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École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne EPFL, Switzerland.

To appear in Neural Computation

Abstract: The subthreshold membrane voltage of a neuron in active
cortical tissue is a fluctuating quantity with a distribution that reflects
the firing statistics of the presynaptic population. It was recently found
that conductance-based synaptic drive can lead to distributions with a
significant skew. Here it is demonstrated that the underlying shot noise
caused by Poissonian spike arrival also skews the membrane distribution,
but in the opposite sense. Using a perturbative method, the effects of
shot noise on the distribution of synaptic conductances are analyzed and
the consequent voltage distribution calculated. To first order in the per-
turbation theory, the voltage distribution is a Gaussian modulated by
a prefactor that captures the skew. The Gaussian component is identi-
cal to distributions derived using current-based models with an effective
membrane time constant: the well-known effective-time-constant approx-
imation can therefore be identified as the leading-order solution to the full
conductance-based model. The higher-order modulatory prefactor con-
taining the skew comprises terms due to both shot noise and conductance
fluctuations. The diffusion approximation misses these shot-noise effects
implying that analytical approaches such as the Fokker-Planck equation
or simulation with filtered white noise cannot be used to improve on
the Gaussian approximation. It is further demonstrated that quantities
used for fitting theory to experiment, such as the voltage mean and vari-
ance, are robust against these non-Gaussian effects. The effective-time-
constant approximation is therefore relevant to experiment and provides
a simple analytic base on which other pertinent biological details may be
added.

1Correspondence to: Magnus.Richardson@epfl.ch



1 Introduction

Given a perfect model of the membrane response to synaptic input it
would be possible to infer from the distribution of the subthreshold,
membrane-voltage fluctuations many quantities of interest, such as the
levels of activity and correlations in the excitatory and inhibitory presy-
naptic populations. Early models of synaptic input (Stein 1965) com-
prised a leaky integrator driven by a stochastic current which generated
post-synaptic potentials of fixed amplitude. Since then a great effort has
been made to incorporate further biological details.

Soon after the publication of Stein’s model synaptic conductance ef-
fects began to be addressed (Stein 1967; Johannesma 1968; Tuckwell
1979; Wilbur and Rinzel 1983; Lansky and Lanska 1987). These early
models featured unfiltered, delta-pulse synapses and were primarily con-
cerned with the statistics of the inter-spike interval distribution. Though
the majority of studies used the diffusion approximation (i.e. the limit
of high synaptic rates and low post-synaptic-potential amplitudes) the
effects of shot noise due to Poisson distributed pulse arrival at low rates
have also been considered (see for example Tuckwell 1989) in the context
of stochastic resonance (Hohn and Burkitt 2001) and the neural response
to correlations in the presynaptic population (Kuhn et al 2003). Other
studies have examined the filtering of the incoming pulses at the synapses
and have shown it can lead to unexpected dynamical response proper-
ties: synaptic filtering can, paradoxically, allow neurons to better follow
high-frequency signals (Brunel et al. 2001; Fourcaud and Brunel 2002).

More recently a number of experimental studies have directly mea-
sured the effect of synaptic drive on the membrane voltage (Kamondi et
al 1998; Destexhe and Paré 1999; Sanchez-Vives and McCormick 2000;
Monier et al. 2003; Holmgren et al 2003). The availability of such mea-
surements have led to a renewed interest in the quantitative modeling of
synaptic drive, with a view to infer presynaptic network states from volt-
age fluctuations (Stroeve and Gielen 2001; Rudolph et al 2004), compare
current and conductance-based models of synaptic drive (Tiesinga et al
2000; Rauch et al 2003; Rudolph and Destexhe 2003a; Jolivet et al 2004;
Richardson 2004; La Camera et al 2004; Meffin et al 2004) and explore
mechanisms for the gain control of the neuronal response (Chance et al
2002; Burkitt et al. 2003; Destexhe et al. 2003; Fellous et al. 2003;
Prescott and Koninck 2003; Grande et al. 2004; Kuhn et al 2004).
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In this paper the combined effects on the membrane voltage of synap-
tic shot noise, filtering and conductance increase will be examined. The
central result is that the effects of synaptic shot noise on the mem-
brane voltage statistics are as significant as those of synaptic conduc-
tance fluctuations and therefore either both (or neither) of these features
of the synaptic drive should be taken into account for a consistent ap-
proach. This means that diffusion-level descriptions, such as numerical
simulations or the Fokker-Planck approach, in which the drive is mod-
eled as Gaussian noise, cannot correctly describe detailed aspects of the
membrane-voltage distribution, such as its skew.

2 Membrane response to synaptic drive.

In this section the full model of the membrane response to synaptic drive
will be introduced and two common approximations to this model out-
lined. An analysis of the aspects of the drive missed by these approxima-
tion schemes will motivate the development of a perturbative approach.

2.1 The full model. Following Stein (1967), the membrane volt-
age V (t) responds passively to synaptic drive: voltage gated channels,
including spike-generating currents, are not included. The membrane
is modeled by a capacitance C in parallel with a leak conductance gL

and two fluctuating excitatory ge(t) and inhibitory gi(t) conductances
with equilibrium potentials at EL, Ee and Ei respectively. This system
therefore comprises three independent variables

C
dV

dt
= −gL(V − EL)− ge(V − Ee)− gi(V − Ei) + Iapp (1)

τe
dge

dt
= −ge + ceτe

∑

{tke}

δ(t− tke
) (2)

τi
dgi

dt
= −gi + ciτi

∑

{tki
}

δ(t− tki
). (3)

The excitatory conductance is driven by pulses that arrive at the Poisson-
distributed times {tke

} at a total rate Re summed over all input fibers.
Each pulse provokes a quantal conductance increase ce which then decays
exponentially with a time constant τe. The inhibitory conductance is
defined analogously. Any experimentally applied current is accounted
for by Iapp.
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In this paper only the steady-state statistical properties will be con-
sidered. Thus, all expectations of a quantity x(t), written as 〈x(t)〉,
denote either an average over an ensemble of statistically independent
systems, in which any transients due to initial conditions are no longer
present, or the temporal average of x(t) in a single system.

2.2 The diffusion approximation. For the case in which the rates
Re,Ri are relatively high, the number of pulses that arrive within the
time scales τe, τi will be approximately Gaussian distributed. The re-
placement of the synaptic shot noise in equations (2-3) by a constant
term and Gaussian white noise constitutes the diffusion approximation.
Thus, using excitation as an example,

τe
dge

dt
' ge0 − ge +

√
2σeξe(t) (4)

where the Gaussian white noise ξe(t) has a mean and autocorrelation
function defined by

〈ξe(t)〉 = 0 〈ξe(t)ξe(t′)〉 = τeδ(t− t′). (5)

This Ornstein-Uhlenbeck process (Eq. 4) has been shown to capture the
statistics of conductance fluctuations at the soma of compartmentalized
model neurons (Destexhe et al. 2001). The average conductance ge0

and the standard deviation σe are related to the variables ce, τe and Re

through

ge0 = ceτeRe, σe = ce

√

τeRe

2
. (6)

By construction, the first two moments of the diffusion approximation are
identical to those of the shot-noise process. Higher moments, however,
are not correctly reproduced in the diffusion approximation.

The conductance equation (4) is linear and can be integrated2. The
fluctuating component geF of the conductance is

geF (t) ≡ ge(t)− ge0 '
√

2σe

∫ ∞

0

ds

τe
e−s/τe ξe(t− s) (7)

2The Stratonovich formulation of stochastic calculus is used through-
out this paper. However, for additive white noise or multiplicative colored
noise there is no difference between the Stratonovich or Ito forms - see
for example Risken (1996).
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which yields (with Eq. 5) the Gaussian distribution

pD(ge) =
1

√

2πσ2
e

exp

(

−(ge − ge0)
2

2σ2
e

)

. (8)

The subscript signifies that the calculation was made in the diffusion
approximation. There are clearly some problems with the distribution
(8) if the conductance mean ge0 is of a similar magnitude to the standard
deviation σe. In this regime the diffusion approximation predicts negative
conductances (Lansky and Lanska 1987; Rudolph and Destexhe 2003a).
In fact the criterion for validity of the diffusion approximation is

σe/ge0 � 1 (9)

suggesting that this approximation misses higher-order terms scaling
with powers of σe/ge0. Thus, the shot-noise conductance fluctuations
should read

geF (t) =
√

2σe

∫ ∞

0

ds

τe
e−s/τe

(

ξe(t− s) + corrections ∝ σe

ge0

)

(10)

where ξe(t) is the Gaussian white noise defined in equation (5).

2.3 The diffusion approximation is inconsistent. The combi-
nation of the diffusion approximation of the synaptic drive (Eq. 4 and
its equivalent for inhibition) and the full voltage equation (1) will now
be examined. By separating the synaptic conductances into tonic com-
ponents ge0, gi0 and fluctuating components geF , giF the voltage equation
can be written as

C
dV

dt
= −g0(V − E0)− geF (V − Ee)− giF (V − Ei) (11)

where the total conductance g0 and drive-dependent equilibrium poten-
tial E0 are defined by

g0 =gL + ge0 + gi0 and E0 =
1

g0

(gLEL + ge0Ee + gi0Ei + Iapp). (12)

The subscripts ‘0’ anticipate that these quantities are correct at the zero-
order of a perturbation expansion that will be developed in a later sec-
tion. The total conductance g0 suggests the introduction of an effective
membrane time constant

τ0 = C/g0. (13)
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This feature of the synaptic drive was identified in the early analytic
treatment of Johannesma (1968).

The fluctuation terms driving the voltage in equation (11) will now
be examined. Taking excitation as an example, the voltage-dependent
component of the drive can be expanded around the equilibrium potential
E0

geF (V − Ee) = geF (E0 − Ee) + geF (V − E0). (14)

The two terms on the right-hand side have simple interpretations. The
first is an additive noise term and therefore just a fluctuating current.
The second is a multiplicative noise term and, in the context of equa-
tion (11), it can be seen that this term represents fluctuations in g0, or
equivalently in τ0, the effective membrane time constant.

These two noise terms are, however, not equally significant. The
quantity V−E0 grows (linearly) with the fluctuations geF , giF . So whereas
the additive noise terms are of the order geF , giF , the multiplicative noise
terms are of the order g2

eF , g
2
iF and geFgiF . This suggests that (i) the

multiplicative noise terms could be neglected if the noise strength was
in some way small, and (ii) if these terms were retained the effects of
the synaptic drive on the membrane voltage would be modeled in greater
detail. Point (i) is valid, as will be seen in section 2.4. Point (ii), however,
is false due to an unexpected weakness of the diffusion approach with
multiplicative noise. This will now be outlined.

On re-examining equations (7-9) it is seen that, relative to the tonic
conductance, the fluctuations in the diffusion approximation scale with
σe/ge0. But equation (10) states that the terms missed by this approxi-
mation scale with the square of this quantity. Hence,

geF/ge0 = A

(

σe

ge0

)

+B

(

σe

ge0

)2

+ · · · (15)

where A is the diffusion level term and B is the first-order correction due
to shot noise. Now given that σe/ge0 is the small quantity parameteriz-
ing the diffusion approximation, it is clearly inconsistent to neglect the
second-order term B in the additive noise geF (Ee−E0) of equation (14)
but keep the implicit A2 term in the multiplicative noise geF (V−E0)∝g2

eF .
This is, however, what occurs in the diffusion approximation.

This result is surprising because it implies that, though diffusion-
based approaches (such as the Fokker-Planck equation or any simulation
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with filtered Gaussian noise) purport to capture the effects of synaptic-
conductance fluctuations, they miss equally important terms due to the
shot noise. However, it should be stressed that almost all previous studies
of conductance-based synaptic noise that used the diffusion approxima-
tion implicitly concentrated their analyzes on the dominant effects com-
ing from the additive noise term; the conclusions of such studies remain
valid.

2.4 The effective-time constant approximation. This is also
known as the Gaussian approximation of the voltage distribution. The
treatment of the membrane voltage can easily be made consistent with
the diffusion approximation of the synaptic conductance equations. This
is achieved by dropping the multiplicative noise term, i.e. by neglecting
conductance fluctuations, to yield

C
dV

dt
' −g0(V − E0) + geF (Ee − E0) + giF (Ei − E0). (16)

This voltage equation is of the form of a current-based model, but the
dominant effect of the synaptic conductance is accounted for through the
use of an increased effective leak g0. This approximation is in widespread
use, having been applied to white-noise synaptic drive (Wan and Tuck-
well 1979; Lansky and Lanska 1987; Burkitt and Clark 1999; Burkitt
2001; Burkitt et al. 2003; La Camera et al 2004), alpha-pulse synapses
(Manwani and Koch 1999) and, more recently, (Richardson 2004) to the
case of exponentially filtered synapses studied here. The equation set
comprising the voltage equation (16) and the diffusion approximations
for the conductances are simple to analyze and can be integrated to give

V (t)− E0 '
√

2

(

σe

g0

)

(Ee − E0)

(τe − τ0)

∫ ∞

0
ds
(

e−s/τe − e−s/τ0
)

ξe(t− s)

+
√

2

(

σi

g0

)

(Ei − E0)

(τi − τ0)

∫ ∞

0
ds
(

e−s/τi − e−s/τ0
)

ξi(t− s).

(17)

This equation has an obvious interpretation: the quantities multiplying
the noise are just the excitatory and inhibitory post-synaptic potentials
for a membrane with an effective time constant τ0. The fact that it is
linear in the noise means that many quantities of interest can be eas-
ily calculated, including temporal measures such as the auto-correlation
function.
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The distribution predicted for the voltage is the Gaussian

p0(V ) =
1

√

2πσ2
V

exp

(

−(V − E0)
2

2σ2
V

)

. (18)

where, for the case where there are no correlations between excitation
and inhibition, the variance is (Richardson 2004)

σ2
V =

(

σe

g0

)2

(Ee − E0)
2 τe
(τe + τ0)

+

(

σi

g0

)2

(Ei − E0)
2 τi
(τi + τ0)

. (19)

If the limit τe, τi→0 is correctly taken (by keeping the quantities ceτe/C
and ciτi/C fixed) it can be shown that this variance is compatible with
previous results derived for the Gaussian approximation of white-noise
conductance-based synaptic drive (Burkitt et al. 2003). However, for fil-
tered noise the variance in equation (19) differs significantly from that de-
rived in Rudolph and Destexhe (2003a). In that study, a one-dimensional
Fokker-Planck equation was used that could not capture the effects of
synaptic filtering. Through the introduction of effective synaptic time
constants (Rudolph et al 2004) the one-dimensional Fokker-Planck equa-
tion can be made to yield results that correspond, at the Gaussian level
and in the steady state, to the distribution parameterized by equations
(12) and (19).

2.5 The aim of this paper. The Gaussian approximation provides
a mathematically convenient approach to the analysis of conductance-
based synaptic drive and is accurate for parameter values relevant to
experiment (Richardson 2004). Given the analysis presented above, it
is clear that to improve on the Gaussian approximation both shot noise
and conductance fluctuations must be included. The goal of the next
two sections will be to develop a perturbative method that allows for
the consistent calculation of the conductance and voltage distributions
at a higher order than the Gaussian approximation. These higher-order
calculations will yield the skew of the voltage distribution – a quantity
that is measurable experimentally. More importantly, the approach will
provide information on the validity of fitting Gaussian-level analytical
forms for the mean and variance to voltage traces of cortical neurons. To
aid readability, only the results of the calculations are given in the main
body of the paper. However, the methods developed here are applica-
ble to other areas of theoretical neuroscience, such as the distribution
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of amplitudes at depressing synapses (Hahnloser 2003) or the shape of
synaptic weight distributions (van Rossum et al 2000; Rubin et al 2001),
and are therefore presented in full in the appendices.

3. Synaptic shot noise and conductance distributions.

In this section the effects of shot noise on the synaptic conductance dis-
tributions will be analyzed. It should be noted that relaxation processes
with shot noise, for which equations (2-3) are examples, have been well
studied and an exact solution (Gilbert and Pollak 1960) for the distri-
bution, in the form of a recursion relation, does exist. However, the aim
of the approach (in section 4) is to to incorporate the shot-noise conduc-
tance fluctuations into a model of the membrane voltage. A perturbative
approach is better suited to this purpose. For this reason the full solu-
tion for the shot-noise distribution pS(ge) will not be presented here but,
when needed, will be obtained by numerical simulation of equation (2).

3.1 The diffusion approximation misses the skew. In the limit
where the standard deviation σe has a similar magnitude to the con-
ductance mean ge0 the diffusion approximation, unlike the full model,
predicts negative conductances. A second source of difference between
the statistics of shot noise and the diffusion approximation is also seen in
the same limit; the distribution of the shot-noise conductance becomes
skewed – an effect that is obviously missed by the Gaussian distribution
given in equation (8). In order to get some intuition about the skew of
the distribution, a comparison can be made between the full and approx-
imate distributions shown in figure 1a. In this case (for which Reτe =1.5
implying σe/ge0 = 0.60) the peak of the shot-noise distribution is to the
left of that of the Gaussian. Because both distributions have the same
mean conductance ge/ce = 1.5, the shot-noise distribution is skewed; it
leans to the left with a longer tail to the right. Any improvement of the
diffusion approximation should address both the negative conductivity
and the skew of the conductance distribution.

3.2 Accounting for the shot noise. The corrections identified
in equation (10) will now be accounted for. A stochastic variable ζe(t),
analogous to Gaussian white noise ξe(t),

τe
dge

dt
' ge0 − ge +

√
2 σe ζe(t) (20)

can be constructed that has statistics which capture the shot-noise fluc-
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Figure 1: Distribution of shot-noise conductance fluctuations; the pertur-
bation theory improves on the diffusion approximation. Panel (A) com-
pares the full distribution pS generated by the simulation of equation (2)
to the diffusion approximation pD (Eq. 8) and the perturbation theory pP

(Eq. 23) for the case σe/ge0 =0.60 (Reτe =1.5). Panel (B) shows the cor-
responding absolute difference between the diffusion approximation and
full solution |pD−pS| and also the perturbatively generated distribution
and the full solution |pP−pS|. The perturbative distribution reduces the
error caused by both the negative conductances and the skew. Panels (C)
and (D) are analogous measures for the case σe/ge0 =0.41 (Reτe =3.0) for
which the theoretical approaches can be expected to be more accurate.
Details of the simulations are given in Appendix A.
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tuations correctly up to the next order missed by the diffusion approxi-
mation. It can be shown that such a quantity must obey the same first
and second-order correlators as Gaussian white noise

〈ζe(t)〉 = 0, 〈ζe(t)ζe(t′)〉 = τeδ(t− t′), (21)

but also a new third-order correlator

〈ζe(t)ζe(t′)ζe(t′′)〉 =
√

2

(

σe

ge0

)

τ 2
e δ(t− t′)δ(t′ − t′′). (22)

It is this third-order correlator, proportional to σe/ge0, that provides the
leading-order correction to the diffusion approximation. All higher-order
correlators of products of ζe(t) factorize in terms of these first, second
and third order correlators. Using the rules in equations (21,22) the
conductance distribution can be shown (see appendix B) to be

pP (he) =
1√
2π

[

1 +
4

3

σe

ge0

(

h3
e

3!
− he

2!

)]

exp

(

−h
2
e

2

)

(23)

where he =(ge−ge0)/σe is the normalized conductance and the subscript
P denotes that the result was derived as a perturbative expansion in
the small variables σe/ge0. The distribution takes the form of a Gaussian
modulated by a prefactor. To zero order in σe/ge0 the prefactor is equal to
one and the Gaussian distribution (8) is recovered. The prefactor terms
proportional to σe/ge0 now allow for the moments of the distribution to
be calculated at higher order. The mean and variance are unchanged, as
would be expected given the previous comments about the exactness of
these two moments. The first new result of the perturbation theory is
the skew Sge of the distribution:

Sge =
1

σ3
e

〈(ge − ge0)
3〉 = 〈h3

e〉 =
4

3

σe

ge0
. (24)

A useful aspect of the perturbation theory is that this skew is exact. The
distribution itself and its higher moments are, however, only correct at
the given order of the series expansion in σe/ge0. Two examples com-
paring the numerically generated conductance distribution pS, diffusion
approximation pD and perturbation theory pP are plotted in figure 1.

4 The subthreshold voltage distribution.
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Figure 2: The distribution of the membrane voltage; perturbation theory
captures the skew. A neuron is subject to a purely excitatory synaptic
drive with a current Iapp applied such that E0 =−60mV. Panels (A-B):
the conductance and voltage distributions for a low conductance state
(ge0 =0.0167, gL =0.05mS/cm2) with noise strength xe =σe/g0 =0.2. The
perturbative conductance distribution (Eq. 23) is not accurate because
σe/ge0 = 0.8. The weak skew of the corresponding voltage distribution
(panel B) is, however, correctly predicted by the perturbation theory
(Eq. 26) because the underlying conductance skew is exact. In panel
(C) the voltage skew (Eqs. 31 and 32) is plotted as a function of xe for
the same parameters, but with increasing noise σe. The shot-noise SSN

and conductance-fluctuation SCF contributions to the skew nearly cancel,
explaining the almost Gaussian voltage distribution in panel (B). Panels
(D-E): a high conductance state (ge0 =0.15mS/cm2) with xe =σe/g0 =0.4.
In panel (E) the large skew of the voltage distribution is captured by the
perturbation theory. Panel (F) shows that the voltage skew is negative
for the high-conductance case because SCF dominates. Details of the
simulations are given in Appendix.
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The model of synaptic conductance studied in the previous section can
now be incorporated into the membrane voltage equation. This will allow
the voltage distribution to be calculated at the next order beyond the
Gaussian approximation. The method involves a perturbative solution to
the voltage equation (1), the excitatory synaptic conductance equation
(20) and its inhibitory analog. For the perturbative calculation of the
voltage distribution it is convenient to use the following small parameters

xe = σe/g0 and xi = σi/g0 (25)

which are linearly related (in σe, σi) to the small parameters of the con-
ductance expansion σe/ge0 and σi/gi0. The calculation for the voltage
distribution is given in appendix C and, in terms of v=V − E0, can be
written in the form

pP (v) =
1

√

2πσ2
V

[

1 +
v

σV

(

µV

σV
− S

2!

)

+
v3

σ3
V

S
3!

]

exp

(

− v2

2σ2
V

)

(26)

where the subscript P denotes the perturbatively generated result. The
voltage appears only through the ratio v/σV , and the other terms µV /σV

and S are parameters proportional to xe, xi: this distribution generates
moments 〈vm〉/σm

V that are correct up to order xe, xi.

The quantity µV is the leading-order correction to the voltage mean
E0 and stems from the conductance fluctuations only: the shot noise
does not influence the mean voltage. The standard deviation, given by
equation (19) is identical to the Gaussian value σV and is therefore un-
affected by shot noise or multiplicative conductance at this order in the
perturbation expansion. Thus

〈V 〉 − E0 = µV and 〈(V − 〈V 〉)2〉 = σ2
V . (27)

The third-order moment of the distribution (26) gives the skew of the
voltage distribution

1

σ3
V

〈(V − 〈V 〉)3〉 = S = SSN + SCF . (28)

From the expression given in appendix C (Eq. 67), it can be seen that
two distinct contributions to the skew naturally arise; one from the shot
noise SSN and a second one from the conductances fluctuations SCF .
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These two contributions to the skew are equally significant because they
are both proportional to xe, xi. This illustrates one of the central points
of this study: the diffusion approximation of a conductance-based model
with multiplicative noise is inconsistent because it misses the shot noise
contribution SSN . The full set of equations for µV , σV , and S are given
in appendix D.

4.1 An example with relevance to experiment. To illustrate the
effects of shot noise and conductance fluctuations, a scenario is considered
in which the fluctuations due to the inhibitory component of the drive
can be neglected. There are two different situations that allow this action
to be taken. The first is when inhibition is absent. The second, and
more interesting case, is relevant to experiments designed to isolate the
effect of excitation on the membrane voltage (Silberberg et al 2004). In
such experiments the neuron is hyperpolarized through the injection of
current so that the mean voltage E0 is near the reversal of inhibition Ei.
In such cases the factor Ei−E0 multiplying all inhibitory contributions
to membrane fluctuations is relatively small and such contributions can
be dropped without significant loss of accuracy. Inhibition only enters
through an increase of the tonic conductance g0 and the corresponding
decrease of the effective time constant τ0.

For either of these scenarios, the moments that parameterize the dis-
tribution in equation (26) take the values

µV = −x2
e(Ee − E0)

τe
(τe + τ0)

(29)

σ2
V = x2

e(Ee − E0)
2 τe
(τe + τ0)

(30)

SSN = xe
8

3

g0

ge0

(τe + τ0)
2

(τe + 2τ0)(2τe + τ0)

√

τe
(τe + τ0)

(31)

SCF = −4xe
(3τ 2

e + 6τeτ0 + 2τ 2
0 )

(τe + 2τ0)(2τe + τ0)

√

τe
(τe + τ0)

. (32)

Equations (31) and (32) give the positive and negative contributions
to the skew (Eq. 28) that come from the shot noise and conductance
fluctuations respectively.

For the case of purely excitatory drive, g0 = gL + ge0, the relative
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importance of these contributions can be gauged by examining the ratio

∣

∣

∣

∣

SSN

SCF

∣

∣

∣

∣

=
2

3

τL
(τL − τ0)

(

(τe + τ0)
2

3(τe + τ0)2 − τ 2
0

)

(33)

where τL = C/gL is the leak time constant. The ratio is a monotonically
increasing function of the effective time constant τ0. In the limit of low
conductance states, for which τ0 → τL, the ratio diverges and the con-
tribution due to conductance fluctuations becomes negligible. For high
conductance states, for which τ0 → 0, the ratio converges to a constant
value of 2/9. These results underline the fact that the effect of shot noise
is non-negligible: even in extremely high conductance states it still com-
prises just under a third, SSN/S = 2/7, of the net skew. These results
are illustrated graphically in figure 2.

5. Discussion

The effect that shot-noise synaptic drive has on the membrane voltage
distribution was examined. A perturbative approach was developed that
was first used to capture the statistics of filtered shot-noise conductance
fluctuations beyond both the Gaussian effective-time-constant approxi-
mation and the diffusion approximation. These synaptic conductances
were then incorporated into a model of the membrane voltage response.
The approach allowed for the analysis of non-Gaussian features of the
voltage distribution such as its skew. In particular it was shown that
shot noise and synaptic conductance fluctuations affect the membrane at
the same order: both effects need to be taken into account for a consistent
approach.

The regime, in which the effects of shot noise on the voltage and fir-
ing rate might be clearly seen experimentally, is one of low presynaptic
rate and large, sharp excitatory post-synaptic potentials (EPSPs). This
is typical of the excitatory drive experienced by certain neocortical in-
terneurons (Silberberg et al 2004) for which isolated EPSPs can be many
millivolts and there is little dendritic filtering. For a case in which the ef-
fects of shot noise are strong (outside the perturbative regime considered
here) the voltage distribution can be considerably positively skewed with
increased probability to be near threshold. It is expected that in such a
case the statistics of the generated action potentials would differ signif-
icantly from those predicted using a Gaussian model of the membrane

14



fluctuations with the same mean and variance.

The Gaussian, or effective-time constant approximation for the mem-
brane distribution is, however, mathematically simple: the mean (12) and
variance (19) are transparent functions of the model parameters. Such
Gaussian distributions are therefore ideal to fit to experimental data
(Rudolph et al 2004) in cases where the shot-noise effects are weak. The
functional form of the distribution that takes into account the shot noise
and conductance fluctuations is, however, somewhat less transparent as
can be seen in equations (72) and (73) for the skew. So the question
should be asked: To what extent would weak higher-order effects inter-
fere with an attempt to fit the mean and variance to an experimental
distribution? This question can be answered in the framework presented
here. First, it is seen from equations (29) and (70) that the correction to
the mean voltage due to shot noise and conductance fluctuations are of
order x2

e, x
2
i

〈V 〉 = E0 + µV + · · · = E0 +O(x2
e, x

2
i ). (34)

Hence, the mean is not affected at first order. The same is true for the
measured variance:

〈(V − 〈V 〉)2〉 = 〈(V − E0)
2〉 − (〈V 〉 − E0)

2 = σ2
V (1 +O(x2

e, x
2
i )). (35)

which also increases only with x2
e, x

2
i , despite the fact that the skew

grows linearly with xe, xi. These results demonstrate that information
extracted from the voltage mean using equation (12) and variance using
equations (19) is not strongly affected by shot noise and conductance
fluctuations missed in the Gaussian approximation. Hence, fitting the
Gaussian-level moments to voltage traces is a robust method, given that
equations (1), (4) and its inhibitory counterpart provide a sufficiently
realistic model of the effect of synaptic drive on the membrane voltage.

In summary, the Gaussian effective-time-constant approximation pro-
vides an accurate description of the voltage fluctuations and is a conve-
nient tool for the fitting of theory to experiment. For most situations, its
description of the stochastic voltage dynamics due to conductance-based
synaptic drive is adequate and it can be easily extended to include many
biological details (such as voltage-dependent currents, dynamic synapses,
heterogeneity, non-trivial temporal correlations in the drive, etc) missed
in the simplified model considered here. Nevertheless, for the purposes of
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detailed modeling of conductance-based synaptic drive it should not be
overlooked that shot noise and conductance fluctuations are equally im-
portant. Our results demonstrate that diffusion-based approaches such
as the Fokker-Planck equation or simulation using multiplicative filtered
Gaussian noise are inadequate for the description of the non-Gaussian
statistics of the voltage. If the aim is to model or simulate the statis-
tics of voltage fluctuations beyond the Gaussian, effective-time-constant
approximation, then synaptic shot noise must be included.
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Appendix A: Details of the simulations

The parameters used for the simulations were τe = 3ms for the excita-
tory synaptic filtering, C=1µF/cm2 for the membrane capacitance and
gL =0.05mS/cm2 for the leak conductance. The reversal potentials used
were EL = −80mV for the leak and Ee = 0mV for synaptic excitation.
Simulations were performed using the Euler method with the Poissonian
synaptic shot noise implemented by integrating the conductance equation
(2) to yield

ge(t+ dt) = ge(t)−
dt

τe
ge(t) + aeP(Redt) (36)

where ae is the post-synaptic conductance amplitude for a single pulse
and Re is the total rate of incoming pulses. The quantity P(Redt) is the
random number of incoming pulses that arrive within the time step dt.
The number is drawn from a Poisson distribution characterized by the
mean Redt.

Appendix B: Filtered Poissonian shot noise

The method for expanding higher-order Gaussian correlators is first re-
viewed. The first and second order correlators are given in equation
set (5). All higher odd-order correlators vanish and higher even-order
correlators (of order 2n) factorize into

(2n)!/(2nn!) (37)

permutations of products of n second-order correlators. As an example,
and writing ξ(t1) = ξ1 for simplicity, the fourth order correlator is

〈ξ1ξ2ξ3ξ4〉 = 〈ξ1ξ2〉〈ξ3ξ4〉+ 〈ξ1ξ3〉〈ξ2ξ4〉+ 〈ξ1ξ4〉〈ξ2ξ3〉. (38)

A fluctuating quantity ζe(t) is now introduced with statistics that
are constructed so as to capture the effects of shot noise at a higher
order than Gaussian white noise ξ(t). The factorization properties of
high-order correlators of ζe(t) can be derived from its first-, second- and
third-order correlators defined in equation set (21) and equation (22).
These rules can be derived by expanding the Poissonian distribution of
the shot-noise Ornstein-Uhlenbeck equation (2) and by keeping terms
beyond the usual diffusion approximation (see for example Rodriguez et
al 1985).
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To order σe/ge0, higher even-order correlators obey the usual Gaussian
factorization rules and higher odd-order correlators can be decomposed
into permutations of a product of a single third-order correlator and an
appropriate number of second-order correlators. As an example, and
using the shorthand ζe(t1)=ζ1, the seventh-order correlator is factorized
as follows:

〈ζ1ζ2ζ3ζ4ζ5ζ6ζ7〉 = 〈ζ1ζ2ζ3〉〈ζ4ζ5ζ6ζ7〉+ permutations, (39)

where for this case there are a total of 7 ·6 ·5 permutations of the indices
of the third-order correlator. Each fourth-order correlator can then be
decomposed using the usual Gaussian rules (see Eq. 38). It is important
to note than no further third-order correlators are extracted out of the
remaining even-order product. Otherwise, this would produce terms that
go beyond the σe/ge0 correction. Hence for a (2n + 3)-order correlator,
there are

(2n + 3)(2n+ 2)(2n+ 1) · (2n)!

2nn!
(40)

permutations. The first set of three terms comes from all the different
ways of arranging the single third-order correlator and the final term
comes from the Gaussian statistics of the reduction of the remaining
even-order correlator.

Appendix B.1: The conductance distribution and correlators

The normalized conductance variable he = (ge−ge0)/σe is introduced to
simplify the following analysis. It obeys the equation

τe
dhe

dt
= −he +

√
2 ζe(t) (41)

which can be integrated to yield

he(t) =
√

2
∫ t

−∞

ds

τe
e−(t−s)/τeζ(s). (42)

From this, the correlators of the conductance are found to be

〈he(t)〉 = 0

〈he(t)he(t
′)〉 = exp(−|t− t′|/τe)

〈he(t)he(t
′)he(t

′′)〉 =
4

3

σe

ge0
exp(−|t− t′|/τe) exp(−|t′ − t′′|/τe), (43)
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with higher-order correlators derivable from these using the underlying
factorization rules for ζe(t).

The steady-state distribution of the variable he(t) can be obtained
by calculating the probability density that he(t) is found having a value
near he

p(he) = 〈δ(he − he(t))〉 =
∫ ∞

−∞

dq

2π
e−iqhe〈eiqhe(t)〉. (44)

The exponential is expanded to give

〈eiqhe(t)〉 =
∞
∑

m=0

(iq)2m

2m!
〈h2m

e (t)〉+
∞
∑

m=0

(iq)3+2m

(3 + 2m)!
〈h3+2m

e (t)〉. (45)

The structure of the correlators allows this to be re-written as

〈eiqhe(t)〉 =
∞
∑

m=0

1

m!

(

−q2

2

)m (

1+(iq)3 4σe

3ge0

)

=

(

1+(iq)3 4σe

3ge0

)

e−q2/2 (46)

which can be inserted into equation (44)

p(he) =

(

1− 4σe

3ge0

d3

dh3
e

)

∫ ∞

−∞

dq

2π
e−iqhe−q2/2 (47)

to yield the distribution given in equation (23).

Appendix C: The membrane distribution.

The statistics of the conductance fluctuations (given in Eq. 20) now
are incorporated into a model of a passive membrane (Eq. 1). For the
following analysis it is convenient to use the shifted voltage v=(V −E0),
with normalized conductances he, hi defined in equations (41) and (42)

τ0v̇ + v(1 + xehe + xihi) = xeEehe + xiEihi (48)

where τ0 = C/g0, E0 are defined by equation (12), Ee = Ee−E0 and
xe =σe/g0 provides the small parameter used for the perturbative anal-
ysis of the voltage (with a similar definition of xi). Because these small
parameters are linearly related to those used for the conductance pertur-
bation theory, corrections due to shot-noise and conductance fluctuations
will be simultaneously accounted for.
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Equation (48) can be integrated to give

v(t) =
∫ t

−∞

ds

τ0
e−(t−s)/τ0

(

α(s) e
−
∫ t

s

dr
τ0

β(r)
)

(49)

where the terms α(s) generates corrections to voltage-like quantities and
β(r) generates corrections to the effective time constant.

α(s) = xeEehe(s) + xiEihi(s)

β(r) = xehe(r) + xihi(r). (50)

The voltage distribution can now be obtained by evaluating the expec-
tation

p(v) = 〈δ(v − v(t))〉 =
∫ ∞

−∞

dq

2π
e−iqv〈eiqv(t)〉. (51)

to the appropriate order in xe and xi. No correlations are assumed to
exist between excitation and inhibition. This simplifying assumption can
be relaxed, and the method used here easily extended to account for such
correlations.

C.1 The leading-order voltage distribution. The derivation
(Richardson 2004) of the leading-order contribution to the voltage dis-
tribution of equation set (1-3) is first reviewed. The fluctuations of the
voltage from its mean value are written as v(t) = σ(t)+O(x2

e, x
2
i ) where

σ(t) =
∫ t

−∞

ds

τ0
e−(t−s)/τ0 (xeEehe(s) + xiEihi(s)) . (52)

In this approximation the leading-order probability density is a Gaussian
as can be seen by examining

p0(v) =
∫ ∞

−∞

dq

2π
e−iqv〈eiqσ(t)〉 (53)

where the expectation

〈eiqσ(t)〉 = 1− q2

2
〈σ(t)2〉+

q4

4!
〈σ(t)4〉 · · · = e−

1
2
q2σ2

V (54)

is evaluated using the Gaussian relation 〈σ(t)2n〉=(2n)!〈σ(t)2〉n/2nn!. At
this order there are no contributions from the shot noise. From equation
(52) the expectation 〈σ2(t)〉=σ2

V is time-independent and takes the value

σ2
V = x2

eE2
e

τe
(τe + τ0)

+ x2
i E2

i

τi
(τi + τ0)

. (55)
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Re-inserting the result (54) into the probability density

p0(v) = exp

(

− v2

2σ2
V

)

∫ ∞

−∞

dq

2π
exp



−σ
2
V

2

(

q − i
v

σ2
V

)2


 (56)

and evaluating the integral gives a Gaussian voltage distribution

p0(V ) =
1

√

2πσ2
V

exp

(

−(V − E0)
2

2σ2
V

)

. (57)

C.2 The next-order correction to the distribution. From the
previous section it is seen that the typical difference between the voltage
and its mean scales with xe, xi. To develop a systematic expansion the
dimensionless variable y = v/σV is therefore introduced. At the next
order the expansion can be written

y(t) = σy(t)− φ2
y(t) +O(x2

e, x
2
i ) + · · ·

where σy(t) = σ(t)/σV and φ2
y takes the form

φ2
y(t) =

1

σV

∫ t

−∞

ds

τ0
e
−

(t−s)
τ0

∫ t

s

dr

τ0
α(s)β(r). (58)

This gives the probability density correct to order xe, xi as

p0(y) + p1(y) =
∫ ∞

−∞

dq

2π
e−iqy〈eiq(σy(t)−φ2

y(t))〉.

Again the exponential within the expectation will be expanded and then
evaluated to first order in φ2

y

〈eiq(σy(t)−φ2
y(t))〉 =

∞
∑

m=0

(iq)2m

(2m)!
〈σ2m

y 〉

+
∞
∑

m=0

(iq)3+2m

(3 + 2m)!
〈σ3+2m

y 〉

−
∞
∑

m=0

(iq)1+2m

(2m)!
〈σ2m

y φ2
y〉 + O(x2

e, x
2
i ). (59)

The first term on the right-hand side of equation (59) is the zero-order
Gaussian component treated above, the second term is the correction due
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to the Poissonian nature of the noise and the third term is the correction
due to the conductance-based drive.

The second term is straightforward to analyze. Using the rules for
the permutation of correlators this term can be expanded out to give

∞
∑

m=0

(iq)3+2m

(3 + 2m)!
〈σ3+2m

y 〉 = (iq)3〈σ3
y〉

∞
∑

m=0

1

m!

(

−q2

2

)m

(60)

which takes the form of a Gaussian with a prefactor.

To obtain the third term of equation (59), expectations of the form
〈σ2m

y φ2
y〉 need to be calculated. An examination of the structure of the

integrals comprising this term shows that they can be written as

〈σ2m
y φ2

y〉 = 〈σ2m
y 〉〈φ2

y〉+ 2m·(2m− 1)〈ψ4
y〉〈σ2m−2

y 〉. (61)

The expectation 〈φ2
y〉 can be calculated from the form given above and

〈ψ4
y〉 is defined by

〈ψ4
y〉 =

1

σ3

∫∫∫ t

−∞

ds1

τ0

ds2

τ0

ds3

τ0

∫ t

s3

dr3
τ0
〈α(s1)α(s3)〉〈α(s2)β(r3))〉 (62)

where 〈ψ4
y〉 ∼ O(xe, xi). An explicit form for this quantity will be given

in Appendix D. Substitution of the form (61) into the third term of the
expansion (59) gives

∞
∑

m=0

(iq)1+2m

(2m)!
〈σ2m

y φ2
y〉 =

(

iq〈φ2
y〉+ (iq)3〈ψ4

y〉
)

∞
∑

m=0

1

m!

(

−q2

2

)m

. (63)

Inserting the results of equations (60) and (63) into the expansion (59)
gives

〈eiq(σy(t)−φ2
y(t))〉 =

(

1 + (iq)3〈σ3
y〉 − iq〈φ2

y〉 − (iq)3〈ψ4
y〉
)

e−
1
2
q2

(64)

where the fact that 〈σ2
y〉=1 has been used. Inserting this into the leading

order correction to the distribution

p1(y) =
∫ ∞

−∞

dq

2π
e−iqy

(

(iq)3〈σ3
y〉 − iq〈φ2

y〉 − (iq)3〈ψ4
y〉
)

e−
1
2
q2

=

(

〈φ2
y〉
d

dy
+
(

〈ψ4
y〉 − 〈σ3

y〉
) d3

dy3

)

∫ ∞

−∞

dq

2π
e−iqye−

1
2
q2

= −
(

〈φ2
y〉y +

(

〈ψ4
y〉 − 〈σ3

y〉
)

(y3 − 3y)
) 1√

2π
e−y2/2 (65)
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yields the perturbatively-generated distribution, correct to order xe, xi,
with the following functional form

p(y) =
1√
2π

(

1 + y
(

µy −
S
2!

)

+ y3S
3!

)

exp

(

−y
2

2

)

(66)

where µy is the correction to the mean voltage and S is the skew

µy =〈y〉=−〈φ2
y〉 and S=〈(y − 〈y〉)3〉=6

(

〈σ3
y〉 − 〈ψ4

y〉
)

. (67)

and the equalities hold to first order in the perturbation theory. The
first correction to the mean of y is only affected by the synaptic conduc-
tance. However, there are two components of the skew S=SSN +SCF : a
contribution SSN =6〈σ3

y〉 from the Poissonian nature of the drive and a
contribution SCF =−〈ψ4

y〉 from synaptic conductance fluctuations. The
functional forms of µy and S will be evaluated via the quantities 〈φ2

y〉, 〈σ3
y〉

and 〈ψ4
y〉 in the next section.

Appendix D: The voltage mean and skew.

At this order in perturbation theory, any of the higher-order cumulants
of the voltage distribution can be expressed in terms of the mean µy and
the skew S:

〈y2m〉 =
(2m)!

2mm!
and 〈y2m+1〉 =

(2m+ 2)!

2m+1(m + 1)!

(

µy +
m

3
S
)

(68)

where m = 0, 1, 2 · · ·. Only the odd correlators are different from the
Gaussian approximation at this order.

D.1 Voltage mean. The first quantity to be evaluated is the cor-
rection to the mean. Because of equation (67) the integral

〈φ2
y〉 =

1

σ

∫ t

−∞

ds

τ0
e
−

(t−s)
τ0

∫ t

s

dr

τ0
〈α(s)β(r)〉 (69)

must be evaluated. These integrals can be performed using the equation
set (43) and yield for µV =〈v〉

µV = −
(

x2
eEe

τe
(τe + τ0)

+ x2
iEi

τi
(τi + τ0)

)

. (70)
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D.2 Voltage Skew: The Poissonian contribution. Due to equa-
tion (67) this requires the evaluation of

〈σ3
y〉 =

(

1

σ

)3 ∫∫∫ t

−∞

ds

τ0

ds′

τ0

ds′′

τ0
e
−

(3t−s−s′−s′′)
τ0 〈α(s)α(s′)α(s′′)〉 (71)

which can be performed using the result for the third-order correlator
given in equation set (43). This yields for SSN = 6〈σ3

y〉

SSN =
1

σ3

(

8E3
e τ

3
e x

4
e(g0/ge)

3(τe + 2τ0)(τ0 + 2τe)
+

8E3
i τ

3
i x

4
i (g0/gi)

3(τi + 2τ0)(τ0 + 2τi)

)

. (72)

D.3 Voltage Skew: The conductance contribution. This is
given by −6〈ψ4

y〉 and therefore requires the evaluation of the integral
given in equation (62). After some algebraic effort, the result can be
written in the form

SCF = −4x4
eE3

e

σ3

(

τe
τe+τ0

)2
(

(3τ 2
e + 6τeτ0 + 2τ 2

0 )

(τe + 2τ0)(2τe + τ0)

)

−4x4
i E3

i

σ3

(

τi
τi+τ0

)2
(

(3τ 2
i + 6τiτ0 + 2τ 2

0 )

(τi + 2τ0)(2τi + τ0)

)

− 4x2
ex

2
i E3

eEiτeτi
σ3(τe+τ0)(τi+τ0)

(

2 +
(2τeτi+τ0(τe+τi))(2τe(τi+τ0)− τiτ0)

(2τe + τ0)(2τi + τ0)(τeτi + τeτ0 + τiτ0)

)

− 4x2
ix

2
eE3

i Eeτiτe
σ3(τi+τ0)(τe+τ0)

(

2 +
(2τiτe+τ0(τi+τe))(2τi(τe+τ0)− τeτ0)

(2τi + τ0)(2τe + τ0)(τiτe + τiτ0 + τeτ0)

)

.

(73)

If only one synaptic input type is present, or if the average voltage is
near the reversal of inhibition such that Ei = Ei−E0 ' 0, this result
greatly simplifies. This case is given in equation (32) and compared to
simulations of the full model in figure 2.
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