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Abstract
Single-neuron models are useful not only for studying the emergent properties of neural cir-

cuits in large-scale simulations, but also for extracting and summarizing in a principled way

the information contained in electrophysiological recordings. Here we demonstrate that,

using a convex optimization procedure we previously introduced, a Generalized Integrate-

and-Fire model can be accurately fitted with a limited amount of data. The model is capable

of predicting both the spiking activity and the subthreshold dynamics of different cell types,

and can be used for online characterization of neuronal properties. A protocol is proposed

that, combined with emergent technologies for automatic patch-clamp recordings, permits

automated, in vitro high-throughput characterization of single neurons.

Author Summary

Large-scale, high-throughput data acquisition is revolutionizing the field of neuroscience.
Single-neuron electrophysiology is moving, from the situation where a highly skilled ex-
perimentalist can patch a few cells per day, to a situation where robots will collect large
amounts of data. To take advantage of this quantity of data, this technological advance re-
quires a paradigm shift in the experimental design and analysis. Presently, most single-
neuron experimental studies rely on old protocols—such as injections of steps and ramps
of current—that rarely inform theoreticians and modelers interested in emergent proper-
ties of the brain. Here, we describe an efficient protocol for high-throughput in vitro
electrophysiology as well as a set of mathematical tools that neuroscientists can use to di-
rectly translate experimental data into realistic spiking neuron models. The efficiency of
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the proposed method makes it suitable for high-throughput data analysis, allowing for the
generation of a standardized database of realistic single-neuron models.

This is a PLOS Computational BiologyMethods paper.

Introduction
In vitro patch-clamping is the gold standard used to investigate the intrinsic electrophysiologi-
cal properties of neurons, but remains labour intensive and requires a trained experimentalist
with high technical skills. In the last years, several platforms have been developed that automa-
tize electrophysiological recordings for ion-channel screening and drug discovery [1]. Most of
the existing platforms are, however, designed to record from mammalian cell lines or oocytes
in which ion-channels of interest are artificially expressed [2, 3]. In the near future, this tech-
nology is likely to be transferred to more complex setups, such as in vitro brain slices. High-
throughput electrophysiology can be pushed forward with in vivo whole-cell patch-clamp re-
cordings that are, at least partially, automatized [4]. With this technique, three to seven min-
utes are sufficient for a trained technician or a robot to automatically identify a cell and form a
gigaohm seal of the same quality as achieved by an electrophysiologist [4]. This technological
advance represents an important step towards high-throughput electrophysiology in vivo or on
in vitro brain slices.

To make sense of the large amount of data that automated patch-clamp can produce, ade-
quate computational tools and experimental protocols have to be developed. Traditional proto-
cols for single-neuron characterization rely on current-clamp injections of stimuli (e.g., square
current pulses, ramps of current) that are specifically designed to extract a small number of pa-
rameters (e.g., membrane time constant, firing threshold). While this is a valid approach, the
input currents adopted in these experiments are artificial and strongly differ from the signals
that single neurons process in vivo. Moreover, the choice of the parameters used for single-neu-
ron characterization is arbitrary and different parameters are generally estimated in separate
sets of experiments. In this study, an alternative method is proposed in which the electrophysi-
ological properties of neurons are characterized by means of simplified neuron models.

Ideally, a single-neuron model should be sufficiently complex and flexible to capture, by a
single change of parameters, the spiking activity of different neurons, but also simple-enough
to allow robust parameter estimation [5, 6]. Detailed biophysical models with stochastic ion
channel dynamics can in principle account for every aspect of single-neuron activity; however,
due to their complexity, they require high computational power [5, 7–9]. While systematic fit-
ting of detailed biophysical models is possible [10–15], most of the existing methods assume
the knowledge of all the parameters that determine the dynamics of the ion channels included
in the model. Overall, a reliable and efficient fitting procedure for detailed biophysical models
is not known [6]. In a second class of spiking neuron models, which we call simplified thresh-
old models, the biophysical mechanisms relevant for neural computation are not explicitly
modeled, but are accounted for by phenomenological (i.e., effective) descriptions [16, 17]. De-
spite their simplicity, threshold models are surprisingly good at predicting single-neuron activ-
ity [6, 18–25], at least for the case of single-electrode somatic stimulation (but see [26, 27]).
Nowadays, simplified threshold models are mainly used in large-scale simulations to study the
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emergent properties of neural circuits [28, 29]. By taking a different perspective, we will dem-
onstrate that the same models can also serve an equally important purpose, namely to charac-
terize the electrical properties of single neurons. In this view, simplified threshold models are
interpreted as computational tools to automatically compress the information contained in a
voltage recording into a set of unique and meaningful parameters. Summarizing the informa-
tion of complex voltage recordings can in turn enable systematic comparisons, clustering and
identification of cell types. Finally, in patch-clamp experiments aimed at studying detailed as-
pects of the neuronal dynamics, automated online identification of neurons could allow for on
the fly implementation of specific stimulus sets, which are best suited for the neuron
under study.

After demonstrating that a limited amount of data, and little computing time, are sufficient
to fit and validate our previous Generalized Integrate-and-Fire model (GIF, see [30, 31]), we in-
troduce an experimental protocol that, combined with automated patch-clamp technology,
could make automated high-throughput single-neuron characterization possible. On the ex-
perimental side, the protocol relies on in vitro somatic injections of rapidly fluctuating currents
that mimic natural inputs received in vivo at the soma of neurons. On the computational side,
the protocol is based on Active Electrode Compensation [32, 33], GIF model parameter extrac-
tion [30, 31] and the spike-train similarity measureM�

d [34]. These computational methods are
combined and implemented in a Python toolbox (freely available at wiki.epfl.ch/giftoolbox).
The validity of our approach is finally demonstrated with two applications: i) in silico record-
ings obtained by simulating the activity of a multi-compartmental conductance-based model;
and ii) in vitro recordings from layer 5 (L5) pyramidal neurons obtained using manual patch
clamping. We found that fitting and validating a GIF model takes approximatively five min-
utes. Considering the time required to automatically establish a patch-clamp seal, the complete
characterization of a single neuron can therefore be achieved in around ten minutes. We con-
clude that GIF models are useful not only for network simulations, but also for rapid and sys-
tematic single-neuron characterization.

Results
The Results section is organized as follows. In the first two sections, we respectively define the
GIF model and the procedures used for parameter extraction and model validation. Using arti-
ficial data generated by the GIF model itself, we then determine the amount of data and the
computing time required to perform accurate parameter extraction and model validation.
Based on these results, an experimental protocol is established that enables automated high-
throughput characterization of single neurons. In the last sections, the validity of this protocol
is verified using in silico recordings obtained by simulating the activity of a multi-compartmen-
tal conductance-based model [14] as well as in vitro recordings from L5 pyramidal neurons ob-
tained using standard patch clamping. The GIF model performance is finally compared against
that of a standard Generalized Linear Model (GLM) [35, 36].

Generalized Integrate-and-Fire model
The GIF model discussed in this study [31, 37] is a leaky integrate-and-fire model augmented
with a spike-triggered current η(t), a moving threshold γ(t) and the escape rate mechanism [38,
39] for stochastic spike emission (Fig 1A). This model is able to predict both the spiking activi-
ty and the subthreshold dynamics of individual neurons (Fig 1B), and it is flexible enough to
capture the behavior of different neuronal cell types [37].
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In the model, the subthreshold membrane potential V(t) evolves according to the following
differential equation:

C _V ðtÞ ¼ �gLðVðtÞ � ELÞ �
X
t̂ j<t

Zðt � t̂ jÞ þ IðtÞ; ð1Þ

where the parameters C, gL and EL define the passive properties of the neuron, I(t) is the input

current and ft̂ jg are the spike times. According to Eq 1, the passive properties of the membrane

Fig 1. The GIF model accurately predicts both the subthreshold and the spiking activity of cortical
neurons. (A) Block representation of the GIF model. The membrane acts as a low-pass filter κ(t) on the input
current I(t) to produce the modeled potential V(t). The exponential nonlinearity (escape-rate) transforms this
voltage into an instantaneous firing intensity λ(t), according to which spikes are generated. Each time a spike
is emitted, both a current η(t) and a movement of the firing threshold γ(t) are triggered. (B) The GIF model
accurately predicts the occurrence of individual spikes with millisecond precision. To evaluate the predictive
power of the GIF model, the response of a L5 pyramidal neuron to a fluctuating input current (top, the
horizontal dashed line represents 0 nA) has been recorded intracellularly (middle, black). The same protocol
was repeated nine times to assess the reliability of the neural response (bottom, black raster). The GIF model
(with parameters extracted using a different dataset) was able to accurately predict both the subthreshold
(middle, red) and the spiking response (bottom, red raster) of the cell.

doi:10.1371/journal.pcbi.1004275.g001
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are described by an exponential filter kðtÞ ¼ R
tm
exp �t

tm

� �
, with R ¼ g�1

L being the cell resistance

and τm = RC being the membrane timescale (Fig 1A). Each time an action potential is fired, an
intrinsic current with stereotypical shape η(t) is triggered. By convention, the spike-triggered
current η(t) is hyperpolarizing when its amplitude is positive and depolarizing otherwise. Cur-
rents triggered by different spikes accumulate and produce spike-frequency adaptation, if η(t)
> 0 (or facilitation, if η(t)< 0). The functional shape of η(t) varies among neuron types [37].
Consequently the time course of η(t) is not assumed a priori but is extracted from intracellular
recordings. Each time a spike is emitted, the numerical integration is stopped during a short ab-

solute refractory period Tref and the membrane potential is reset to Vðt̂ j þ TrefÞ ¼ Vreset.

Spikes are produced stochastically according to a point process with conditional firing in-
tensity λ(tjV, VT), which exponentially depends on the momentary difference between the
membrane potential V(t) and the firing threshold VT(t) [22, 39, 40]:

lðtjV ;VTÞ ¼ l0 � exp
VðtÞ � VTðtÞ

DV

� �
; ð2Þ

where λ0 has units of s
−1, so that λ(t) is in Hz and ΔV defines the level of stochasticity. Accord-

ing to Eq 2, if ΔV 6¼ 0, the probability of a spike to occur at a time t̂ 2 ½t; t þ Dt� is given by:

Pðt̂ 2 ½t; t þ Dt�Þ ¼ 1�exp �
Z tþDt

t

lðsÞ ds
� �

� lðtÞDt: ð3Þ

In the limit ΔV! 0, the model becomes deterministic and action potentials are emitted at the
precise moment when the membrane potential crosses the firing threshold. Importantly, the
value of ΔV is extracted from experimental data.

Finally, the dynamics of the firing threshold VT(t) is given by:

VTðtÞ ¼ V�
T þ

X
t̂ j<t

gðt � t̂ jÞ; ð4Þ

where V�
T is a constant and γ(t) describes the stereotypical time course of the firing threshold

after the emission of an action potential. Since the contribution of different spikes accumulates,
the moving threshold defined in Eq 4 constitutes an additional source of adaptation (or facilita-
tion). Similar to η(t), the functional shape of γ(t) is not assumed a priori but is extracted from
intracellular recordings. All model parameters are summarized in Table 1.

GIF model parameter extraction
Given the intracellular voltage response Vdata(t) evoked in vitro by a controlled input current
Itr(t), all of the GIF model parameters are extracted from experimental data (training set) using
a three-step procedure (Fig 2) that we previously introduced [30, 31]. A detailed description of
the fitting procedure can be found in the Materials and Methods section.

In Step 1 (Fig 2, Step 1), the experimental spike train Sdata ¼ ft̂ jg is first defined as the col-
lection of instants t̂ j at which Vdata(t) crossed a certain threshold from below. The average

spike shape VSTA(t) is then obtained by computing the spike-triggered average (STA) of Vda-

ta(t). Depending on the cell type (i.e., depending on the average spike shape), the absolute re-
fractory period Tref is fixed to a certain value and the reset potential is computed as Vreset =
VSTA(Tref). In the GIF model, a period of absolute refractoriness can alternatively be imple-
mented by setting the first milliseconds of the spike-triggered threshold movement γ(t) to very
large values. For this reason, as long as Tref remains smaller than the shortest interspike interval
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Table 1. List of model parameters and symbols.

GIF model GLM

Membrane capacitance C Stimulus filter κGLM(t)

Membrane conductance gL Spike-history filter hGLM(t)

Reversal potential EL Baseline activity E0

Refractory period Tref
Voltage reset Vreset AEC

Threshold baseline V �
T I-V optimal linear filter (Eq 11) κopt(t)

Threshold sharpness ΔV Electrode filter (Eq 14) κe(t)

Spike-triggered current η(t) Electrode time constant τe

Spike-triggered threshold γ(t)

Cell resistance R ¼ g�1
L Performance evaluation

Membrane timescale τm = RC Spike-train similarity (Eq 25) M�
d

Membrane filter κ(t) Voltage prediction error (Eq 27) �V

Effective adaptation filter (Eq 7) h(t) Parameter prediction error (Eq 28) �param

doi:10.1371/journal.pcbi.1004275.t001

Fig 2. Schematic representation of the procedure used for GIF model parameter extraction. In Step 1 (first row), the experimental spike train Sdata(t) is
extracted from the voltage trace Vdata(t) using a standard threshold-crossing method (left, dashed line). Parameters related to absolute refractoriness are
extracted from the average spike shape (middle). In Step 2 (second row), given the injected current Itr(t) and the recorded potential Vdata, all the parameters
θsub defining the dynamics of the subthreshold membrane potential (Eq 1) are extracted by performing a least-square multilinear regression on the
membrane potential derivative _V dataðtÞ. Since Eq 1 does not describe the membrane potential dynamics during action potentials, all the data close to spikes
are discarded. In Step 3 (third row), the subthreshold parameters θsub are first used to compute the subthreshold voltage of the model V̂ modelðtÞ. The
parameters θth defining the dynamics of the firing threshold (left, dashed line) are then extracted by maximizing the probability (i.e., the log-likelihood) that the
experimental spike train Sdata(t) was produced by the model, given the subthreshold dynamics V̂ modelðtÞ.
doi:10.1371/journal.pcbi.1004275.g002
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(ISI) observed in the data, its precise value is not critical. A sensible choice is to set Tref about
twice the spike width at half maximum.

In Step 2 (Fig 2, Step 2), the first-order temporal derivative of the experimental voltage
_V dataðtÞ is estimated by finite differences and the parameters θsub = {C, gL, EL, η(t)} determining

the membrane potential dynamics are extracted by fitting Eq 1 on _V dataðtÞ. This is done by ex-
ploiting the knowledge of the experimental voltage Vdata(t) and the external input Itr(t). To
avoid a priori assumptions on the functional shape of the spike-triggered current, η(t) is ex-
panded in a linear combination of rectangular basis functions. Consequently, optimal parame-

ters minimizing the sum of squared errors between _V ðtÞ and _V dataðtÞ can be efficiently
obtained by solving a multilinear regression problem [22] (cf. Eqs 17–18).

In Step 3 (Fig 2, Step 3), the parameters estimated so far are first used to compute the sub-

threshold membrane potential of the model V̂modelðtÞ. For that, Eq 1 is numerically solved by

enforcing adaptation currents η(t) at all the observed spike times ft̂ jg. Given V̂modelðtÞ, the pa-
rameters yth ¼ fV�

T ;DV ; gðtÞg defining the firing threshold dynamics (cf. Eqs 2–4) are then ex-
tracted by maximizing the probability (i.e., the log-likelihood) of the experimental spike train
Sdata(t) being produced by the GIF model (cf. Eqs 20–21). Similar to η(t), the spike-triggered
threshold movement is extracted by expanding γ(t) in a linear combination of rectangular basis
functions. Since the parameters λ0 and V�

T are redundant, λ0 is fixed to 1 Hz. With the expo-
nential function in Eq 2, the log-likelihood to maximize is guaranteed to be a concave function
of θth[41] and the optimization problem can be solved using standard gradient ascent tech-
niques. The method used in this last step closely resembles the standard GLM fitting procedure
[35, 36]. However, here, by exploiting the information contained in the subthreshold dynamics
of the membrane potential, the maximum likelihood approach is specifically used to infer the
dynamics of the firing threshold. In contrast to GLMs, the GIF model can consequently disen-
tangle adaptation processes mediated by intrinsic currents and threshold movements.

GIF model validation
To obtain a high-throughput pipeline for GIF model parameter extraction, the method de-
scribed in the previous section has to be complemented with a validation protocol designed to
automatically detect and discard trials in which the fitting procedure fails. Good spiking neu-
ron models should be able to accurately predict the occurrence of individual action potentials
with millisecond precision [6]. To take into account the stochastic nature of single neurons
[42], we designed a validation protocol based on the measurement of the model performance
in predicting spike emission probability. After the acquisition of the training dataset used for
parameter extraction, a new set of recordings (test dataset) is performed in which single neu-
rons are stimulated repetitively with a test current Itest(t). The resulting set of experimental
spike trains is then compared against a set of spike trains predicted by repetitive simulations of
the GIF model. To obtain a quantitative measure of the model’s predictive power, the similarity
M�

d [34] between the two sets of spike trains is computed (Materials and Methods).M�
d takes

values between 0 and 1, whereM�
d ¼ 0 indicates that the model is unable to predict any of the

experimental spikes andM�
d ¼ 1 indicates a perfect match. Importantly,M�

d avoids the small-
sample bias known to occur when measuring the similarity between small groups of spike
trains as well as the deterministic bias known to favor noise-free models [34].

Testing GIF model parameter extraction and validation on artificial data
To estimate the amount of data required to perform GIF model parameter extraction, we first
tested our fitting procedure on an artificial training set generated by simulating the response of
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a GIF model to a fluctuating current I(t). The choice of reference parameters (Fig 3A–3D,
black) was based on previous results [31]. In particular, both the spike-triggered current η(t)
and the threshold movement γ(t) were defined as a linear combination of K = 26 log-spaced
rectangular basis functions approximating a power-law decay over 5 seconds [31, 43]. Overall,
the reference model had 59 parameters: 31 were related to the subthreshold dynamics and 28
to the firing threshold.

The input current I(t) used to build the artificial training set was generated at ΔT −1 = 20

kHz by numerically solving the stochastic differential equation t _I ¼ �I þ I0 þ
ffiffiffiffiffi
2t

p
sðtÞxðtÞ in

discrete time

Iðt þ DTÞ ¼ IðtÞ þ I0 � IðtÞ
t

� DT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2DT

t

r
�N ð0; 1Þ; ð5Þ

Fig 3. Validation of the procedure used for GIF model parameter extraction. (A)-(D)GIF model parameters used to generate the artificial data (black)
are recovered using a training set of Ttr = 10 s (gray) and Ttr = 100 s (red). Error bars and shaded areas represent one standard deviation obtained using five
different data sets. In case of perfect agreement, black lines, gray lines and shaded areas are not visible. (A)Membrane filter κ(t). Inset: membrane timescale
τm = C/gL. (B) Spike-triggered current η(t). (C) Spike-triggered movement of the firing threshold γ(t). (D) Reversal potential (EL, top left); cell resistance
(R ¼ g�1

L , top right); threshold baseline (V �
T, bottom left) and threshold sharpness (ΔV, bottom right). (E) Estimation error �param on model parameters (upper

panel), performance on spike-timing predictionM�
d (middle panel) and computing time required for parameter extraction (lower panel) as a function of the

training set size Ttr. Gray areas indicate one standard deviation across different artificial datasets generated using the same reference parameters. Gray and
red arrows indicate the performance obtained with a training set of 10 s and 100 s, respectively. (F) Reliability of the validation procedure as a function of the
number of repetitions ntest and the duration Ttest of the test current. For different values of ntest and Ttest,M�

d was computed 1000 times using different test
currents. Consistent with the result thatM�

d corrects the small-sample bias, the mean value ofM�
d ¼ 0:998 (dashed line) obtained across repetitions of

different test currents did not depend on ntest and Ttest. The continuous lines represent the 0.25-quantiles of theM�
d distribution obtained with ntest =

{3,6,9,12,15} (from dark to light gray) and indicate that the reliability of the measure increases with ntest and Ttest.

doi:10.1371/journal.pcbi.1004275.g003
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where ξ(t) is a Gaussian white-noise process generated by independently sampling from a Nor-
mal distributionN(0,1), τ = 3 ms is the characteristic timescale on which the input fluctuates,
I0 defines the mean input and σ(t) is the time-dependent standard deviation of I(t). Ornstein-
Uhlenbeck processes (i.e. stationary filtered Gaussian processes) have been extensively used to
model the input current received in vivo at the soma of neocortical neurons [44]. Here, we re-
laxed the assumption of stationarity by modulating the variance of the input with a periodic os-
cillation [43] given by:

sðtÞ ¼ s0ð1þ Ds sin ð2pftÞÞ; ð6Þ

where σ0 and Δσ are constants and f = 0.2 Hz is the modulation frequency. An input current
with non-stationary statistics drives the neurons through different regimes producing broad
ISI distributions that better constrain the fit of adaptation processes. The input parameters I0,
σ0 and Δσ were adjusted to generate an artificial training set in which the GIF model emitted
spikes at an average firing rate of 10 Hz oscillating over 5 seconds between around 7 and 13 Hz.

The fitting procedure illustrated in Fig 2 was then applied to recover the reference parame-
ters of the GIF model used to generate the artificial dataset (Fig 3A–3D, black). To estimate the
amount of data required to guarantee a high degree of accuracy, this operation was repeated
several times by varying the size of the training set Ttr (i.e., the duration of the input current I
(t)). Fig 3A–3D shows a comparison between the reference parameters and the results obtained
by fitting a training set of Ttr = 10 seconds (gray) and Ttr = 100 seconds (red). Overall, we
found that 100 seconds were sufficient to accurately recover the reference parameters. To
quantify the accuracy of the fit, we computed the mean error �param on model parameters as a
function of Ttr (see Materials and Methods). The results indicate that the minimum amount of
data required for accurate parameter extraction is 30–40 seconds. In particular, we found that
100 seconds were sufficient to limit the error to �param < 2.0% (Fig 3E, top). The great accuracy
with which the fitted model was able to predict the spiking activity of the reference model
(M�

d ¼ 0:998) confirmed the goodness of this fit (Fig 3E, middle). To achieve high-throughput
and perform parameter extraction on the fly, it is crucial to minimize the computing time
(CPU time) required for the fit. We measured the CPU time as a function of the training set
duration Ttr (Fig 3E, bottom) and we found that accurate parameter extraction from a training
set of Ttr = 100 seconds requires around 60 seconds of computing. We concluded that GIF
model parameter extraction is suitable for high-throughput.

A second time-consuming procedure that has to be analyzed is the validation protocol. To
quantify the predictive power of the fitted model, the reference model was stimulated with re-
petitive injections of a test current Itest(t) generated according to Eqs 5–6. To estimate the num-
ber of repetitions ntest and the duration Ttest of the test current required to obtain a reliable
estimate of the model predictive power, the similarity measureM�

d was computed multiple
times using different values of ntest and Ttest (Fig 3F). On average, the value ofM�

d was indepen-
dent of both the input current duration and the number of repetitions, confirming that the
spike-train metricsM�

d successfully eliminates the small sample bias [34]. We measured the var-
iability ofM�

d across validation procedures performed with different realizations of Itest(t) and
found that the reliability ofM�

d increased with both the number of repetitions ntest and the du-
ration of the test current Ttest (Fig 3F). Spike-triggered processes can last for several seconds
[31, 43]. This sets a constraint on the minimal duration of both the test current Itest(t) and the
interstimulus interval. By taking into account these constraints, we concluded that, while re-
specting high-throughput constraints, a validation protocol based on nine injections of a
10-second current guarantees a reliable estimation of the model’s predictive power (Fig 3F).
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A protocol for automated high-throughput single-neuron characterization
Based on the results reported in the previous section, we designed a protocol for the fit and the
validation of GIF models on in vitro intracellular recordings (Fig 4). The protocol is conceptu-
ally divided in two phases. In the first part, a training set is acquired by recording the single-
neuron response to a fluctuating input Itr(t) lasting for Ttr = 100 seconds and generated accord-
ing to Eqs 5–6. These data are then used for parameter extraction. In the second part of the
protocol, nine repetitive injections of a new 10-second current Itest(t) are performed with an in-
terstimulus interval of 10 seconds, so as to allow the cell to recover. These data (test set) are
then used to quantify the predictive power of the GIF model with the spike-train similarity
measureM�

d . Since all the computations required for parameter extraction and model valida-
tion can be performed on the fly, the whole protocol requires 5 minutes and is suitable for
high-throughput.

Current-clamp experiments in which the same electrode is used both for stimulating and re-
cording from single neurons are biased due to the voltage drop across the electrode [32]. To re-
move this bias, intracellular recordings are preprocessed using a technique called Active
Electrode Compensation (AEC, refs. [32, 33], see Materials and Methods). To perform AEC,
the filtering properties of the electrode have to be estimated. For that, an additional 10-second
subthreshold current injection is performed before the acquisition of the training set (Fig 4).

Testing the high-throughput protocol on in silico recordings
A different class of models used to describe the electrical activity of individual neurons includes
the so called multi-compartment conductance-based models (or detailed biophysical models).
In contrast to point-neuron models, detailed biophysical models account for the intricate mor-
phology of both dendritic and axonal arborizations and explicitly describe the dynamics of a
large variety of ion channels mediating active currents. Both aspects are likely to play a role in
single-neuron information processing [45, 46]. A detailed biophysical model (DBM) has re-
cently been proposed that captures several features of L5b thick-tufted pyramidal neurons [14].
In particular, this model includes active dendrites and describes the interactions between

Fig 4. Schematic representation of the protocol for high-throughput single-neuron characterization. To characterize the properties of the electrode
required for AEC, the experimental protocol starts with the injection of a short subthreshold current. While the filtering properties of the patch clamp are
estimated (AEC box, left), the training dataset is collected. After training set collection, the raw data are preprocessed with AEC (AEC box, right). Then, in
parallel with GIF model parameter extraction and successive spike timing prediction, the test dataset is collected by injecting nine repetitions of the same
time-dependent current. Finally, after complete acquisition of the test set, the similarity measureM�

d between the observed and the predicted spike trains is
computed. Overall, GIF model parameter extraction and validation requires around five minutes.

doi:10.1371/journal.pcbi.1004275.g004
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Na+-spiking at the soma, back-propagating action potentials and Ca2+-spikes generated at the
distal apical dendrites.

To validate our procedure for high-throughput single-neuron characterization, the protocol
described in Fig 4 was tested in silico by simulating the DBM response to a set of current injec-
tions (Fig 5A, see Materials and Methods). The input parameters were calibrated to obtain an
average firing rate of 10 Hz with slow rate fluctuations between 7 and 13 Hz. Moreover, to
model stochastic spike emission, a source of noise was introduced by corrupting the input cur-
rent with some additive white-noise (see Materials and Methods). Capturing the DBM spiking
response to dendritic injections goes beyond the scope of this study. Since we are ultimately in-
terested in automatic somatic patching, all in silico experiments were preformed by delivering
the current at the somatic compartment (Fig 5A). DBM somatic recordings were then used to
perform GIF model parameter extraction (Fig 5B–5D). Compared with previous results from
in vitro recordings in L5 pyramidal neurons [30, 31], the membrane filter κ(t) was character-
ized by a relatively short timescale (τm = 6.7 ms, s.d. 0.1 ms, Fig 5B). GIF model parameter ex-
traction also revealed the presence of a long-lasting adaptation current (Fig 5C) as well as a
long-lasting spike-triggered movement of the firing threshold (Fig 5D). Consistent with the
tendency of L5b pyramidal neurons to produce bursts of action potentials (ref. [14] and Fig
5G), the activation of the spike-triggered current was not instantaneous.

Fig 5. Testing GIFmodel parameter extraction on in silico recordings from a detailed biophysical model: optimal GIF model parameters. (A)
Reconstructed morphology of the detailed biophysical model (DBM, ref. [14]) used to validate the protocol for high-throughput single-neuron characterization.
The recording site is indicated by the red pipette. (B)-(D)GIF model parameters extracted from in silico recordings obtained by simulating the DBM response
to a somatic current injection. The filters obtained by averaging the parameters extracted from five independent training sets of Ttr = 100 s each are shown in
red. Gray areas indicate one standard deviation. (B)Membrane filter κ(t). Inset: comparison between the membrane timescale extracted using a GIF model
and the timescale of the GLM linear filter (c.f., exponential fit of κGLM(t) in panel E). Each couple of open circles indicates the timescale extracted from a
specific training set. Bar plots represent the mean and one standard deviation across training sets (τm = 6.7 ms, s.d. 0.1 ms, GIF; τm = 8.9 ms, s.d. 1.3 ms,
GLM). (C) Spike-triggered current η(t). Inset: zoom on the first 400 ms. (D) Spike-triggered movement of the firing threshold γ(t). (E)-(F)GLM parameters
extracted from the same in silico recordings used to fit the GIF model. Average filters are shown in blue. Gray areas indicate one standard deviation across
training sets. (E) Linear filter κGLM(t) (blue) and exponential fit (dashed black). For comparison, a rescaled version of the membrane filter κ(t) is shown in red.
Inset: same data displayed on semi-logarithmic scales. (F) Spike-history filter hGLM(t). For comparison, a rescaled version of the GIF model effective filter h(t)
(Eq 7) is shown in red. Inset: same data displayed on double-logarithmic scales. (G) ISI distributions computed using the test set data (black line and gray
area) the GIF model prediction (red) and the GLM prediction (blue).

doi:10.1371/journal.pcbi.1004275.g005
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According to cable theory [47], the large number of dendritic branches explicitly modeled
in the DBM, is expected to manifest itself in a membrane filter κ(t) decaying over multiple
timescales. To verify the accuracy of the single-exponential assumption and to compare the
GIF model performance against a reference model, we also used the in silico recordings to fit a
GLM [35, 36], (Fig 5E and 5F). In the GLM, the linear filter κGLM(t) acting on the input current
is not assumed a priori to be an exponential function and its shape is extracted from experi-
mental data using a non-parametric method (see Materials and Methods). We found that the
GLM filter κGLM(s) and the membrane filer κ(t) of the GIF model were in good agreement (Fig
5E), suggesting that complex dendritic morphologies weakly affect temporal integration at the
somatic compartment. Further quantitative evidence was provided by fitting κGLM(t) with a
single exponential function and comparing the resulting timescale against τm (Fig 5B, inset).
The GLM spike-history filter hGLM(t) extracted from in silico recordings (Fig 5F) was also in
good agreement with the effective adaptation filter h(t) of the GIF model [31, 37]:

hðtÞ ¼
Z 1

0

kðsÞZðt � sÞdsþ gðtÞ: ð7Þ

This result confirmed that hGLM(t) combines, but cannot disentangle, the effects of the adapta-
tion current η(t) and the movement of the firing threshold γ(t). In contrast to GIF models,
GLMs do not model absolute refractoriness with a dead time followed by a voltage reset. This
explains why, during the first milliseconds, hGLM(t) is much larger than h(t) (Fig 5F). Finally,
consistent with previous results that in L5 pyramidal neurons spike-frequency adaptation oc-
curs on multiple timescales [31, 43], we noticed that both h(t) and hGLM(t) were approxima-
tively linear on double logarithmic scales (Fig 5F, inset).

The predictive power of both the GIF model and the GLM was then assessed on a test set ob-
tained by simulating the DBM response to nine repetitive injections of a new 10-second current
(Fig 6A). Both models achieved a similar performance and were able to predict around 80% of
the spikes emitted by the DBM (temporal precision Δ = 4 ms;M�

d = 0.80, s.d. 0.01, GIF;M�
d =

0.79, s.d. 0.01, GLM; Fig 6B). Compared to the GLM, the GIF model presented two advantages.
First, the GIF model, but not the GLM, explicitly modeled the dynamics of the membrane po-
tential and could therefore predict the DBM subthreshold voltage with an average root mean
squared error (RMSE) of 3.4 mV, s.d. 0.03 mV (variance explained �V = 74.3 %, s.d. 1.1%; Fig
6C). Second, the time required to perform parameter extraction was faster for the GIF model
than for the GLM (TCPU = 86 s, GIF; TCPU = 143 s, GLM).

Repeating the entire protocol by varying the duration of Itr(t) confirmed that a training set
of Ttr = 100 s was sufficient to ensure convergence of the fitting procedure (Fig 6D). Overall,
these results suggest that, despite their simplicity, modern point-neuron models are capable of
predicting most of the spikes emitted by a detailed biophysical model in response to complex
somatic current injections.

Testing the high-throughput protocol on in vitro patch-clamp recordings
To confirm the results reported in the previous section, the protocol for high-throughput sin-
gle-neuron characterization was further tested using standard current-clamp in vitro record-
ings from L5 pyramidal neurons (see Materials and Methods). At the beginning of the
experiment, the input current was calibrated to obtain an average firing rate of 10 Hz with am-
plitude fluctuations between 7 and 13 Hz. For that, we set Δσ = 0.5, I0 = σ0 and adjusted I0 in
order to obtain an average firing rate of around 10 Hz. While this simple approach works well
for L5 pyramidal neurons, different cell types might require a more involved calibration proto-
col in which I0 6¼ σ0. In these cases, an alternative solution consist of: i) temporarily setting I0 =
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0 pA and looking for two values of σ0, denoted smin
0 and smax

0 , giving rise to subthreshold voltage
fluctuations σV of desired magnitudes (e.g., smin

V � 3mV and smax
V � 7mV); ii) set s0 ¼

ðsmin
0 þ smax

0 Þ=2 and Ds ¼ ðsmax
0 � smin

0 Þ=2s0; iii) adjust I0 to obtain an average firing rate of
around 10 Hz.

Since the same patch-clamp electrode was used to simultaneously stimulate and record
from single neurons, the acquired signal Vrec(t) is a biased version of the real membrane poten-
tial Vdata(t) [32, 33]. This bias is due to the voltage drop Ve(t) across the patch-clamp electrode
and was removed using a technique called Active Electrode Compensation (AEC, see Materials
and Methods and Fig 7A). In AEC [32, 33], the electrode is modeled as an arbitrarily complex
linear filter κe(t) estimated at the beginning of the experiment from the optimal linear filter
κopt(t) between a 10-second subthreshold current Isub(t) and the recorded response Vsub(t) (Fig
7B). For all subsequent injections, we estimated the voltage drop across the electrode Ve(t) by
convolving the input current with the electrode filter κe(t) (Fig 7C). We finally recovered the
membrane potential Vdata(t) by subtracting Ve(t) from the recorded signal Vrec(t) (Fig 7A

Fig 6. Testing GIFmodel parameter extraction on in silico recordings from a detailed biophysical model: GIF model validation. (A) Fraction of the
input current Itest(t) (top, gray) used for model validation; typical DBM response evoked by a single current injection (middle, black); DBM spiking activity in
response to nine repetitive injections of the same input (bottom, black raster); PSTH constructed by averaging the nine spike trains smoothed with a
rectangular window of 500 ms (bottom, black line). GIF model and GLM predictions are shown in red and blue, respectively. Dashed black lines represent 0
nA (top) and 0 Hz (bottom). (B)-(D) Performance comparison between GIF model (red) and GLM (blue) in predicting the DBM activity. Parameter extraction
and model validation were repeated five times using different datasets. Each couple of open circles indicates the performance obtained by both models on a
specific dataset. Bar plots indicate the mean and one standard deviation across repetitions. (B) Spike-timing prediction as quantified byM�

d with precision Δ =
4 ms. (C)Mean prediction error �V on subthreshold membrane potential fluctuations. The GLM does not explicitly model the subthreshold membrane
potential dynamics and is therefore not applicable (N/A). (D)GIF model spike-timing prediction (M�

d , with precision Δ = 4 ms) as a function of the training set
size used for parameter extraction. Increasing the duration of the training set from 100 s to 120 s does not improve the GIF model predictive power (M�

d =
0.80, s.d. 0.01, Ttr = 100 s;M�

d = 0.80, s.d. 0.01, Ttr = 120 s; n = 10, paired Student t-test, t4 = 0.05, p = 0.97; n.s. > 0.05).

doi:10.1371/journal.pcbi.1004275.g006
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Fig 7. Data preprocessing: Active Electrode Compensation. (A) Schematic representation of the Active
Electrode Compensation technique used to correct for the experimental bias known to occur when the same
patch-clamp electrode is used to simultaneously inject and record from a single neuron. The artifactual
voltage Ve(t) across the pipette is estimated by filtering the input current I(t) with the electrode filter κe(t). The
intracellular membrane potential Vdata(t) if finally obtained by subtracting the artifactual voltage Ve(t) from the
recorded signal Vrec(t). (B) Typical optimal linear filter κopt(t) between the subthreshold input current Isub(t)
and the recorded signal Vsub(t). To estimate the electrode filter, an exponential fit is performed on the tail of
κopt(t) (dashed black). Inset: Magnification of the y-axis illustrating the good accuracy of the exponential fit
(dashed black) on the tail of the optimal linear filter κopt(t) (red). (C) Typical electrode filter κe(t) obtained by
subtracting the exponential fit from the optimal linear filter κopt(t) (see panel B). Since in vitro recordings were
performed with the standard bridge compensation technique, the electrode filter κe(t) is characterized by a
strong initial negative peak. The characteristic timescale of the electrode filter τe was measured by performing
an exponential fit (dashed black) on κe(t). Inset: distribution of the electrode timescales τe measured in ten
different recordings included in this study. (D) Comparison between recorded signal Vrec(t) (black) and
membrane potential Vdata(t) (red) obtained after AEC. Inset: zoom indicating that AEC operates as a low-pass
filter by removing high-frequency components from the acquired signal. Scale bars: 30 ms, 5 mV.

doi:10.1371/journal.pcbi.1004275.g007
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and 7D):

VdataðtÞ ¼ VrecðtÞ � VeðtÞ: ð8Þ

According to our high-throughput protocol, the training set was compensated only after its
complete acquisition. With this strategy, the time-consuming procedure required to estimate the
electrode filter can be performed during the acquisition of the training set (see Fig 4), limiting the
total duration of the protocol. Consistent with previous results [31], we found that the electrode
filter κe(t) decayed on a very rapid timescale τe = 0.54 ms, s.d. 0.11 ms (Fig 7C). Consequently,
AEC acted on the raw data as a low-pass filter with a cutoff frequency of around 2 kHz.

After AEC, the in vitro recordings acquired from ten different L5 pyramidal neurons (Fig
8A) were used to perform GIF model parameter extraction (Fig 8B–8E). All of the extracted pa-
rameters were consistent with the ones previously obtained by fitting the GIF model on in vitro
recordings from L5 pyramidal neurons responding to a mean-modulated input [31]. The

Fig 8. Testing the protocol for high-throughput single-neuron characterization on in vitro patch-clamp recordings: optimal GIF model parameters.
(A) Staining of a biocytin-filled L5 pyramidal neuron included in this study. (B)-(E)GIF model parameters extracted from ten L5 pyramidal neurons. Average
filters are shown in red. Gray lines show the results from individual neurons. (B)Membrane filter κ(t). Inset: comparison between the characteristic timescale
of κ(t) and the slow timescale τslow of κGLM(t) (see panel F). Each couple of open circles indicates the parameters measured in a single neuron. Bar plots
indicate the mean and one standard deviation across neurons. (C) Spike-triggered current η(t) displayed on double-logarithmic scales. (D) Spike-triggered
movement of the firing threshold γ(t) displayed on double-logarithmic scales. (E)Histograms of GIF model parameters extracted from ten L5 pyramidal
neurons. From left to right: reversal potential, EL; membrane timescale, τm = C/gL; cell resistance, R ¼ g�1

L ; firing threshold baseline, V �
T; firing threshold

sharpness, ΔV. (F)-(H)GLM parameters extracted from ten L5 pyramidal neurons. Average filters are shown in blue. Gray areas indicate one standard
deviation across neurons. (F)GLM linear filter κGLM(t) (blue). For comparison, a rescaled version of the GIF filter κ(t) is shown in red. Inset: same data shown
on semi-logarithmic scales. To quantify the slow τslow (panel B, inset) and the fast τfast timescale of κGLM(t), we performed a double exponential fit (not shown
for clarity) of κGLM(t). (G)GLM spike-history filter hGLM(t) (blue). For comparison, a rescaled version of the effective GIF adaptation filer h(t) (c.f., Eq 7) is
shown in red. (H) Distribution of the GLM parameter E0 extracted from ten L5 pyramidal neurons.

doi:10.1371/journal.pcbi.1004275.g008
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parameters describing the passive properties of the membrane (i.e., the resting membrane po-
tential EL, the membrane timescale τm and the input resistance R) revealed the presence of cell-
to-cell variability (Fig 8B and 8E) and were on average consistent with previous results ob-
tained using standard characterization protocols based on current-step injections [48]. Our
characterization approach further showed that, in L5 Pyr neurons, spike-frequency adaptation
is mediated by a long-lasting adaptation current featuring a power-law decay (Fig 8C; see also
ref. [31]), which possibly results from the combined action of multiple channels operating on
different timescales [49]. In standard protocols for single-neuron characterization, spike-trig-
gered currents are generally assessed indirectly by measuring the spike after-hyperpolarization
(AHP) induced by an artificial current pulse designed to evoke one or more action potentials
(see, e.g., refs. [49, 50]). Importantly, with our characterization method the magnitude and the
time-course of adaptation currents mediating AHPs can be measured simultaneously along
with the other GIF model parameters, while neurons are processing in vivo-like inputs. Finally,
our characterization protocol showed the presence of large firing threshold movements trig-
gered by the emission of action potentials and lasting for several hundreds of milliseconds (Fig
8D). The dynamical properties of the firing threshold have been previously shown to be cell-
type specific [30, 51] and functionally relevant [52], but are generally not considered in stan-
dard characterization protocols.

To allow for a comparison, we also used the in vitro recordings to perform GLM parameter
extraction (Fig 8F–8H, see Materials and Methods). Confirming the results reported in the pre-
vious section, the effective spike-history filter h(t) of the GIF model obtained by combining the
spike-triggered current η(t) and threshold movement γ(t) was in good agreement with the
GLM spike-history filter hGLM(t) (Fig 8G). The linear filters κGLM(t) and κ(t) were also in good
agreement (Fig 8B and 8F, τm = 20.9 ms, s.d. 6.5 ms GIF; τslow = 22.5 ms, s.d. 3.0 ms GLM).
However, the large values observed in the first two bins of κGLM(t) indicated the presence of a
second rapid component (τfast = 1.9 ms, s.d. 0.5 ms), which is neglected in the GIF model (Fig
8F, inset).

We tested the predictive power of both the GIF model and the GLM on a new set of record-
ings (test set) in which a test current Itest(t) was repetitively injected (Fig 9A). In terms of mere
spike-timing prediction, the GIF model and the GLM achieved similar results
(M�

d ¼ 0:79� 0:04, GIF;M�
d ¼ 0:81� 0:04, GLM; Fig 9B). Moreover, the GIF model, but

not the GLM, could predict the subthreshold response of real neurons with an RMSE of
3.6 mV, s.d. 0.5 mV (variance explained �V = 80.1 %, s.d. 4.1%; Fig 9C). These results indicate
that the difference observed between the linear filters κ(t) and κGLM(t) does not have a major
impact on the predictive power of the models.

Finally, comparing the predictive power of different GIF models with parameters extracted
from five training sets of different durations (Ttr = 10, 30, 60, 100 and 120 s; Fig 9D) confirmed
that 100 seconds of intracellular recordings are sufficient to accurately constrain the GIF model
parameters. We conclude that our protocol for GIF model parameter extraction is suitable for
high-throughput single-neuron characterization.

Discussion
The intrinsic dynamics of individual neurons strongly differ between cell types and brain areas
[53]. This heterogeneity is increasingly considered as a critical feature of the brain and not as a
consequence of biological imprecision [54, 55]. Taking into account single-neuron variability
may be crucial to understand how neural systems support computation. In the near future, au-
tomated electrophysiology will likely make available increasingly large amounts of data. Due to
their inherent complexity (and their high dimensionality), raw data from patch-clamp
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recordings are difficult to interpret and cannot be directly clustered to identify electrophysio-
logical types. GIF models are currently employed by computational neuroscientists mainly to
investigate the emergent properties of neural networks. Here, we showed that these models
also comprise a powerful tool to cast the information provided by voltage recordings into small
sets of model parameters that can be easily interpreted and compared.

More precisely, we demonstrated that the fitting procedure for GIF models we recently in-
troduced [31, 37] (Figs 1 and 2) is suitable for high-throughput analysis of intracellular patch-
clamp recordings. Using an artificial dataset generated by the model itself, we first established
that GIF model parameter extraction and validation can be accomplished in around five min-
utes given a limited amount of intracellular recordings (Fig 3). Based on these results, we then
designed a protocol for the characterization of the electrical activity of single neurons (Fig 4).
On the experimental side, the protocol relies on in vitro injections of rapidly fluctuating cur-
rents. To compensate for the artifact known to occur while delivering inputs through the re-
cording electrode, we propose the use of Active Electrode Compensation [32, 33] (Fig 7). In
AEC, estimating the electrode properties is a potentially time-consuming procedure. For this
reason, in our protocol, artifacts resulting from the voltage drop across the patch-clamp elec-
trode are removed only after the complete acquisition of the dataset used for parameter

Fig 9. Testing the protocol for high-throughput single-neuron characterization on in vitro patch-clamp recordings: GIF model validation. (A) Input
current Itest(t) (top, gray) used for model validation, typical L5 pyramidal neuron response evoked by a single current injection (middle, black) spiking activity
observed in response to nine repetitive injections of the same input (bottom, black raster) and PSTH constructed by averaging the nine spike trains within
rectangular windows of 500 ms (bottom, black line). GIF model and GLM predictions are shown in red and blue, respectively. (B)-(D) Summary data for the
performance of the GIF model and the GLM in predicting the responses of ten L5 pyramidal neurons. Each couple of open circles indicates the performance
on an individual cell. Error plots indicate the mean and one standard deviation across neurons. (B) Spike-timing prediction as quantified byM�

d with precision
Δ = 4 ms. (C)Mean prediction error �V on subthreshold membrane potential fluctuations. The GLM does not explicitly model the subthreshold membrane
potential dynamics and is therefore not applicable (N/A). (D)GIF model spike-timing prediction (M�

d , with precision Δ = 4 ms) as a function of the training set
size used for parameter extraction. Increasing the duration of the training set from 100 s to 120 s does not improve the GIF model predictive power (M�

d =
0.79, s.d. 0.04, Ttr = 100 s;M�

d = 0.79, s.d. 0.04, Ttr = 120 s; n = 10, paired Student t-test, t9 = 0.25, p = 0.8; n.s. > 0.05).

doi:10.1371/journal.pcbi.1004275.g009
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extraction (Fig 4). We tested the protocol for high-throughput single-neuron characterization
using both in silico data (Figs 5 and 6) as well as in vitro recordings obtained with conventional
(i.e., manual) patch-clamp ing (Figs 8 and 9). In both cases the results confirmed our conclu-
sion drawn from the analysis of artificial data generated by the GIF model itself (Fig 3); namely
that a GIF model with parameters extracted from a training set with size larger than 30 seconds
accurately predicts both the subthreshold and the spiking response evoked by a new input.
Considering that long current-clamp recordings are generally affected by low-frequency arti-
facts such as drifts in resting membrane potential, access resistance and average firing rate, it
seems unlikely that a training set whose size prohibits rapid characterization would improve
accuracy. Intriguingly, we found that the GIF model achieves almost identical performances in
predicting in silico and in vitro data (Figs 6 and 9), indicating that detailed biophysical models
could be used in the future to guide the improvement of simplified spiking models. Analyzing
the performance of the GIF model in response to dendritic inputs goes beyond the scope of this
study. However, as demonstrated by a recent study [56], the mathematical framework dis-
cussed here is flexible and can in principle be extended to account for dendritic current
injections.

Considering the time required to automatically select a target neuron and form a gigaohm
seal, our results demonstrate that, if combined with emergent technologies for automatic
patch-clamping, the mathematical tools discussed in this study could be used to implement a
high-throughput pipeline performing single-neuron characterization in around ten minutes.
Importantly, all the computations in the protocol can be executed on the fly, while electrophysi-
ological recordings are being performed. Consequently, the model performance in predicting
the spiking activity (i.e.,M�

d) and the subthreshold voltage dynamics (i.e., �V) could be used for
online monitoring and quality control, possibly allowing for automated detection of experi-
mental problems. Online characterization and identification of neurons may also prove useful
in more detailed high-throughput characterization of neuronal cell types currently being set up
in the context of several large-scale brain initiatives as this would allow for on the fly implemen-
tation of cell-specific stimulus sets. Similarly, online identification could be useful in manual
patch-clamp experiments whose aim is not to perform high-throughput single-neuron charac-
terization, but is to study other neuronal properties (e.g., the dynamics of specific ion-channels
under pharmacology, the effect of neuromodulators on the response properties of neurons,
connectivity, short-term and spike-timing dependent plasticity). These experiments generally
start with a brief set of current injections (e.g., current-steps) aimed at identifying some basic
features of the neuronal dynamics (e.g., passive membrane properties, firing patterns). Given
its short duration and its limited requirements in terms of computing power, our protocol
could provide an alternative in these situations.

To allow for a comparison, both in silico and in vitro recordings were also fitted with a GLM
[35, 36]. Despite the fact that GLMs are more flexible than GIF models, we found that, in terms
of mere spike timing prediction, the two models achieved similar performance (Figs 6 and 9).
This result can be understood by noting that the nonparametric filter κGLM(t) extracted with
the GLM fitting procedure is well approximated by the exponential filter κ(t) of the GIF model.
GLMs are typically considered as statistical models for spike trains and their parameters are
only loosely related to biophysical cell properties. The reason for this is that GLM parameter
extraction entirely relies on the likelihood maximization of the spiking data. If on one hand
this fact constitutes a big advantage in case of (multi-electrode) extracellular recordings [22,
36], the standard GLM framework is less appropriate for whole-cell current-clamp data. In
contrast to GIF models, GLMs do not explicitly model the membrane potential dynamics, do
not exploit all the information available in intracellular recordings and, consequently, are
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unable to predict the subthreshold activity of single neurons. Moreover, compared to GLMs,
we found that parameter extraction for GIF models is faster.

A voltage-dependent plasticity rule has recently been proposed [57] in which the subthresh-
old dynamics of the membrane potential plays a crucial role in explaining a large variety of ex-
perimental results obtained using different induction protocols for long-term potentiation (or
depression). Among others, this finding highlights the need of spiking neuron models that ac-
curately capture the subthreshold membrane potential dynamics. The GIF model accounts for
spike-dependent adaptation using two distinct filters: a spike-triggered current η(t) and a
spike-triggered movement of the firing threshold γ(t). At first glance, having two spike-depen-
dent processes might seem redundant and unnecessary. However, while the firing threshold
only affects spike probability, adaptation currents also alter the dynamics of the subthreshold
membrane potential. This explains why the correct distinction between these two forms of ad-
aptation is key to correctly predict the subthreshold response of single neurons. Supporting
this claim, a reduced GIF model, in which the two processes mediating spike-frequency adapta-
tion are combined into a single effective filter h(t) (Eq 7), has been shown to systematically
overestimate the membrane potential [31].

Since GLM parameter extraction entirely relies on spiking data (see Materials and Meth-
ods), the linear filter κGLM(t) also includes the effects of all biophysical processes that affect
spike emission without altering the subthreshold membrane potential. In particular, the filter
κGLM(t), but not the filter κ(t) of the GIF model, is expected to capture a potential coupling be-
tween subthreshold voltage and firing threshold [58, 59]. Possibly explaining the difference we
found between κGLM(t) and κ(t) (Fig 8F), both direct [60] and indirect [52] experimental evi-
dence has been provided that such a coupling exists in cortical pyramidal neurons. Extending
the GIF model to account for a coupling between membrane potential and firing threshold is
beyond the scope of this study and will be presented in a separate publication. It is however
worth noting that the threshold equation of the GIF model can be easily augmented as follows:

VTðtÞ ¼ V�
T þ

X
t̂ j<t

gðt � t̂ jÞ þ
Z t

t̂ last

kyðsÞVðt � sÞds; ð9Þ

with κθ(t) being an arbitrarily shaped filter that, with a straightforward extension of the maxi-
mum likelihood method used in Step 3 (see Fig 2, Step 3), could be extracted from
intracellular recordings.

In contrast to the GIF model, popular point-neuron models like the adaptive exponential in-
tegrate-and-fire (ADEX, [61]) or the adaptive quadratic integrate-and-fire (AQIF, [62]) feature
a subthreshold adaptation current w(t) governed by the following differential equation

tw _w ¼ �wþ aðV � ELÞ: ð10Þ

Extending the GIF model with Eq 10 would relax the assumption of having a single expo-
nential membrane filter κ(t) and, depending on the parameter choice, the subthreshold dy-
namics of the resulting model could account for two-timescale decay or resonance [30]. In the
ADEX and the AQIF model, this current has been shown to play an important role in explain-
ing the variety of firing patterns emitted by single neurons in response to a step of current [63,
64]. In the GIF model, the lack of subthreshold adaptation is, at least partially, compensated by
the fact that the spike-triggered current is not assumed to be exponential, but can have an arbi-
trary shape. For example, the GIF model can capture the resonate-and-fire behavior by means
of a biphasic spike-triggered current. Such a current hyperpolarizes the membrane during the
first milliseconds and then rapidly becomes positive, thereby favoring the emission of spikes
with a particular interspike interval [37]. Our results suggest that, while increasing the
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complexity, extending a GIF model with a subthreshold current w(t) does not significantly im-
prove the model’s performance in predicting the activity of the three main neuronal types of
the mouse barrel cortex [30]. However, this might not hold true for neurons in other brain re-
gions or in the case of more sophisticated stimulation paradigms. Performing parameter ex-
traction with a GIF model extended with Eq 10 is possible. Once the timescale τw is known,
performing a least-square regression similar to Eq 17 is indeed sufficient to recover all the
other parameters. Extended GIF model parameter extraction can therefore be performed by it-
erating on τw and looking for the timescale that minimizes the sum of squared errors on the
voltage derivative. Since line-search (i.e., brute-force) algorithms can be efficiently executed
using parallel computing, extending a GIF model with a subthreshold adaptation current does
not necessarily imply a dramatic increase of the CPU time required for parameter extraction.

In the field of computational neuroscience, the last years have been characterized by the an-
nouncements of several large-scale projects aimed to build realistic models of the electrical ac-
tivity of entire brains [8, 9, 65–67]. To achieve this ambitious goal, it is of crucial importance to
characterize and model the diversity amongst the brain’s fundamental building blocks: the sin-
gle neurons. Here, we demonstrate that, if combined with automatic patch-clamp recordings, a
fitting technique for GIF models, which we recently introduced [31, 37], can be used to build a
pipeline for high-throughput single-neuron characterization and modeling.

Materials and Methods

Ethics Statement
All procedures in this study were conducted in conformity with the Swiss Welfare Act and the
Swiss National Institutional Guidelines on Animal Experimentation for the ethical use of ani-
mals. The Swiss Cantonal Veterinary Office approved the project following an ethical review
by the State Committee for Animal Experimentation.

Electrophysiological recordings
In vitro electrophysiological recordings were performed on 300 μm thick parasagittal acute
slices from the right hemispheres of male P13–15 C57Bl/6J mouse brains, which were quickly
dissected and sliced (HR2 vibratome, Sigmann Elektronik, Germany) in ice-cold artificial cere-
brospinal fluid (ACSF) (in mM: NaCl 124, KCl 2.5, MgCl2 10, NaH2PO4 1.25, CaCl2 0.5, D-
(+)-Glucose 25, NaHC03 25; pH 7.3 , s.d. 0.1, aerated with 95% O2, 5% CO2), followed by a 15
minute incubation at 34°C in standard ACSF (in mM: NaCl 124, KCl 2.5, MgCl2 1, NaH2PO4

1.25, CaCl2 2, D-(+)-Glucose 25, NaHC03 25; pH 7.4, aerated with 95% O2, 5% CO2), equally
used as bath solution. Cells were visualized using infrared differential interference contrast
video microscopy (VX55 camera, Till Photonics, Germany and BX51WI microscope, Olym-
pus, Japan). Somatic whole-cell current clamp recordings of layer 5 pyramidal cells in the pri-
mary somatosensory cortex were performed at 32 , s.d. 1°C with an Axon Multiclamp 700B
Amplifier (Molecular Devices, USA) using 6.5–7.5 MO borosilicate pipettes, containing (in
mM): K+–gluconate 110, KCl 10, ATP–Mg2+ 4,Naþ

2 –phosphocreatine 10, GTP–Na
+ 0.3,

HEPES 10, biocytin 5 mg/ml; pH 7.3, 300 mOsm). To ensure intact axonal and dendritic arbor-
isation, recordings were conducted in slices cut parallel to the apical dendrites.

Data were acquired at ΔT −1 = 20 kHz using an ITC-18 digitising board (InstruTECH, USA)
controlled by a custom-written software module operating within IGOR Pro (Wavemetrics,
USA). Voltage signals were low-pass filtered (Bessel, 10 kHz) and not corrected for the liquid
junction potential. Only cells with an access resistance< 25MO (20.2 , s.d. 3.2 MO, n = 10),
which was compensated throughout the recording, and a drift in the resting membrane
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potential< 2.5 mV (1.2 mV, s.d. 0.8 mV, n = 10) between the start and the end of the recording
were retained for further analysis.

In silico recordings: multi-compartmental model simulations
In silico recordings were performed by simulating a multi-compartmental model of an L5b py-
ramidal neuron [14]. The model was obtained from Model DB (accession number 139653) and
all simulations were performed in Neuron [68]. Similar to the in vitro experiments, input cur-
rents I(t) were generated according to Eqs 5–6 (with sampling frequency ΔT −1 = 20 kHz) and
were delivered at the somatic compartment. To obtain an average firing rate fluctuating be-
tween 7 and 13 Hz, the input parameters were set to I0 = 520 pA, σ0 = 320 pA and Δσ = 0.5. To
reproduce spike timing variability between responses to repetitive injections of the same cur-
rent I(t), a source of noise was included in the model by adding a zero-mean white-noise signal
ξw.n.(t) to I(t). In order to capture the autocorrelation function between spike trains recorded in
vitro in response to different repetitions of the test set current, the magnitude of the noise was

set to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxw:n:ðtÞ2i

q
¼ 160 pA. The same amount of noise was also used to generate the training

dataset. GIF model and GLM parameter extraction were performed by treating the noise cur-
rent ξw.n.(t) as being unknown.

Data preprocessing: Active Electrode Compensation
All the in vitro recordings included in this study were preprocessed using AEC [32] according
to the following four-step procedure [31, 33].

Step 1: Shortly before the acquisition of the training dataset (see Fig 4), we recorded the in-
tracellular response Vsub(t) evoked by the injection of a short subthreshold current Isub(t). The
input was generated according to Eq 5 with parameters I0 = 0 pA, σ(t) = 75 pA and τ = 3 ms
and evoked small-amplitude subthreshold fluctuations around the resting potential. With this
parameter choice, the standard deviation of Vsub(t) was around 2–3 mV.

Step 2: We then estimated the optimal linear filter κopt(t) between the subthreshold input
Isub(t) and the recorded signal Vsub(t) (Fig 7B). To reduce computing time, κopt(t) was defined
over a finite interval [0,200ms] as

koptðtÞ ¼
XM
m¼1

bmf
ðmÞðtÞ; ð11Þ

with {f(m)(t)} being a set of M = 202 rectangular basis functions of linearly increasing width.
The parameters b = [b1, . . ., bM] determining the shape of κopt(t) were then estimated by solv-
ing the following multilinear regression:

b ¼ ðZTZÞ�1ZTV ; ð12Þ

where, using the discrete-time notation xt = x(t � ΔT) and by removing the subscripts sub for
clarity, V is a vector whose t-th element is given by the membrane potential Vt = V(tΔT) and Z
is a matrix made of vectors zTt defined as:

zTt ¼
Xt

s¼0

f ð1Þs It�sDT; . . . ;
Xt

s¼0

f ðMÞ
s It�sDT

" #
; ð13Þ

with It = I(tΔT).
Step 3: An exponential function f(t;a1, a2) = a1exp(−t/a2) was then fitted to the tail of κopt(t)

by minimizing the error Eða1; a2Þ ¼
R1
Tmin

ðkoptðsÞ � f ðs; a1; a2ÞÞ2ds (Fig 7B). In AEC, the
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electrode is assumed to operate on fast timescales (< 1 ms) and the slow decay in κopt(t) is at-
tributed to the cell. For this reason the fit was performed with Tmin = 5 ms, and the electrode
filter was estimated as

keðtÞ ¼ koptðtÞ � f ðt; â1; â2Þ; ð14Þ

with â1 and â2 being the optimal parameters minimizing E(a1, a2). To improve accuracy, Steps
2 and 3 were repeated 15 times by resampling from the available data and the final electrode fil-
ter used for AEC was obtained by averaging the results across repetitions (Fig 7C). Alternative-
ly, the electrode filter κe(t) can be extracted from κopt(t) by considering that also the net
current flowing through the cell membrane is affected by the electrode properties (see ref.
[32]).

Step 4: Finally, for all subsequent current-clamp injections, the membrane potential Vdata(t)
was estimated as follows (Fig 7A and 7D):

VdataðtÞ ¼ VrecðtÞ �
Z 1

0

keðsÞIextðt � sÞds; ð15Þ

where Iext(t) is the injected current, Vrec(t) is the recorded signal and the convolution integral
on the right-hand side of Eq 15 approximates the voltage drop Ve(t) across the electrode.

Expanding κopt(t) in rectangular basis functions drastically reduces the computing time re-
quired in Step 2. Overall, Steps 1–3 were performed in around 62 seconds and can in principle
be executed while the training set is being acquired. Step 4 requires less than 1 second and can
be performed after training set collection without compromising high-throughput (Fig 4).
Since in our protocol model validation only relies on spike-timing prediction, AEC only has to
be applied to the training dataset. Here, in order to asses the prediction error on the subthresh-
old membrane potential, we also performed AEC on all test set recordings. In order to evaluate
the quality of the recordings, our protocol for high-throughput single-neuron characterization
(Fig 4) could in principle be extended by repeating Steps 1–3 after complete acquisition of the
test set. These additional data could indeed be used to verify whether the electrode properties
(i.e., the access resistance, the electrode timescale and, more generally, the electrode filter κe(t))
were satisfactory and sufficiently stable during the experiment (see ref. [31]).

GIF model parameter extraction
Given the intracellular membrane potential Vdata(t) measured at a sampling frequency ΔT −1 in

response to a known input current Itr(t), as well as the spike times ft̂ jg defined as instants at
which Vdata(t) crosses 0 mV from below, all the GIF model parameters are extracted following
a three-step procedure [31, 37] (Fig 2).

Step 1: The absolute refractory period Tref is fixed to an arbitrary value and the voltage reset
is estimated by the average membrane potential recorded Tref milliseconds after a spike

Vreset ¼ hVdataðt̂ j þ Tref Þij. Since absolute refractoriness can be captured by a spike-triggered

movement of the firing threshold, the particular choice of Tref is not crucial and the only con-
straint is given by the shortest interspike interval in the dataset. Here, for L5 pyramidal neu-
rons, we set the refractory period to Tref = 4 ms.

Step 2: The parameters determining the subthreshold dynamics of the membrane potential
are extracted. To allow convex optimization, the spike-triggered current η(t) is expanded as a
linear combination of basis functions [22]:

ZðtÞ ¼
XK

k¼1

Zkf
ðkÞðtÞ; ð16Þ
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where {ηk} is a set of parameters controlling the time course of η(t). The parameters yTsub ¼
C�1 � ½gL; ELgL; Z1; :::; ZK ; 1� are then extracted by minimizing the sum of squared errors be-

tween the observed voltage derivative _V data and that of the model (i.e., Eq 1). Since all sub-
threshold parameters θsub act linearly on the observables, this optimization problem can be
efficiently solved by computing the following multilinear regression [12, 22]:

ŷsub ¼ ðXTXÞ�1XT _V data; ð17Þ

where X is a matrix whose rows are given by the vectors

xTt ¼ �VdataðtÞ; 1;�
X

j

f ð1Þðt � Tref � t̂ jÞ; . . . ;�
X

j

f ðKÞðt � Tref � t̂ jÞ; IðtÞ
" #

; ð18Þ

and _V data is a column-vector containing the voltage first-order derivative estimated by finite

differences _V dataðtÞ ¼ Vdataðt þ DTÞ � VdataðtÞð Þ=DT . Since the GIF model does not capture
the subthreshold dynamics during spike initiation, all the data points close to action potentials

ft j t 2 ½̂t j � 5ms; t̂ j þ Tref �g are excluded from the regression.

In principle, the residuals of this multilinear regression could provide some additional infor-
mation about the quality of the recordings and could therefore be used for online quality con-
trol. This is true especially in cases where a large number of experiments are repeated in similar
cell types and under similar conditions. In such a situation, one can indeed evaluate the results
with respect to the distribution of errors obtained in previous experiments. Although the mag-
nitude of high-frequency noise in patch-clamp recordings is generally low, this metric might
however depend on the experimental sampling frequency. Overall, to limit the impact of high-
frequency noise, it is generally safer to assess the model performance by computing the residu-

als on Vdata (c.f., Eq 27), rather than on _V data.
Step 3: The parameters defining the dynamics of the firing threshold are extracted. To de-

termine the functional shape of the spike-triggered movement of the firing threshold, we first
expand γ(t) as a sum of basis functions:

gðtÞ ¼
XP

p¼1

gpf
ðpÞðtÞ: ð19Þ

Given the parameters obtained in the first two steps and the spike times observed in the ex-

periment, the subthreshold membrane potential V̂modelðtÞ is then computed by numerical inte-
gration of Eq 1. Without loss of flexibility, the parameter λ0 is fixed to 1 Hz and all threshold

parameters yTth ¼ DV�1 � ½1;V�
T; g1; :::; gP� are finally extracted by maximizing the log-likeli-

hood of the experimental spike-train [35, 36, 69]:

ŷth ¼ argmax
yth

X
t2ft̂ jg

yTt yth � DT �
X
t2O

exp ðyTt ythÞ
8<
:

9=
;; ð20Þ

where O ¼ ft j t =2 ½̂t j; t̂ j þ Tref �g is a set that excludes all the data points falling in the absolute

refractory periods and the vectors yTt are defined as

yTt ¼ V̂modelðtÞ;�1;�
X

j

f ð1Þðt � Tref � t̂ jÞ; . . . ;�
X

j

f ðPÞðt � Tref � t̂ jÞ
" #

: ð21Þ
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With the exponential function in Eq 2, the log-likelihood to maximize is a convex function
of θth[41] and both its gradient and Hessian can be computed analytically. Consequently, the
optimization problem of Eq 20 can be efficiently solved using the Newton-Raphson (gradient
ascent) method. Alternatively, Step 3 can be performed using the recorded potential Vdata(t) in-

stead of V̂modelðtÞ in Eq 21. Since small inaccuracies in Step 2 can be compensated in Step 3,

performing the fit using V̂modelðtÞ generally improves spike-timing prediction.
In order to avoid numerical problems resulting from the inappropriate choice of the initial

condition θth,0 used in Step 3, it is convenient to first find the optimal threshold parameters V̂ �
T

and D̂V of a reduced GIF model in which the firing threshold is constant (i.e., VT ¼ V�
T). For

that, a first gradient ascent is performed with initial conditions ΔV0 = 50 mV and
V�

T;0 ¼ �DV0 � log �r , where �r denotes the average firing rate in the data. Then, a second gradi-

ent ascent is performed on the log-likelihood of the full model using yth;0 ¼ D̂V�1 �
½1; V̂ �

T; 0; :::; 0� as initial condition.

Generalized Linear Model
All GIF model performance included in this study are compared against the ones of a standard
GLM [35, 36]. In the GLM, spikes are emitted stochastically according to the following condi-
tional intensity

lGLMðtjI; ft̂ jgÞ ¼ l0 � exp E0 þ
Z t

0

kGLMðsÞIðt � sÞdsþ
X
t̂ j<t

hGLMðt � t̂ jÞ
0
@

1
A; ð22Þ

with λ0 = 1 Hz. In the GLM, the linear filter κGLM(t) is not assumed to be exponential but is ex-
tracted from experimental data through linear expansion in rectangular basis functions. More-
over, the GLM accounts for spike-history effects with a unique filter hGLM(t). The GLM also
differs from the GIF model because it has neither an absolute refractory period nor an explicit
reset after the emission of a spike. To obtain a fair comparison between the two models, the fil-
ter hGLM(t) was expanded using the same basis functions as used for γ(t) in the GIF and the
number of basis functions used for κGLM(t) was such that, in total, the two models had the
same number of parameters. Given the input current I(t) and the observed spike train Sdata(t),
GLM parameters θGLM = {E0, κGLM(t), hGLM(t)} were extracted with standard methods [35, 36]
by maximizing the model log-likelihood L(θGLM) = logp(SdatajI, θGLM) using yGLM;0 ¼
flog�r ; 0; 0g as initial condition. Importantly, the GLM fitting procedure does not exploit the in-
formation available in the subthreshold membrane potential fluctuations and all of its parame-
ters are extracted using the maximum likelihood approach. This explains why fitting a GLM
requires more CPU time than fitting a GIF model.

Similarity measureM �
d between sets of spike trains

To quantify the model performance in predicting spikes, we used the normalized, bias-cor-
rected metricsM�

d [34].M
�
d relies on a measure of the distance between the experimental and

the predicted spike-emission probability, which are in turn inferred from the responses to a
limited number of repetitive current injections. Importantly,M�

d resolves the small sample bias
known to affect most of the similarity measures when the number of available spike trains is
small. Also, in contrast to previous measures based on naive pairwise comparisons (e.g., the Γ
coincidence factor used in ref. [70]),M�

d does not suffer from the so-called deterministic bias
known to favor noise-free models and is therefore well suited for the evaluation of stochastic
spiking models [34]. Moreover, in contrast to many other correlation-based measures,M�

d is
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sensitive to the accuracy with which both the shape and the amplitude of the spike probability
is predicted.

Given a small set of experimental spike trains SðdÞi ¼ P
fdðt � t̂ f Þ recorded in response to

Nd repetitive injections i = 1, . . ., Nd of the same input current Itest(t), as well as a large set of

spike trains SðmÞ
j ¼ P

fdðt � t̂ f Þ predicted by Nm repetitive simulations j = 1, . . ., Nm of a sto-

chastic model, the similarityM�
d between the two sets of spike trains is defined as [34]:

M�
d ¼

2 � hnd; nmi
2

NdðNd�1Þ
PNd

i¼1

PNd
i0¼iþ1hSðdÞi ; SðdÞi0 i þ hnm; nmi

; ð23Þ

where SðdÞi denotes the i-th experimental spike-train, nd ¼ 1
Nd

PNd

i¼1 S
ðdÞ
i is the average experimen-

tal response across trials (i.e., the experimental peri-stimulus-time histogram (PSTH) comput-

ed with infinitesimally small bins), nm ¼ 1
Nm

PNm

i¼1 S
ðmÞ
i is the average model response and hνm,

νmi represents its norm. Due to high-throughput requirements and experimental constraints,
only a small number Nd of experimental spike-trains are available. For this reason, the norm of
νd must be computed using an unbiased estimator (cf. first term in the denominator of Eq 23).
Finally, the brackets h�, �i denote the inner product used to quantify the distance between two
spike trains [34]:

hSi; Sji ¼
Z T

0

Z 1

�1

Z 1

�1
Kðs; s0ÞSiðt � sÞSjðt � s0Þdsds0dt; ð24Þ

where K(s, s0) is a two-dimensional kernel defining the degree of coincidence between two
spikes occurred at times s and s0.

While different windows K(s, s0) may be used, the Kistler coincidence kernel K(s, s0) = δ(s0) �
Θ(s+Δ) �Θ(−s+Δ) was chosen with Δ = 4 ms as in refs.[30, 31]. With this particular choice, the
inner product hSi, Sji equals the number of spikes in Si that fell ±Δms apart to one of the spikes
in Sj and, consequently,M�

d becomes:

M�
d ¼

2ndm

n�
dd þ nmm

; ð25Þ

with ndm being the average number of coincident spikes between data (d) and model (m), nmm

being the average number of coincident spikes computed across Nm = 500 repetitions generat-
ed by the model and n�

dd being the bias-corrected average number of coincident spikes between
different experimental spike trains (i.e., the number of coincident spikes between experimental

spike trains SðdÞi and SðdÞj averaged across (i, j) 2 [1, Nd] × [1, Nd] with i 6¼ j, see Eq 23).

Performance evaluation
Prediction error �V on the subthreshold response. For each repetition i in the test set, we comput-

ed the coefficient of determination R2
i between the experimental membrane potential V ðdataÞ

i ðtÞ
and the GIF model prediction V̂ ðmodelÞ

i ðtÞ (obtained by solving Eq 1 and enforcing the spikes to
occur at the same time as in the experiment):

R2
i ¼ 1�

R Ttest
0

ðV ðdataÞ
i ðtÞ � V̂ ðmodelÞ

i ðtÞÞ2dtR Ttest
0

ðV ðdataÞ
i ðtÞ � �V ðdataÞ

i Þ2dt ; ð26Þ
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The prediction error �V on the subthreshold response was then obtained by averaging the
results from each repetition:

�V ¼ 1

ntest

Xntest
i¼1

R2
i : ð27Þ

�V takes values between 0 and 1 and can be interpreted as the fraction of variance of the sub-
threshold membrane potential fluctuations that the model was able to predict. The parameters
Ttest and ntest denote the duration and the number of repetitions in the test set, respectively.

Prediction error �param on the GIF model parameters. The mean error �param on the parame-
ters θ extracted from artificial data is defined as

�param ¼
�
Dyi

jyij
�

i

; ð28Þ

where Dyi ¼j yi � ŷ i j is the L1-error between the estimated parameter ŷ i and the reference pa-
rameter θi (used to generate the artificial data). Overall, �param measures the absolute percent-
age error averaged across model parameters.

All the CPU times reported in this study were obtained using an IntelCore i7 CPU920 @
2.67GHz with 24 GB RAM. Both GLM and GIF model parameters were extracted using cus-
tom-written Matlab procedures.
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