective dynamic threshold, described by the function ξ(s). This function (also

called effective adaptation filter or kernel) summarizes the stereotypical sequence of biophysical

events triggered by the emission of an action potential and accounts for both adaptation currents

and physiological changes of the firing threshold. Since the effects induced by consecutive spikes

accumulate, the effective dynamic threshold produces SFA. Importantly, the functional shape of
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ξ(s), like all the other parameters of the model, were extracted from the data (see Methods and

ref. [33]).

Figure 2: Adaptation filter of the GLIF-ξ model extracted from in-vitro recordings. a:
To obtain the effective adaptation filter ξ(s) of the GLIF-ξ model, intracellular recordings were first
fitted with a two process GLIF model which accounts for SFA with both a spike-triggered current η(s)
and spike-triggered movement of the firing threshold γ(s). Left: The mean spike-triggered current η(s)
obtained by averaging the results of different cells (n = 14) is shown in red on a log-log scale. The
dashed black line shows the fit of a power-law function ηPL(s) = αηs

−βη with parameters αη = 0.44 nA,
βη = 0.76 and s in milliseconds. Right: The mean moving threshold γ(s) obtained by averaging the
results of different cells (n = 14) is shown in red on a log-log scale. The dashed black line shows the fit of
a power-law function γPL(s) = αγs

−βγ with parameters αγ = 24.4 mV, βγ = 0.87 and s in milliseconds.
The dark gray line is a control showing an independent estimation of the average moving threshold γ(t)
obtained with an alternative fitting procedure (see Supplementary Material). b: As illustrated by the
block diagram, the spike-triggered current η(s) and the moving threshold ξ(s) are combined to obtain
the effective adaptation filter ξ(s) of the GLIF-ξ model (see Methods). The mean adaptation filter ξL(s)
(red, GLIF-ξL) obtained by averaging the effective spike-triggered adaptation measured in individual
cells (n = 14, see Supplementary Fig. S7) is shown on a log-log scale. The optimal fit of a truncated
power-law ξPL(s) (dashed black, GLIF-ξPL) yields an exponent βξ = 0.93 (c.f. Eq. 2). In all panels, the
gray area indicates one standard deviation for the distribution of filters across different cells (asymmetric
errors are due to log-scales).

As previously reported [33], neocortical pyramidal neurons adapt their firing rates by means

of two distinct biophysical mechanisms that respectively increase the firing threshold and lower

the membrane potential after each spike. To get an accurate estimation of the effective adapta-

tion filer ξ(s), intracellular recordings were first fitted with a two-process model that explicitly

features both a dynamic threshold and an adaptation current, described by the filters γ(s) and

5



Nature Neuroscience (2013) - PREPRINT

η(s), respectively [33] (see Methods and Supplementary Fig. S4). Since in the model the emis-

sion of action potentials only depends on the difference between the membrane potential and

the firing threshold, spike-triggered currents η(s) and movements of the firing threshold γ(s) can

then be combined to obtain the effective adaptation filter ξ(s) of the more parsimonious model

GLIF-ξ (see Methods and Fig. 2).

We found that 22 seconds after the emission of an action potential a small but significant

deflection remains in both the spike-triggered current η(t) and the moving threshold γ(t). More-

over, when displayed on log-log scales, the decay of both adaptation kernels is approximately

linear over four orders of magnitude, meaning that both the adaptation current and the moving

threshold are characterized by scale-free spike-triggered dynamics (Fig. 2a). Fitting η(t) and γ(t)

with a power-law function (i.e. fPL(t) = αft
−βf), revealed that both spike-triggered processes

have similar scaling exponents (βη = 0.76, βγ = 0.87). Consequently, the effective adaptation

filter ξ(t) is well described by a truncated power-law

ξPL(t) =


αξ ·

(
t
Tξ

)−βξ
if t > Tξ

αξ if 0 < t ≤ Tξ
(2)

with parameters αξ = 19.2 mV, βξ = 0.93 and Tξ = 8.3 ms for the average kernel (Fig. 2b)

and slightly different values for each individual cell (Supplementary Fig. S7), indicating that

scale-free SFA is an intrinsic property of individual neurons and not only of the average over

several cells.

In the following, we will refer to a model with a single spike-triggered adaptation filter as

GLIF-ξL, where GLIF stands for Generalized Leaky Integrate and Fire and ξL indicates that

SFA is implemented by a 22-second Long filter obtained by combining the moving threshold

and the spike-triggered current extracted from the experimental data. With the same logic, we

denote GLIF-ξPL a model in which the effective filter ξ(s) is described by the truncated power

law ξPL defined by Equation 2. A list with all the GLIF-ξPL model parameters is given in Table

1.
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3.2 Power-law spike-triggered adaptation explains the single neuron

activity on short timescales

Valid single neuron models should predict the occurrence of individual spikes with a millisecond

precision [34]. In response to a single injection of a fluctuating current (Fig. 3a) the neuron emits

spikes that the GLIF-ξL model is able to predict with a high degree of accuracy (Fig. 3b, red).

When the same current is injected repetitively, the spiking responses reveal the stochastic nature

of single neurons: certain action potentials are emitted reliably with a high temporal precision,

while others do not occur at each repetition or are characterized by larger temporal jitters. The

GLIF-ξL model also captures this aspect (Fig. 3c). To validate our model, its predictive power

was quantified using a similarity measure denoted M∗d (see Methods and ref. [35]). On average,

GLIF-ξL was able to predict more than 80% of the spikes (M∗d = 0.807, s.d. = 0.04) with a

precision of ±4 ms (see Supplementary Fig. S6g). Very similar performances, statistically not

different (n=12, Student t-test, p=0.89), were achieved by GLIF-ξPL (M∗d = 0.804, s.d. = 0.05),

indicating that spike-triggered processes are well described by a truncated power law (see Sup-

plementary Fig. S5d).

As expected, the subthreshold response observed in-vitro is systematically overestimated by

GLIF-ξL (Fig. 3b, red). This is explained by the fact that GLIF-ξL artificially translates spike-

triggered currents into effective threshold movements. In a two-process model, where adaptation

currents and threshold movements are described as two distinct features (i.e. when η(t) and γ(t)

are not combined in a single effective kernel), model prediction of the membrane voltage and

experimental data are indeed in good agreement (Fig. 3b, gray), confirming the validity of our

fitting procedure. In terms of mere spike-timing prediction, the two-process GLIF model and

the more parsimonious GLIF-ξ model are equivalent (Fig. 3c). For this reason, we work in the

following with single-process model GLIF-ξ.

Overall, the spike time prediction paradigm demonstrates the ability of both GLIF-ξL and

GLIF-ξPL to capture the spiking activity of single neurons on the timescale of milliseconds.
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Figure 3: The GLIF-ξ model predicts the occurrence of single spikes with a millisecond
precision. a: Typical 2.5-second segment of injected current. The same fluctuating current is presented
several times (frozen-noise). The dashed black line represents 0 nA. b: The spiking response, but not the
subthreshold membrane potential, predicted by the GLIF-ξL model (red) is in close agreement with the
experimental data (black). In the two process-model (gray), where spike-triggered currents and threshold
movements are modeled by two distinct processes (i.e. γ(s) and η(s)), the dynamics of the subthreshold
membrane potential predicted by the model is in excellent agreement with the experimental data. Inset:
comparison of subthreshold membrane potential (scale bars: 40 ms, 5 mV). c: The raster plots show
the spiking response of both the neuron (black) and the GLIF-ξL model (red) to repetitive presentation
of the same current. By construction, the spiking response of the GLIF-ξL model is identical to that of
the two-process model (gray).

3.3 Power-law spike-triggered adaptation explains the single neuron

activity on slow timescales

We wondered whether the 22-second long adaptation filter ξ(s) can also predict the firing rate

modulation on the much slower timescale of seconds. To this end, the GLIF-ξL model fitted on

responses to different frequencies of modulation (0.5 ≤ T ≤ 16 s) was used to predict the firing

rates recorded in the second part of the experiment, where one of the two slowest modulations

(T = 8 or 16 s) was chosen and repetitively presented to the cell. Comparison of the raster plots

obtained by injecting the same current in both the neuron and the GLIF-ξL model shows that

the spiking activity of the real neuron closely resembles the one predicted by the model (Fig.

4a-c). Furthermore, the match between the running-mean PSTHs constructed for the model

and the experimental data reveals that both responses share a similar phase advance (Fig. 4d),

indicating that our GLIF-ξL model is sufficient to capture the characteristic signature of SFA
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under slow sinusoidal stimulation [21].

To study the role of the 22-second long adaptation filter of GLIF-ξL, we then fitted the same

single-process model under the assumption that the adaptation filter ξ(t) has a duration of only

1 second (GLIF-ξS, where S stands for short adaptation filter). Compared to GLIF-ξL, the firing

rate predicted by GLIF-ξS (Fig. 4e, green) appears to be in phase with the input (Fig. 4e, dark

gray) and not with the spike output of the cells, indicating that GLIF-ξS is unable to capture the

slow components of SFA (i.e. the model with a short adaptation filter predicts a wrong phase

advance). To provide even stronger evidence, the ability to predict both the mean firing rate r0

(Fig. 4f) and the phase lead ĤΦ (Fig. 4g) was systematically quantified. Whereas the GLIF-ξL

model is capable of very good predictions which are in statistical agreement with the experimen-

tal data (errors ∆r0 = −0.01 Hz, s.d. = 0.67; n=12, Student t-test, t = −0.04, p = 0.97 and

∆ĤΦ = −0.17 deg, s.d. = 5.7; n=12, Student t-test, t = −0.10, p = 0.92), GLIF-ξS has the ten-

dency to both overestimate the average firing rate and underestimate the phase advance (errors

∆r0 = 0.47 Hz, s.d. = 0.72; n=12, Student t-test, t = 2.16, p = 0.05 and ∆ĤΦ = −17.9 deg,

s.d. = 6.5 deg; n=12, Student t-test, t = −9.16, p < 10−6), demonstrating that an adaptation

filter of 1 second is not sufficient.
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Figure 4: The GLIF-ξ model accurately predicts the firing rate response on multiple timescales.
a: An input current consisting of a frozen-noise signal on top of a small sinusoidal wave of period T = 16 s
(dark gray) is presented several times to the same L5 pyramidal neuron. b: Typical membrane potential response
in a single trial. c: The firing activity obtained by repetitive presentation of the same input signal (black) is
compared with the predictions made by GLIF-ξL (red) and GLIF-ξS (green). d: Data shown in panel c were used
to build two continuous PSTHs (spikes were filtered with a moving average over 1 second). Experimental data
(black) and GLIF-ξL model prediction (red) are in good agreement. The PSTHs were fitted with two sinusoidal

functions to quantify the phase shift ĤΦ (Eq. 1) with respect to the modulation of the mean input (dark gray

sinusoidal wave). For clarity, only the fit to experimental data is shown (light gray sinusoidal wave, ĤΦ = 17.6
deg). The phase shift is measured with respect to the periodic input (dark gray line). e: The prediction made
by the GLIF-ξS model is shown in green. Compared to panel d, the prediction is less accurate. In particular, the
PSTH produced by GLIF-ξS is approximatively in phase with the input modulation (dark gray) but not with the
PSTH of the experimental data, meaning that the model is unable to correctly capture the correct phase advance
of ĤΦ = 17.6 deg. Experimental PSTH (black), sinusoidal fit of the experimental data (light gray) and input
modulation (dark gray) are copied from panel d. f: The performances of GLIF-ξL and GLIF-ξS in predicting
the average firing rate r0 of a new stimuli (not used for data fitting) are compared. Left: for the two models,
the predicted r0 is plotted against the observed one. Each dot represents a different cell. Right: the error in
predicting r0 is plotted for the two models. Each couple of open circles shows the performances of the two models
on one cell. On average, the errors produced by GLIF-ξL (red) and GLIF-ξS (green) are not significantly different
(n = 12, Student t-test, t = −1.62, p = 0.12; n.s. p > 0.05). Error bars indicate one standard deviation. g:

The two models are significantly different if compared by measuring the ability to predict the phase shift ĤΦ

(n = 12, Student t-test, t = 6.77, p = 0.8 · 10−6; triple star: p < 0.001). Conventions are as in panel f . h-j: The
linear response of L5 pyramidal neurons to a slow modulation of the mean input was characterized by the transfer
function Ĥ(w). The gain ĤA(w) (h) and the phase response ĤΦ(w) (j) are plotted as a function of the period

of modulation T = 2π/w. i: log-log plot of the gain ĤA as a function of the input frequency f = T−1. The
amplitude response observed in-vitro was fitted by power law with scaling exponent βH = 0.12 (dashed gray). In
panels h-j, data from individual cells (n = 14, gray lines) are averaged (black) and compared with the predictions
of GLIF-ξL (red) and GLIF-ξS (green). Error bars indicate one standard deviation. The horizontal dashed lines
appearing in panels a, d, e, h and j indicate zero.
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Finally, the transfer function Ĥ(w) was measured for both real neurons and spiking models

by fitting Equation 1 on the firing rates observed in response to six frequencies of modulation

(Fig. 4h-j). For both real neurons and GLIF-ξL, the amplitude response ĤA(w) was stronger at

higher frequencies compared to lower ones revealing high-pass filtering, a characteristic feature of

SFA (Fig. 4h). Consistent with observations in L2/3 pyramidal neurons [21], plotting on log-log

scales the amplitude response ĤA as a function of the input frequency f = T−1, revealed that the

gain of L5 pyramidal neurons is also approximatively power law (Fig. 4i). Moreover, the phase

response ĤΦ(w) was always positive meaning that, for all the frequencies tested in this study, the

output firing rate led the input modulation (Fig. 4j). Overall, GLIF-ξL was able to capture the

features of the transfer function observed in L5 pyramidal neurons. Similar results were obtained

with GLIF-ξPL (Supplementary Fig. S5), confirming that the spike-triggered processes observed

in-vitro are correctly modeled by a truncated power-law lasting 22 seconds.

The experimental results reported in Figure 4h-j are very similar to those obtained in L2/3

pyramidal neurons [21] and provide an independent evidence for multiple timescales of adap-

tation. However, in contrast to [21], we could reject the hypothesis that the phase response is

frequency-independent (n=14, one-way ANOVA, F = 4.38, p = 0.0015) so that a model where

the firing rate encodes a fractional derivative of the input is not applicable to L5 pyramidal

neurons of the mouse somatosensory cortex.

Overall, these results show that accounting for long-lasting spike-triggered effects with an

appropriate adaptation filter is crucial to capture the response of L5 pyramidal neurons on

multiple timescales.

3.4 Power-law adaptation is optimally tuned to perform temporal whiten-

ing

Our model describes how the net current resulting from dendritic integration is encoded into

a spike train at the soma of neocortical pyramidal neurons. To investigate the implications of

power-law adaptation, we considered a situation in which a population of N uncoupled GLIF-

11



Nature Neuroscience (2013) - PREPRINT

ξPL neurons encodes a common input I(t) = I0 + ∆I(t) in their instantaneous firing rate A(t),

also called population activity. Note that, since the neurons in our population are all identical

and receive the same input, the population activity A(t) is identical to the PSTH measured

by repetitively injecting the same current into one single cell. For relatively small fluctuations

around a mean activity A0, we can assume that the population operates in a linear regime and

responds to an external input fluctuation ∆I(t) according to the first-order approximation

A(t) = A0 +

∫ t

0

∆I(t− s)H(s)ds+ n(t) (3)

where the impulse response H(t) is the inverse Fourier transform of Ĥ(w), the noise n(t) is due

to stochastic firing in a finite population and both terms depend on the intrinsic properties of

the individual neurons and in particular on the precise shape of the adaptation filter ξ(t).

For large populations, the noise term in Equation 3 becomes negligible and optimal coding is

achieved by the removal of temporal correlations potentially present in the input [30, 36]. This

encoding strategy is known as temporal whitening and requires the population activity to have

a flat power spectrum A(f) = Const. (see Supplementary Material).

SFA is known to implement high-pass filtering of the input current [37,38]. In the particular

case of power law adaptation, the population response is characterized by a power law gain (Fig.

4h,i and ref. [21]) suggesting that, in neocortical pyramidal neurons, spike-triggered processes

might be optimally tuned to efficiently encode scale-free signals (i.e. signals that are temporally

correlated across multiple timescales). However, the issue of whether the functional role of power

law adaptation is to implement temporal whitening can only be solved if the statistical properties

of the input received in-vivo by neocortical pyramidal neurons are known.

To this end, we analyzed the synaptically driven membrane potential dynamics recorded

from somatosensory pyramidal neurons during active whisker sensation (see Methods). A spec-

tral analysis performed on the data of Crochet et al. 2011 [31] revealed that, at low frequencies,

the power spectrum of the subthreshold membrane potential fluctuations is characterized by a
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power-law decay (Fig. 5a, red), indicating that natural stimuli received by somatosensory pyra-

midal neurons are indeed scale-free.

Figure 5: Power-law adaptation is near-optimally tuned to perform temporal whitening.
a: Power spectral density of the intracellular membrane potential fluctuations recorded in-vivo from
L2/3 pyramidal neurons (Voltage PSD, red). The power spectrum was computed using 20-second long
recordings (n = 57) obtained from 7 different cells (data from [31]). Fitting a power law (not shown)
on the frequency band 0.05 < f < 2 Hz yields a scaling exponent βI = 0.67. A population of GLIF-
ξPL neurons (N = 100) was simulated in response to a scale-free input characterized by a power-law
frequency spectrum ∆I(f) ∝ f−βI , with βI = 0.67 (Input Current PSD, black). The subthreshold
response of individual GLIF-ξPL neurons is characterized by a frequency spectrum (Voltage PSD, gray)
which is in good agreement with the in-vivo recordings. b: The population activity of a group of GLIF-
ξPL neurons (blue) in response to an in-vivo like input (black, copied from panel a) has a nearly flat
spectrum A(f). Very similar results were obtained by simulating a population of GLIF-ξL (N = 100)
neurons (gray). To allow a direct comparison between input and output powers, all the spectra shown
in panel b were normalized to have the same total power. All the simulations were performed with
the average parameters extracted from in-vitro recordings (Table 1). The mean activity was tuned to
A0 = 4 Hz by adjusting the baseline current to I0. However, the precise value of A0 does not have a big
impact on the result.

To provide further evidence, the activity of a population of GLIF-ξPL neurons was simulated

in response to an in-vivo like input characterized by a scale-free spectrum (Fig. 5a, black). The

statistics of the subthreshold responses obtained in individual GLIF-ξPL neurons were consistent

with the ones observed in-vivo (Fig. 5b, gray). Moreover, we found that the power spectrum of

the population activity A(f) (Fig. 5b, blue) was much closer to a horizontal line than that of the

input, indicating that a population of GLIF-ξPL neurons efficiently encodes in-vivo like signals
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by removing temporal correlations present in the input. Similar results were obtained with a

population of GLIF-ξL neurons, where the adaptation filter ξ(t) was not an idealized power law,

but the average kernel extracted from intracellular recordings (Figure 5b, gray).

Overall, our results suggest that in neocortical pyramidal neurons, power-law spike-triggered

adaptation mirrors and approximately cancels the temporal correlations of signals generated in

a biologically relevant situation. This result provides evidence for efficient coding at the level of

single neurons embedded in the highly recurrent network of the cortex.
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4 Discussion

Neocortical pyramidal neurons are known to adapt their firing rate on multiple timescales [20,21].

Here we found that SFA is due to two separable spike-triggered mechanisms: each time an action

potential is fired, both an adaptation current and a movement of the firing threshold are induced.

Our results show that these spike-triggered effects are surprisingly long (more than 20 s) and

decay with a power-law (Fig. 2), highlighting the fact that SFA does not have a specific timescale.

A generalized leaky integrate-and-fire model with an effective power-law spike-triggered process

simultaneously captures the fast dynamics critical for the prediction of individual spikes (Fig. 3)

and the slow processes that modulate the firing rate (Fig. 4 and Supplementary Fig. S5). Most

importantly, we found that, in behaving mice, the currents resulting form dendritic integration

and received as input at the soma of pyramidal neurons are characterized by long-range temporal

correlations that are partially removed by power-law spike-triggered adaptation (Fig. 5). This

final observation indicates that, in cortex, power-law SFA is near-optimally tuned to efficient

coding.

4.1 Extent of spike-triggered effects

Our results show that, 20 seconds after its emission, an individual spike can still affect the firing

activity of a neuron. Possibly, spike-triggered effects have an even longer duration. However

after 22 seconds the magnitudes of both the moving threshold and the spike-triggered current

become too small to be measured by our method (for t > 20 s, η(t) < 0.1 pA and γ(t) < 0.01

mV, see Fig. 2a). Since the effects of consecutive spikes accumulate, these small contributions

shape the single neuron response in a significant way (see Fig. 4).

Whereas power-law adaptation is necessary to capture the firing rate fluctuations, a model

with spike-triggered processes that only last for 1 second (GLIF-ξS) achieves very high perfor-

mances (M∗d = 0.80, s.d. = 0.03) in predicting the occurrence of individual spikes (Supplemen-

tary Fig. S6g). This fact probably explains why power-law adaptation has not been observed in

previous studies where model validation was only based on spike time prediction.
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4.2 Biophysical implementation of power-law spike-triggered adapta-

tion

Our fitting procedure enabled us to discriminate between adaptation processes implemented by

spike-triggered currents and physiological changes of the firing threshold. However, the biophys-

ical details concerning the implementation of power-law dynamics are not part of our model. In

principle, power-law relaxations can be approximated by a sums of exponentials covering a wide

range of timescales [20, 22]. It is therefore likely that the spike-triggered current η(s) we found

results from the combined action of multiple ion-channels operating on different timescales like

for example Ca-dependent, Na-depedent and high-voltage activated potassium channels. Note,

however, that a match of the relative strength of different currents implies a fine-tuned regu-

lation of gene expression levels. In line with this hypothesis, multiple timescales of SFA have

been previously modeled by biophysical models with several channels mediating adaptation cur-

rents [20, 21, 29]. Alternatively, scale-free dynamics could also be an intrinsic property of single

channels. In particular, the power-law decay we found in the moving threshold γ(s) might re-

flect the scale-free dynamics observed during Na-channel de-inactivation [39]. In this alternative

view, scale-free dynamics is likely to emerge from the presence of multiple inactivated states of

ionic-channels [19,40].

4.3 How general is power-law spike-triggered adaptation?

All the in-vitro results presented in this paper are from mouse layer 5. We also investigated SFA

in L2/3 and obtained very similar results (data not shown). In particular, we found that L2/3

pyramidal neurons adapt by means of power-law filters that closely resemble the ones observed

in L5 and cause positive phase lead of the firing rate response to slow sinusoidal currents. These

preliminary results suggest that L2/3 and L5 somatosensory pyramidal neurons share similar

adaptation mechanisms1. We also fitted GLIF models to the data of Lundstrom et al. [21]

and found that both L2/3 and L5 pyramidal neurons of the rat somatosensory cortex adapt by

means of spike-triggered power-law processes (data not shown) indicating that this mechanism

is conserved across species and could be a common feature of cortical pyramidal neurons.

1Long recordings from L2/3 were often unstable and we could not collect a complete dataset.

16



Nature Neuroscience (2013) - PREPRINT

4.4 Functional implications

Both the moving threshold and the spike-triggered current are characterized by power-law decays

with very similar scaling exponents. This suggests that the particular shape of the adaptation

filters is not due to chance, but plays an important role. Neural signaling consumes a large

amount of metabolic energy [1,2]. The brain should therefore represent information using codes

in which redundant information is discarded. According to efficient coding theory, optimality

is achieved by adapting to the stimulus statistics and, at high signal-to-noise ratio (SNR), by

completely removing correlations that are potentially present in the signals to be encoded [3].

Efficient coding theory has been used to explain neural processing at early stages of the visual

system. In the retina, center-surround receptive fields coupled with nonlinear processing strongly

attenuate spatial correlations of natural images [4, 7]. Similarly, in primary visual cortex (V1),

spatial decorrelation of features has been found [15]. In the temporal domain, neural firing was

found to be decorrelated in the lateral geniculate nucleus of the cat [6]. Interestingly, pyramidal

neurons of V1 adapt on multiple timescales, providing further temporal decorrelation [29]. How-

ever, it remained unclear whether SFA serves for temporal redundancy reduction in the cortex.

To solve this issue, we estimated the statistics of input currents received in-vivo at the soma

of L2/3 somatosensory pyramidal neurons during active whisker sensation (data from [31]). This

current, which reflects spatio-temporal statistics of spike arrivals at the synapses as well as sub-

sequent filtering in the dendritic tree, can be seen as the driving current for spike generation. We

found that input currents of pyramidal neurons do not have a preferred timescale but are char-

acterized by scale-free dynamics. Moreover, our numerical simulations indicate that power-law

spike-triggered processes are near-optimally tuned to completely remove the temporal correla-

tions revealed by the power-law decay of the input power spectrum (Fig. 5). Overall, these

results provide evidence for efficient coding in single neocortical neurons stimulated with behav-

iorally relevant signals.

The GLIF-ξ model implements a form of predictive coding. Indeed, the sum of adaptation

processes ξ(s) triggered by past spikes can be interpreted as a linear predictor of the future input.
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Consistent with predictive coding, further spiking only occurs when the real input exceeds the

prediction. In line with our results, it has been shown that predictive coding of scale-free inputs

by means of power-law spike-triggered kernels largely reduces the number of action potentials

required to achieve a certain signal-to-noise ratio [41].

4.5 Temporal Whitening vs. Noise-Shaping

For deterministic signals encoded in absence of noise, efficient coding theory states that redun-

dancy reduction is the optimal solution. However, in presence of noise, complete decorrelation

can be detrimental. Redundancy can indeed improve the robustness of a code [30]. To assess

optimal coding in small populations of neurons, the noise term n(t) associated with stochastic

firing (c.f. Eq. 3) has therefore to be considered.

Previous studies have shown that non-renewal firing activity with negatively correlated in-

terspike intervals can achieve higher information rates by noise-shaping [42–44]. In this coding

strategy, the SNR is increased in the frequency band of the input signal by transferring the ef-

fective noise power to other frequencies (see Supplementary Material). As already hypothesized

in [45], our results show that at low-frequencies, spike-triggered adaptation results in a reduction

of noise which is completely counterbalanced by a similar modification of the transfer function

that controls the amplitude of the signal, so that the SNR remains unchanged. Consequently,

modifying the adaptation filter ξ(s) does not affect the power spectrum of the effective noise

(see Supplementary Fig. S8), indicating that noise-shaping is probably not the functional role

of power-law adaptation. The question of how this result generalizes to different stimulation

paradigms is out of the scope of this study and will be addressed in a future paper.

Finally, since our model produces temporal whitening but not noise-shaping, it is tempting

to speculate that to reduce noise, a relatively large number of cortical neurons simultaneously

encode the same signal, enabling fast processing [46]. Indeed, while temporal averaging requires

time, spatial averaging is instantaneous.
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4.6 Conclusion

In computational studies of memory and learning in neural networks, SFA is often neglected and,

when considered, it is usually assumed to operate on short timescales. From our perspective,

the power-law of spike-triggered adaptation could be helpful in bridging the gap between the

millisecond timescale of spike timing and behavioral timescales. Moreover, our results suggest

that power-law adaptation causes temporal decorrelation of output spikes, a procedure that, at

high signal-to-noise ratio, improves information transfer.

19



Nature Neuroscience (2013) - PREPRINT

5 Acknowledgments

We thank C. C. H. Petersen, B. N. Lundstrom, G. Hennequin and A. Seeholzer for helpful dis-

cussions. We are also grateful to S. Crochet for sharing his in-vivo recordings and to B. N.

Lundstrom for sharing the data that inspired this work. Finally, a particular thanks goes to S.

Naskar for his precious help with the in-vitro recordings.

This project was funded by the Swiss National Science Foundation (SNSF, grant number

200020 132871/1; Christian Pozzorini and Skander Mensi) and by the European Community’s

Seventh Framework Program (BrainScaleS, grant no. 269921; Skander Mensi and Richard Naud).

20



Nature Neuroscience (2013) - PREPRINT

6 Author contributions

C.P. and R.N. conceived the study. C.P. designed the experiments, analyzed the data, performed

the modeling and wrote the initial draft. S.M. contributed to data analysis and modeling. W.G.

supervised the project. All the authors worked on the manuscript.

21



Nature Neuroscience (2013) - PREPRINT

Figure 1: Experimental protocol and spiking neuron model GLIF-ξ.

To reveal SFA on multiple timescales, synaptically isolated L5 pyramidal neurons (PYR Neu-

ron) were repeatedly stimulated with fluctuating currents (Input Current) generated by adding

filtered Gaussian noise to sinusoidal waves with different angular frequencies w = 2π/T (Mean

Modulation). The horizontal bars (bottom left and right) indicates the period T of modulation.

The single neuron response (Spiking response, black) was recorded intracellularly and the firing

rate r(t) was estimated by counting the number of spikes in every time bin (Firing Rate Modula-

tion, gray). The periodic oscillations of the firing rate rmean(t) (Firing Rate Modulation, black) is

related to the mean input (Firing Rate Modulation, light gray) by a linear rate model defined in

the Fourier domain by the the transfer function Ĥ(w). The intracellular recordings were used to

fit the Generalized Leaky Integrate & Fire model GLIF-ξ (black-lined box, top). In this model,

the input current is first low-pass filtered by the membrane filter Km(t) and then transformed

into a firing intensity by an exponential nonlinearity. Spikes are emitted stochastically (Spiking

response, red) and trigger an adaptation process described by the effective adaptation kernel

ξ(s).
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Figure 2: Adaptation filter of the GLIF-ξ model extracted from in-vitro recordings.

a: To obtain the effective adaptation filter ξ(s) of the GLIF-ξ model, intracellular recordings were

first fitted with a two process GLIF model which accounts for SFA with both a spike-triggered

current η(s) and spike-triggered movement of the firing threshold γ(s). Left: The mean spike-

triggered current η(s) obtained by averaging the results of different cells (n = 14) is shown in red

on a log-log scale. The dashed black line shows the fit of a power-law function ηPL(s) = αηs
−βη

with parameters αη = 0.44 nA, βη = 0.76 and s in milliseconds. Right: The mean moving

threshold γ(s) obtained by averaging the results of different cells (n = 14) is shown in red on

a log-log scale. The dashed black line shows the fit of a power-law function γPL(s) = αγs
−βγ

with parameters αγ = 24.4 mV, βγ = 0.87 and s in milliseconds. The dark gray line is a

control showing an independent estimation of the average moving threshold γ(t) obtained with

an alternative fitting procedure (see Supplementary Material). b: As illustrated by the block

diagram, the spike-triggered current η(s) and the moving threshold ξ(s) are combined to obtain

the effective adaptation filter ξ(s) of the GLIF-ξ model (see Methods). The mean adaptation filter

ξL(s) (red, GLIF-ξL) obtained by averaging the effective spike-triggered adaptation measured in

individual cells (n = 14, see Supplementary Fig. S7) is shown on a log-log scale. The optimal

fit of a truncated power-law ξPL(s) (dashed black, GLIF-ξPL) yields an exponent βξ = 0.93 (c.f.

Eq. 2). In all panels, the gray area indicates one standard deviation for the distribution of filters

across different cells (asymmetric errors are due to log-scales).
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Figure 3: The GLIF-ξ model predicts the occurrence of single spikes with a millisec-

ond precision.

a: Typical 2.5-second segment of injected current. The same fluctuating current is presented

several times (frozen-noise). The dashed black line represents 0 nA. b: The spiking response,

but not the subthreshold membrane potential, predicted by the GLIF-ξL model (red) is in close

agreement with the experimental data (black). In the two process-model (gray), where spike-

triggered currents and threshold movements are modeled by two distinct processes (i.e. γ(s)

and η(s)), the dynamics of the subthreshold membrane potential predicted by the model is in

excellent agreement with the experimental data. Inset: comparison of subthreshold membrane

potential (scale bars: 40 ms, 5 mV). c: The raster plots show the spiking response of both the

neuron (black) and the GLIF-ξL model (red) to repetitive presentation of the same current. By

construction, the spiking response of the GLIF-ξL model is identical to that of the two-process

model (gray).
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Figure 4: The GLIF-ξ model accurately predicts the firing rate response on multiple

timescales.

a: An input current consisting of a frozen-noise signal on top of a small sinusoidal wave of period

T = 16 s (dark gray) is presented several times to the same L5 pyramidal neuron. b: Typical

membrane potential response in a single trial. c: The firing activity obtained by repetitive

presentation of the same input signal (black) is compared with the predictions made by GLIF-

ξL (red) and GLIF-ξS (green). d: Data shown in panel c were used to build two continuous

PSTHs (spikes were filtered with a moving average over 1 second). Experimental data (black)

and GLIF-ξL model prediction (red) are in good agreement. The PSTHs were fitted with two

sinusoidal functions to quantify the phase shift ĤΦ (Eq. 1) with respect to the modulation of the

mean input (dark gray sinusoidal wave). For clarity, only the fit to experimental data is shown

(light gray sinusoidal wave, ĤΦ = 17.6 deg). The phase shift is measured with respect to the

periodic input (dark gray line). e: The prediction made by the GLIF-ξS model is shown in green.

Compared to panel d, the prediction is less accurate. In particular, the PSTH produced by GLIF-

ξS is approximatively in phase with the input modulation (dark gray) but not with the PSTH of

the experimental data, meaning that the model is unable to correctly capture the correct phase

advance of ĤΦ = 17.6 deg. Experimental PSTH (black), sinusoidal fit of the experimental data

(light gray) and input modulation (dark gray) are copied from panel d. f: The performances of

GLIF-ξL and GLIF-ξS in predicting the average firing rate r0 of a new stimuli (not used for data

fitting) are compared. Left: for the two models, the predicted r0 is plotted against the observed

one. Each dot represents a different cell. Right: the error in predicting r0 is plotted for the

two models. Each couple of open circles shows the performances of the two models on one cell.

On average, the errors produced by GLIF-ξL (red) and GLIF-ξS (green) are not significantly

different (n = 12, Student t-test, t = −1.62, p = 0.12; n.s. p > 0.05). Error bars indicate one

standard deviation. g: The two models are significantly different if compared by measuring the

ability to predict the phase shift ĤΦ (n = 12, Student t-test, t = 6.77, p = 0.8 · 10−6; triple star:

p < 0.001). Conventions are as in panel f . h-j: The linear response of L5 pyramidal neurons to

a slow modulation of the mean input was characterized by the transfer function Ĥ(w). The gain

ĤA(w) (h) and the phase response ĤΦ(w) (j) are plotted as a function of the period of modulation
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T = 2π/w. i: log-log plot of the gain ĤA as a function of the input frequency f = T−1. The

amplitude response observed in-vitro was fitted by power law with scaling exponent βH = 0.12

(dashed gray). In panels h-j, data from individual cells (n = 14, gray lines) are averaged (black)

and compared with the predictions of GLIF-ξL (red) and GLIF-ξS (green). Error bars indicate

one standard deviation. The horizontal dashed lines appearing in panels a, d, e, h and j indicate

zero.
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Figure 5: Power-law adaptation is near-optimally tuned to perform temporal whiten-

ing.

a: Power spectral density of the intracellular membrane potential fluctuations recorded in-vivo

from L2/3 pyramidal neurons (Voltage PSD, red). The power spectrum was computed using 20-

second long recordings (n = 57) obtained from 7 different cells (data from [31]). Fitting a power

law (not shown) on the frequency band 0.05 < f < 2 Hz yields a scaling exponent βI = 0.67.

A population of GLIF-ξPL neurons (N = 100) was simulated in response to a scale-free input

characterized by a power-law frequency spectrum ∆I(f) ∝ f−βI , with βI = 0.67 (Input Current

PSD, black). The subthreshold response of individual GLIF-ξPL neurons is characterized by a

frequency spectrum (Voltage PSD, gray) which is in good agreement with the in-vivo recordings.

b: The population activity of a group of GLIF-ξPL neurons (blue) in response to an in-vivo like

input (black, copied from panel a) has a nearly flat spectrum A(f). Very similar results were

obtained by simulating a population of GLIF-ξL (N = 100) neurons (gray). To allow a direct

comparison between input and output powers, all the spectra shown in panel b were normalized

to have the same total power. All the simulations were performed with the average parameters

extracted from in-vitro recordings (Table 1). The mean activity was tuned to A0 = 4 Hz by

adjusting the baseline current to I0. However, the precise value of A0 does not have a big impact

on the result.
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7 Methods

7.1 In-vitro electrophysiological recordings

All animal experiments were done using published procedures [47, 48] in accordance with the

rules of the Swiss Federal Veterinary Office. Briefly, somatosensory brain slices were obtained

from P14-18 Wild Type mice (C57BL6/J) and whole-cell patch-clamp recordings were performed

at 35◦C from L5 pyramidal neurons. The pipette solution was comprised of (in mM): 135 K-

gluconate, 4 KCl, 4 Mg-ATP, 10 Na2-phosphocreatine, 0.3 Na3-GTP and 10 HEPES (pH 7.3, 290

mOsm). During the experiments, transmission at all excitatory synapses was blocked by adding

CNQX (20 µM) and D-AP5 (50 µM) to the bath solution. All electrophysiological data were

low-pass Bessel filtered at 10 kHz and digitized at 20 kHz. Membrane potential measurements

were not corrected for the liquid junction potential. Recordings characterized by instabilities in

the action potential shape and/or large drifts in the baseline firing rate r0 were excluded from

the dataset upon visual inspection.

7.2 Current Injections

To characterize single neurons with the standard tools of linear system analysis, 64-s long exper-

iments were performed in which noisy currents modulated by sinusoidal means were delivered

in current-clamp mode. Similar protocols have already been used in previous studies (see, for

example, refs. [38] and [21]). The injected current, denoted Iext, was generated according to the

following equation

Iext(t) = I0 + ∆Imean · sin
(

2π

T
t

)
+ ∆Inoise · N (t) (4)

were I0 is a constant offset, ∆Imean controls the amplitude of the sinusoidal mean and ∆Inoise

defines the standard deviation of the noise. The noise N (t) was generated with an Ornstein-

Uhlenbeck process with zero mean, unitary variance and a temporal correlation of 3 ms.

Each experiment consisted of many injections of currents generated according to Equation

4. In the first half of the experiment (training set), the currents Iext(t) were presented six times

with different periods of modulation T ∈ {0.5, 1, 2, 4, 8, 16} in seconds. Stimuli were delivered

28



Nature Neuroscience (2013) - PREPRINT

in random order and, for each of the six injections, a new realization of the noise N (t) was

used. The results of these experiments were used to both fit the GLIF-ξ models and estimate

the transfer function Ĥ(w) (Fig. 4h-j). In the second part of the experiment (test set), one of

the two slowest modulations (T = 8 or 16 s) was chosen and more injections were performed. To

assess the reliability of single neurons, the same realization of noise N (t) was used (frozen-noise),

meaning that neurons were repetitively stimulated with exactly the same current. Thus, in the

test set, N (t) plays the role of a known and rapidly changing temporal signal (on the timescale of

3 ms), rather than that of an unknown noise; at the same time the periodic modulation plays the

role of a slow temporal signal (T on the timescale of 8-16 s). The results of these experiments

were used to assess the predictive power of GLIF-ξ models (see Fig. 3 and Fig. 4a-g). All

injections were performed with interstimulus intervals of 1 minute.

To monitor the stability of the recordings, before and after each injection, the neuron was

stimulated with two additional inputs. The first was a 2.5-s long current composed of a hyperpo-

larizing step followed, after 500 ms, by a suprathreshold step. The response to this stimulus was

used to identify the neuronal type (L5 burst-generating cells were not included in the dataset).

The second was a 4-s long noisy current generated with an Ornstein-Uhlenbeck process with zero

mean and temporal correlation of 3 ms. The amplitude of this current was scaled to avoid action

potentials. We used this second injection to estimate the electrode filter Ke(s) and perform

Active Electrode Compensation (see Supplementary Material).

At the beginning of each experiment, the parameters I0, ∆Imean and ∆Inoise were tuned to

obtain a firing rate rmean oscillating periodically between 2 and 6 Hz. Typical values obtained

after calibration were comprised in the range 100-450 pA for I0, 15-30 pA for ∆Imean and 50-150

pA for ∆Inoise.

7.3 Linear analysis

For each neuron, the transfer function Ĥ(w) shown in Figure 4h-j was estimated with standard

methods already used in previous studies [21,38]. Briefly, the experimental spike train {t̂j} was
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built by selecting the times at which the membrane potential V (t) crossed 0 mV from below.

The firing rate r(t) was then obtained by building a histogram of the spike times. The bin

size was chosen such that each period of modulation T was divided in 30 bins. For each input

frequency w = 2π/T , the transfer function Ĥ(w) was estimated by fitting the sinusoidal function

C0 + C1 · sin (wt+ φ) on the firing rate r(t). Each fit was performed by minimizing the sum of

squared errors (SSE), with C0,C1 and φ being the only free-parameters. The amplitude response

ĤA(w) was obtained by dividing C1 by ∆Imean; c.f. Equation 1. The optimal φ extracted at the

stimulation frequency w gave the phase response ĤΦ(w). The transfer functions of the GLIF-ξ

models (Fig. 4h-j) were obtained with the same method, except that spikes were generated by

the model, rather than extracted from experiments.

7.4 Generalized Leaky Integrate-and-Fire model (GLIF-ξ)

The spiking neuron models discussed in this study are generalized leaky integrate-and-fire models

equipped with a spike-triggered mechanism for SFA and with escape rate noise for stochastic

spike emission (Fig. 1). Spikes are produced according to a point process with conditional firing

intensity λ(t) which exponentially depends on the momentary distance between the membrane

potential V (t) and the effective firing threshold VT (t) [49]:

λ (t) = λ0 exp

(
V (t)− VT (t)

∆V

)
(5)

where λ0 has units of s−1 so that λ(t) is in Hz and ∆V defines the sharpness of the threshold.

Consequently, the probability of a spike to occur at a time t̂ ∈ [t; t+ ∆t] is

P (t̂ ∈ [t; t+ ∆t]) = 1− exp

(
−
∫ t+∆t

t

λ (s) ds

)
≈ λ(t)∆t. (6)

In the limit of ∆V → 0, the model becomes deterministic and action potentials are emitted at

the moment when the membrane potential crosses the firing threshold. For finite ∆V and a

membrane potential at threshold (i.e. when V = VT ), λ−1
0 defines the mean latency until a spike

is emitted.
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The subthreshold dynamics is modeled as a standard leaky integrator defined by the following

ordinary differential equation for the membrane potential V

CV̇ = −gL (V − EL) + Iext (7)

where the three parameters C, gL and EL determine the passive properties of the membrane,

the dot denotes the temporal derivative and Iext is the injected current.

The dynamics of the effective firing threshold VT (t) in Equation 5 is given by

VT (t) = V ∗T +
∑
t̂j<t

ξ(t− t̂j − Tref) (8)

where V ∗T is a constant, {t̂1, t̂2, t̂3, . . . } are the times at which action potentials have been fired

and ξ(s) is an effective adaptation filter that accounts for all the biophysical events triggered by

the emission of an action potential. According to Eq. 8, each time a spike is emitted, a thresh-

old movement with stereotypical shape ξ(s) is triggered, after a delay of absolute refractoriness

Tref. Threshold movements induced by different spikes accumulate and therefore produce SFA,

if ξ > 0. For s < 0, we fixed ξ(s) = 0 so that only spikes in the past can affect the momentary

value of the firing threshold (i.e. ξ(s) is causal). Importantly, the adaptation filter ξ(s) also ac-

counts for adaptation processes mediated by spike-triggered currents. Consequently, VT (t) does

not describe the physiological threshold (i.e. the membrane potential at which action potentials

are initiated in-vitro) but has to be interpreted as a phenomenological model of spike-triggered

adaptation. Finally, the functional shape of ξ(s) is not defined a priori but is obtained by

combining the effects of both spike-triggered currents and spike-triggered movement of the phys-

iological threshold which, in turn, are extracted from the experimental data (see Fitting GLIF-ξ

on in-vitro recordings).

In principle, an absolute refractory period can be included in the adaptation kernel ξ(s).

However, here we prefer to work with an explicit reset after a dead time. Each time a spike is

emitted the numerical integration is stopped and the membrane potential is reset to Vr. Then,
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after a short period of absolute refractoriness Tref, the numerical integration is restarted. The

GLIF-ξ model only differs from a Generalized Linear Model [50] due to this explicit reset.

The three GLIF-ξ models discussed in the paper differ in the duration and shape of the

adaptation filter ξ(s). In GLIF-ξL and GLIF-ξS, the functional shape of ξ(s) is the one directly

extracted from intracellular recordings (see below). In these two models the duration of the

adaptation filter is of 22 s and 1 s, respectively. In the third model, GLIF-ξPL, the adaptation

filer ξ(s) is modeled as a truncated power law and lasts for 22 s.

7.5 Fitting the GLIF-ξ model on in-vitro recordings

The recorded potential was preprocessed to remove the bias due to the voltage drop across the

recording electrode. For that, Active Electrode Compensation (AEC) [51, 52] was performed in

such a way as to remove experimental drifts due to slow changes in the electrode properties (see

Supplementary Material and Supplementary Fig. S1-S3). To fit GLIF-ξ models, the method

introduced in [33] was extended to get a more accurate estimate of ξ(s). This was done with

an additional hidden variable Idrift able to absorb small drifts that are likely to occur in long

recordings (see Supplementary Material).

In neocortical pyramidal neurons, SFA is mediated by both adaptation currents and changes

in the firing threshold [33]. To get an accurate estimation of the effective adaptation filter ξ(s),

in-vitro recordings were first fitted with a two-process GLIF model that explicitly features both

a spike-triggered current η(s) and a spike-triggered movement of the firing threshold γ(s) (see

Fig. 2 and Supplementary Fig. S4). The effective adaptation filer ξ(s) of the GLIF-ξL model

was then obtained by combining η(s) and γ(s) according to the following formula

ξ(t) =

∫ ∞
0

Km(t− s)η(s)ds+ γ(t), (9)

where Km(s) = Θ(s) Rτm e
− s
τm is the membrane filter and Θ(s) is the Heaviside step function (see

Fig. 2). Importantly, the functional shapes of η(s) and γ(s) were not assumed a priori but were
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directly extracted from the experimental data by the following two-step procedure.

In the first step, the functional shape of η(s), together with all the parameters that determines

the subthreshold dynamics, were extracted by fitting V̇ on the experimental voltage derivative

V̇ (data). Since adaptation currents directly affect the membrane potential dynamics, V̇ (data) was

fitted with the following model

CV̇ = −gL (V − EL) + Iext −
∑
t̂j<t

η(t− t̂j − Tref) + Idrift(t) (10)

where Eq. 7 is extended with a spike-triggered current η(s) (Fig. 2a) and the additional term

Idrift captures experimental drifts. To avoid any a priori assumption on the functional shape

of the spike-triggered current, η(s) was defined as linear combination of rectangular basis func-

tions. Consequently, optimal parameters (minimizing the SSE between V̇ and V̇ (data)) could be

obtained by solving a multilinear regression problem [53].

Given the subthreshold dynamics, the second step consists in estimating the parameters of

the effective threshold. Since spike-triggered currents are properly modeled by the filter η(s),

the effective threshold of Equation 8 is replaced by

V
(bio)
T (t) = V ∗T +

∑
t̂j<t

γ(t− t̂j − Tref), (11)

where V
(bio)
T (t) describes the physiological threshold (Fig. 2a) at which action potentials are

initiated in-vitro. In contrast to ξ(s), γ(s) is not a phenomenological model but describes phys-

iological changes of the firing threshold triggered by the emission of previous spikes. Similar to

η(s), the moving threshold γ(s) was defined as a linear combination of rectangular basis function

and its functional shape was extracted from experimental data by maximizing the log-likelihood

of the observed spike-train. With the exponential function in Equation 5, the log-likelihood to

maximize is a concave function of the parameters [54]. Consequently, the fit could be performed

using standard gradient ascent methods.
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A detailed description of the fitting procedure can be found in the Supplementary Material.

7.5.1 Power-law fit of the effective adaptation filter ξ(s)

For GLIF-ξPL, the effective adaptation filter ξL(s) extracted from the intracellular recordings

was fitted with a truncated power law ξPL(s) (Eq. 2). The fit was performed in two steps. In

the first step, the magnitude αξ and the scaling exponent βξ were estimated using a least-square

linear regression performed in log-log space. For that, data points were logarithmically resampled

and excluded from the fit if ξL(s) < 5 · 10−3 mV or s < 5 ms. In a second step, the cutoff Tξ

was obtained by calculating the intercept between the power law fitted in the first step and the

average value of the extracted kernel ξL(s) computed on the first 5 ms.

A similar procedure (i.e. least-square linear regression in log-log space with logarithmically

resampled points) was used for the power law fit of the spike-triggered current η(s) and the

spike-triggered movement of the firing threshold γ(s) shown in Fig. 2.

7.6 Performance evaluation

7.6.1 Cross-validation

All the performances reported in this study were evaluated on datasets that have not been used

for parameter extraction. This strategy avoids problems due to overfitting and enables a direct

comparison of models that do not have the same number of parameters (which is true for GLIF-

ξS, GLIF-ξL and GLIF-ξPL). For the predictions reported in Figure 3 and Figure 4a-g, the

model fitted on the first half of the experiment (training set) was used to predict the responses

observed in the second half (test set). Since in certain experiments the average firing rates r0

observed in the test set were slightly different than the ones of the training set, the parameter

V ∗T was readjusted using the firsts 16 s of all the test set injections and models were validated on

the responses recorded in the remaining 48 s. According to this procedure, models that do not

capture SFA on slow timescales are expected to overestimate the average firing rate r0. Finally,

for the predictions reported in Figure 4h-j, a leave-one-out strategy was used: the models fitted

on the responses to 5 different periods of modulation were used to predict the sixth one.
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7.6.2 Spike-train metrics

To assess the ability to predict spike times, we used the similarity measure M∗d [35]. M∗d quantifies

the similarity between two groups of spike trains generated by two stochastic processes and

corrects the bias caused by the small number of available repetitions. M∗d takes values between 0

and 1, where M∗d = 0 indicates that the model is unable to predict any of the observed spikes and

M∗d = 1 means that the two groups of spike trains have the same instantaneous firing rate and

are statistically indistinguishable. M∗d can also be interpreted as the number of spikes correctly

predicted divided by an estimate of the number of reliable spikes. To compute M∗d we proceeded

as follow. 500 spike trains were generated using our optimal model. Then, the average number of

coincident spikes nNM between the model M and the real neuron N was computed by counting,

for each possible pair of spike trains, the number of action potentials predicted by the model

that fell within ± 4 ms of a recorded spike. M∗d was finally obtained by applying the formula:

M∗d =
2nNM

nMM + nNN
(12)

where nMM and nNN are the average number of coincident spikes (with a precision of ± 4 ms)

between distinct repetitions generated by the model (nMM); and repetitions recorded from a real

neuron (nNN).

7.7 Estimating the statistical properties of the input current received

in-vivo by neocortical pyramidal neurons

To test the hypothesis that power-law adaptation contributes to efficient coding by whitening

the single neuron output, the power spectrum of the currents ∆I(f) received as input at the

soma of a neocortical pyramidal neuron in-vivo was characterized. According to Equation 10,

in absence of spikes, the membrane potential ∆V (t) is a low-pass filtered version of the input

current, where the cutoff frequency fc = τ−1
m is defined by the membrane timescale. Conse-

quently, at all frequencies f � fc, we have that ∆I(f) = ∆V (f)/R2, with ∆V (f) being the

power spectrum of the subthreshold membrane potential fluctuations and R the input resistance.
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We estimated ∆V (f) using 20-second long whole-cell recordings (n = 57) of the synaptically

driven membrane potential dynamics obtained from 7 different L2/3 pyramidal neurons of behav-

ing mice (data from [31]). All the in-vivo recordings are from the primary somatosensory barrel

cortex and were performed during active whisker sensation. Further details on the experimental

protocol can be found in ref. [31]. Spike-triggered currents last for more than 20 seconds and

can in principle affect ∆V (f) even at very low frequencies. For this reason, only trials with low

firing rates r0 < 0.5 Hz were used. However, including recordings with r0 > 0.5 Hz did not affect

the results.

7.8 Simulating the population response to in-vivo like inputs

The results reported in Figure 5 were obtained by simulating a population of N = 100 un-

connected GLIF-ξPL neurons in response to 4000-second long currents I(t) characterized by a

power spectrum ∆I(f) ∝ f−βI , with βI = 0.67. Model parameters are given in Table 1 and

input currents were generated as in ref. [29] by numerically solving the following inverse Fourier

transform

I(t) = I0 + C ·
∫ +∞

−∞

√
∆I(f)N (f)ei(2πft+φ(f))df, (13)

where N (f) is a Gaussian white-noise process, the phases φ(f) are independently sampled from

a uniform distribution and C is a scaling factor adjusted to fit the power spectrum of the sub-

threshold membrane potential fluctuations observed in-vivo (see Fig. 5a). To avoid unrealistic

large power at slow frequencies, we introduced a cutoff ∆I(f) = 0, for f < 0.025 Hz. The

highest frequency in the signal was determined by the time step ∆T = 0.5 ms used for numerical

simulations. The mean input I0 was adjusted to obtain a plausible average activity of A0 = 4 Hz,

which was consistent with the firing rates obtained in-vitro.

The population activity A(t) was constructed by counting the number of spikes falling in bins

of 50 ms and its power spectrum A(f) was finally computed using time series of 40 s.

36



Nature Neuroscience (2013) - PREPRINT

References

[1] Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the

brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

[2] Laughlin, S. B. Energy as a constraint on the coding and processing of sensory information.

Curr. Opin. Neurobiol. 11, 475–480 (2001).

[3] Barlow, H. Possible principles underlying the transformation of sensory messages. Sensory

communication 217–234 (1961).

[4] Srinivasan, M. V., Laughlin, S. B. & Dubs, A. Predictive coding: a fresh view of inhibition

in the retina. Proc. R. Soc. Lond., B, Biol. Sci. 216, 427–459 (1982).

[5] Dong, D. & Atick, J. Temporal decorrelation: a theory of lagged and nonlagged responses

in the lateral geniculate nucleus. Network 6, 159–178 (1995).

[6] Dan, Y., Atick, J. & Reid, R. C. Efficient coding of natural scenes in the lateral geniculate

nucleus: experimental test of a computational theory. J. Neurosci. 16, 3351–3362 (1996).

[7] Pitkow, X. & Meister, M. Decorrelation and efficient coding by retinal ganglion cells. Nat.

Neurosci. 15, 628–635 (2012).

[8] Wark, B., Lundstrom, B. N. & Fairhall, A. Sensory adaptation. Curr. Opin. Neurobiol. 17,

423–429 (2007).

[9] Wainwright, M. J. Visual adaptation as optimal information transmission. Vision Res. 39,

3960–3974 (1999).

[10] Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. Adaptive rescaling maximizes

information transmission. Neuron 26, 695–702 (2000).

[11] Fairhall, A. L., Lewen, G. D., Bialek, W. & de Ruyter Van Steveninck, R. R. Efficiency and

ambiguity in an adaptive neural code. Nature 412, 787–792 (2001).

[12] Maravall, M., Petersen, R. S., Fairhall, A. L., Arabzadeh, E. & Diamond, M. E. Shifts

in Coding Properties and Maintenance of Information Transmission during Adaptation in

Barrel Cortex. PLoS Biol. 5, e19 (2007).

37



Nature Neuroscience (2013) - PREPRINT

[13] Baccus, S. A. & Meister, M. Fast and slow contrast adaptation in retinal circuitry. Neuron

36, 909–919 (2002).

[14] Ulanovsky, N., Las, L., Farkas, D. & Nelken, I. Multiple time scales of adaptation in auditory

cortex neurons. J. Neurosci. 24, 10440–10453 (2004).

[15] Simoncelli, E. & Olshausen, B. Natural image statistics and neural representation. Annu.

Rev. Neurosci. 24, 1193–1216 (2001).

[16] Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572

(2003).

[17] Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire model as an effective

description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005).

[18] Spain, W. & Schwindt, P. Two transient potassium currents in layer V pyramidal neurones

from cat sensorimotor cortex. J. Physiol. (1991).

[19] Gilboa, G., Chen, R. & Brenner, N. History-dependent multiple-time-scale dynamics in a

single-neuron model. J. Neurosci. 25, 6479–6489 (2005).

[20] La Camera, G. et al. Multiple time scales of temporal response in pyramidal and fast spiking

cortical neurons. J. Neurophysiol. 96, 3448–3464 (2006).

[21] Lundstrom, B. N., Higgs, M. H., Spain, W. J. & Fairhall, A. L. Fractional differentiation

by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008).

[22] Drew, P. J. & Abbott, L. F. Models and properties of power-law adaptation in neural

systems. J. Neurophysiol. 96, 826–833 (2006).

[23] Fleidervish, I. A., Friedman, A. & Gutnick, M. J. Slow inactivation of Na+ current and

slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J.

Physiol. 493 ( Pt 1), 83–97 (1996).

[24] Mickus, T., Jung, H. y. & Spruston, N. Properties of slow, cumulative sodium channel

inactivation in rat hippocampal CA1 pyramidal neurons. Biophys. J. 76, 846–860 (1999).

38



Nature Neuroscience (2013) - PREPRINT

[25] Melnick, I. V., Santos, S. F. A. & Safronov, B. V. Mechanism of spike frequency adaptation

in substantia gelatinosa neurones of rat. J. Physiol. 559, 383–395 (2004).

[26] Madison, D. V. & Nicoll, R. A. Control of the repetitive discharge of rat CA 1 pyramidal

neurones in vitro. J. Physiol. 354, 319–331 (1984).

[27] Schwindt, P. C., Spain, W. J. & Crill, W. E. Long-lasting reduction of excitability by

a sodium-dependent potassium current in cat neocortical neurons. J. Neurophysiol. 61,

233–244 (1989).

[28] Sanchez-Vives, M. V., Nowak, L. G. & McCormick, D. A. Cellular mechanisms of long-

lasting adaptation in visual cortical neurons in vitro. J. Neurosci. 20, 4286–4299 (2000).

[29] Wang, X.-J., Liu, Y., Sanchez-Vives, M. V. & McCormick, D. A. Adaptation and temporal

decorrelation by single neurons in the primary visual cortex. J. Neurophysiol. 89, 3279–3293

(2003).

[30] Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the

neural code. Cambridge: MIT Press (1999).

[31] Crochet, S., Poulet, J. F. A., Kremer, Y. & Petersen, C. C. H. Synaptic mechanisms

underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

[32] Gerstner, W. & Kistler, W. Spiking Neuron Models: Single Neurons, Populations, Plasticity.

Cambridge University Press New York, NY, USA (2002).

[33] Mensi, S. et al. Parameter Extraction and Classification of Three Cortical Neuron Types

Reveals Two Distinct Adaptation Mechanisms. J. Neurophysiol. (2011).

[34] Jolivet, R. et al. The quantitative single-neuron modeling competition. Biol. Cybern. 99,

417–426 (2008).

[35] Naud, R., Gerhard, F., Mensi, S. & Gerstner, W. Improved similarity measures for small

sets of spike trains. Neural. Comput. 23, 3016–3069 (2011).

[36] Atick, J. Could information theory provide an ecological theory of sensory processing?

Network 3, 213–251 (1992).

39



Nature Neuroscience (2013) - PREPRINT

[37] Benda, J. & Herz, A. V. M. A universal model for spike-frequency adaptation. Neural.

Comput. 15, 2523–2564 (2003).
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