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Neurons in the central nervous system, and in the cortex in particular, are subject to a barrage of
pulses from their presynaptic populations. These synaptic pulses are mediated by conductance
changes and therefore lead to increases or decreases of the neuronal membrane potential with
amplitudes that are dependent on the voltage: synaptic noise is multiplicative. The statistics of the
membrane potential are of experimental interest because the measurement of a single subthreshold
voltage can be used to probe the activity occurring across the presynaptic population. Though the
interpulse interval is not always significantly smaller than the characteristic decay time of the
pulses, and so the fluctuations have the nature of shot noise, the majority of results available in the
literature have been calculated in the diffusion limit, which is valid for high-rate pulses. Here the
effects that multiplicative conductance noise and shot noise have on the voltage fluctuations are
examined. It is shown that both these aspects of synaptic drive sculpt high-order features of the
subthreshold voltage distribution, such as the skew. It is further shown that the diffusion approxi-
mation can only capture the effects arising from the multiplicative conductance noise, predicting a
negative voltage skew for excitatory drive. Exact results for the full dynamics are derived from a
master-equation approach, predicting positively skewed distributions with long tails in voltage
ranges typical for action potential generation. It is argued that, although the skew is a high-order
feature of subthreshold voltage distributions, the increased probability of reaching firing threshold
suggests a potential role for shot noise in shaping the neuronal transfer function. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2203409�
eurons communicate via their axons by the activation of
xcitatory or inhibitory synapses that act to increase or
ecrease the voltage of the target neuron. Cortical neu-
ons receive many thousands of connections from active
resynaptic cells and are therefore subject to a highly
uctuating drive. The statistics of the resulting voltage
ontains much information on the state of the presynaptic
opulation and has been used experimentally as a probe
f network activity. However, to properly interpret the
oltage fluctuations, accurate models of the effect of syn-
ptic drive on the subthreshold voltage are required. Two
mportant aspects of synaptic input are (1) that it is me-
iated by multiplicative conductance noise, and (2) that
he individual pulses can be sufficiently well separated
uch that it constitutes shot noise. The latter effect means
hat a common approach, which treats the fluctuations in
he diffusion limit, is not always accurate. Here the case
f multiplicative shot noise will be addressed and the
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weaknesses and strengths of the diffusion approximation
identified.

I. INTRODUCTION

The code that neurons use to communicate to one an-
other in the cortex is a subject of intense research. One of the
difficulties of inferring the code is that it is distributed over
populations of many thousands of neurons, as evidenced in
the motor cortex in the population vectors1 that code for
hand position or muscle action.2 One method of indirectly
measuring the activity of a population of neurons is by using
the fluctuating voltage of a neuron embedded in an active
network as a probe:3 given a model of the effect of the bar-
rage of synaptic pulses on the neuronal voltage, the resulting
statistics can be used to infer the state of the presynaptic
network. As well as the response of the neuron to its drive,
the form of the voltage fluctuations also determines whether
an action potential will be output from a neuron. Hence, the
accurate modeling of the effect of presynaptic pulses on the
subthreshold potential of neurons4–6 is of great interest to

experimental measures of network activity and to the under-
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tanding of the neuron as a basic input-output unit of the
entral nervous system.

A fundamental model of the electrical response of driven
ells was introduced by Lapicque7 and featured a passive
ecay of the voltage due to the capacitance and leak conduc-
ance of the cellular membrane. Later, Stein introduced a
odel featuring a synaptic drive modeled as a conductance

hange,8 following which the effects of stochastic,
onductance-based synaptic drive on membrane potential
uctuations began to be extensively studied.9–12 These initial
tudies typically treated the fluctuating drive in the diffusion
imit and were principally interested in the statistics of the
nterspike interval distribution of the outgoing spikes gener-
ted by the neuron, rather than the voltage distribution itself.
ince the early theoretical work, many experimental studies
ave directly probed the conductance change due to the syn-
ptic drive13–17 and have shown that the conductance can be
s much as five times higher than that of a neuron in an
nactive network. That the synaptic conductance change is
ominant has led to renewed theoretical interest in the syn-
ptic drive, particularly on the nonlinear effect that the con-
uctance change has on the gain of neurons.18–24

More recently, studies have directed their attention to-
ard the statistics of the subthreshold voltage distribution. A

olution was recently proposed25 for the case of filtered syn-
ptic drive �in which the synaptic drive was modeled by two
rnstein-Uhlenbeck processes with distinct time constants

or excitatory and inhibitory synapses�. However, doubt has
een cast6,26–28 on the correctness of the approach used.
hough an exact solution for the case of filtered synaptic
rive remains illusive, a number of approximation schemes
re now available.6,28,29

The effects of another feature of synaptic drive, shot
oise, have been comparatively less studied. However, it has
een included in the context of the interspike interval
istribution,30 incorporated into numerical schemes for cal-
ulating the firing rate of neuronal populations,31 considered
n relation to stochastic resonance in neurons,32 included in
n analysis of the effects of correlations in the presynaptic
opulation,33 and a perturbative approach has recently been
eveloped for the case of a filtered synaptic shot noise.6

Here, the effect of multiplicative, conductance-based
hot noise on the voltage statistics of neurons receiving
elta-pulse synapses is examined in detail. After defining the
odel to be analyzed, the weakness of the diffusion approxi-
ation in the analysis of subthreshold voltage fluctuations is
rst identified and the full master equation introduced. In this
ocus Article both established results and new results, spe-
ifically for the exact forms for the mean, variance, and skew
or arbitrary synaptic amplitude distributions, are presented.
hough the analysis is restricted to the case of subthreshold
oltage fluctuations, the implications of some of the results
or the firing rate of neurons are considered in Sec. V.

I. THE MODEL

The electrical properties of the neuronal membrane can
e derived by modeling it as a capacitance C in parallel with
passive leak current of constant conductance gL and a syn-
ptic current Isyn composed of fluctuating conductances. The

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
ratio of the capacitance and the leak conductance �L=C /gL

defines the passive time constant of the neuron. This sets the
scale for the relaxation of the cellular voltage following any
disturbance that takes it away from its equilibrium value EL.
With these definitions, the capacitive charging of the cell
membrane can be seen to obey the following equation:

C
dV

dt
= − gL�V − EL� − Isyn�t� , �1�

from which the time course of the voltage V�t� at time t can
be derived as a function of the synaptic current. It should be
noted that no spike-generating currents have been included
in the voltage equation. This is in keeping with the aim here
of analyzing the statistics of the subthreshold voltage of cells
driven by synapses with finite-sized amplitudes. This sce-
nario is directly relevant to experiments that use a hyperpo-
larized neuron as a probe for the presynaptic network
activity.3

A. Synaptic shot noise

The synaptic current Isyn can be modeled8 as comprising
two fluctuating components: an excitatory conductance ge�t�
that acts to depolarize the neuron by bringing its voltage
closer to the reversal potential Ee=0 mV for excitation, and
an inhibitory conductance gi�t� that acts to hyperpolarize its
voltage by bringing it closer to the reversal potential Ei

=−75 mV for inhibition. The net current can be written as a
sum of these two components:

Isyn�t� = ge�t��V − Ee� + gi�t��V − Ei� . �2�

The conductances themselves are activated by a barrage of
presynaptic pulses, each of which is modeled here as causing
a delta-pulse conductance of strength aeC, where from now
on excitation will be used as an example with similar state-
ments for inhibition following by analogy. Thus, for excita-
tion,

ge�t� = aeC�
�te�

��t − te� , �3�

where �te� is the set of excitatory presynaptic pulse times that
follow a Poisson process with a constant rate Re.

Modeling the conductance changes as a series of im-
pulses is an approximation; synaptic channels have charac-
teristic time scales for inactivation �about 3 ms for excitation
and 10 ms for inhibition�. However, for the purposes of this
paper, which concentrates on the shot-noise aspect of the
drive, this filtering will be ignored �the reader is directed
elsewhere6 for a perturbative treatment of filtered,
conductance-based shot noise�. It should also be noted that
the case of non-Poissonian drive �see, for example, Ref. 34�
is beyond the scope of this article �see Ref. 35 for a treatment
of temporally correlated input in the diffusion approxima-
tion�.

On inserting the form for the synaptic drive �2� into the
voltage equation �1�, dividing by V−Ee, and integrating over
a short period of time that includes a single excitatory input,
it is seen that the membrane voltage jumps from V to V+�

with
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� = �Ee − V��1 − e−ae� = �Ee − V�be, �4�

here the effective amplitude be has been introduced. This
orm of the voltage jump follows the usual rules of calculus
nd is the same as that chosen in Ref. 31.

. Stratonovich versus Itô stochastic calculus

It is possible to make a different choice from the update
ule �4� by retarding the multiplicative voltage prefactor of
he synaptic drive in Eq. �2�. If such a choice is made, the
riving term for excitation, for example, becomes ge�t��V�t
��−Ee�, where � is a positive infinitesimal. The update rule
orresponding to �4� would then be �= �Ee−V�ae instead. In
he diffusion limit �to be discussed in Sec. III�, this choice
ould correspond to the Itô form of stochastic calculus,
hereas the choice �4� corresponds to the Stratonovich

orm.37 Throughout this paper it will be the Stratonovich
orm that is chosen. However, when ae is small, the two
ormulations become practically indistinguishable. It can be
oted that by making the replacement be→ae the Itô formu-
ation is obtained.

. Numerical simulations of synaptic shot noise

A discretized form of the voltage equation �1� can be
sed for Monte Carlo simulations of the dynamics. For the
urposes of this paper a simple forward Euler scheme was
ound to be adequate, with an integration time step �t

50 �s, or smaller, used. The discrete-time dynamics for the
oltage Vk at time step tk=k�t can be written, following the
ule in Eq. �4�, as

k+1 = Vk +
�t

�L
�EL − Vk� + ekbe�Ee − Vk� + ikbi�Ei − Vk� , �5�

here ek, ik are integers drawn from Poisson distributions
ith means Re�t, Ri�t. This is an approximation to Poisso-
ian statistics, valid to order �t and therefore consistent with
his first-order Euler scheme: a small �t must be chosen �as
pecified above� for accuracy such that ek or ik infrequently
ake a value of greater than unity . It should be noted that an
xact integration scheme can be implemented by calculating
he time to the next event using the Poissonian interval
istribution—this method is discussed in Ref. 36.

II. THE DIFFUSION APPROXIMATION

A standard approach for dealing with Poissonian shot
oise is to take the diffusion limit. In the context of a fluc-
uating subthreshold voltage this approach becomes accurate
n the limit in which many excitatory and inhibitory synaptic
ulses arrive within the relaxation time �L of the dynamics,
.e., that Re�L�1 and Ri�L�1. When this holds, the Pois-
onian fluctuations are well approximated by a Gaussian pro-
ess. In this section the diffusion approximation of the volt-
ge dynamics first will be obtained and the corresponding
okker-Planck equation for the probability distribution de-
ived. The predictions of this approximation will then be
ompared to the full dynamics and its weaknesses identified.

To obtain the diffusion approximation, the aim is to ap-

roximate the stochastic synaptic current given in Eqs. �2�

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
and �3� by a Gaussian process of identical mean and vari-
ance. Using the excitatory conductance as an example, con-
sider first the integration of this contribution to Isyn over a
short time tk to tk+1= tk+�t:

ge�V − Ee� =
1

�t
�

tk

tk+1

dtCae�
�te�

��t − te��V − Ee� . �6�

Finding the mean and variance of this quantity is compli-
cated by the fact that a delta function multiplies the voltage
under the integral. However, on combining the rule given in
Eq. �4� with the voltage equation �1�, the first two moments
can be found to be

	ge�V − Ee�
 = CRebe�Vk − Ee� , �7�

Var�ge�V − Ee�� = C2Rebe
2�Vk − Ee�2/�t, �8�

where Vk=V�tk� is the value of the voltage before any inputs
arrive �these equations nevertheless correspond to the Stra-
tonovich form of stochastic calculus�.

To keep the form of the dynamics unambiguous, the dis-
crete form for the evolution will be written directly. To this
end, it proves convenient to introduce an effective time con-
stant � and the drive-dependent equilibrium potential E:

�−1 = �L
−1 + Rebe + Ribi, �9�

E = ��EL�L
−1 + EeRebe + EiRibi� . �10�

In terms of these variables the discrete-time equation for the
voltage can be written

Vk+1 = Vk +
�t

�
�E − Vk�

+ ��t�Rebe
2�Ee − Vk�2 + Ribi

2�Ei − Vk�2��k, �11�

where the two Gaussian processes for excitation and inhibi-
tion have been merged and �k is a Gaussian random number
of zero mean and unit variance drawn for each time step.
This discrete evolution equation is a translation into Îto form
of the true Stratonovich dynamics. The corresponding
Fokker-Planck equation37 for the diffusion-level voltage dis-
tribution PD�V� can be written

�

�t
PD =

1

2

�2

�V2 ��Rebe
2�Ee − V�2 + Ribi

2�Ei − V�2�PD�

+
1

�

�

�V
��V − E�PD� . �12�

A brief technical point: to order ae
2 , ai

2, this Fokker-Planck
equation is identical to that which would be obtained directly
for the Stratonovich formulation for the replacement ge

=Cae�Re+�Re�e�t��, where �e�t� is delta-correlated white
noise.26,37 However, as will be seen, the form used in Eq.
�12� has the added advantage of giving the mean and vari-
ance of the voltage correct to all orders in ae , ai as expressed
via b , b .
e i
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. The diffusion-level voltage distribution

As stated earlier, the rates Re , Ri are steady and so,
hough the voltage has a dynamics, its statistics are station-
ry. The corresponding steady-state �i.e., setting �tPD=0�
okker-Planck equation �12� is straightforward to solve9,26

ith the solution taking the following form:

PD 	 exp�− AF�V��/G�V� ,

A =
1

�
e
i

1

�Ee − Ei�

eEe + 
iEi


e + 
i
,

�13�

F�V� = arctan

e�V − Ee� + 
i�V − Ei�
�
e
i�Ee − Ei�

� ,

G�V� = �
e�V − Ee�2 + 
i�V − Ei�2��1+1/2�
e+
i��,

here the simplifying notation 
e=�Rebe
2 /2 and relative re-

ersal potential Ee=Ee−E have been introduced �and simi-
arly for the i , L subscripts�.

It should be noted that the distribution predicted by the

IG. 1. Comparison of the shot-noise and diffusion-approximation voltag
pproximation: a neuron receiving both excitatory and strong inhibitory dri
lso set at EL=−75 mV. �a� Shot-noise simulation of the dynamics. Between
ote that the voltage erroneously crosses the inhibitory reversal potential, w

nd diffusion-level voltage distributions. The diffusion approximation �si
orbidden region below Ei=EL=−75 mV. �d�–�f� A case demonstrating the sk
ith a leak potential EL=−60 mV. �d� Shot-noise simulation and �e� diffusio

f� The shot-noise distribution is positively skewed �peak left of the averag
ith the peak to the right of the average voltage. The parameters �Re ,be ,Ri

.04, 0, 0� with the rates given in kHz.
iffusion approximation is continuous over the voltage

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
range. This is, however, not the case for the true shot-noise
dynamics: if EL�Ee, it is not possible for excitatory input to
push the voltage over the reversal potential Ee for excitation
�similarly, if the leak reversal EL is chosen such that Ei

�EL�Ee, then the voltage would be bound between Ei and
Ee�. Hence the voltage should be bound by the leak and
synaptic reversal potentials and the distribution should van-
ish outside this region.

That the diffusion approximation is not able to deal cor-
rectly with the reversal potential boundaries has been long
recognized12 and represents one of its weaknesses in its mod-
eling of conductance-based drive �in this reference a number
of alternative models to that considered here are discussed in
detail, such as diffusion-level models that make the bound-
aries unreachable�. An example of this is given in Figs.
1�a�–1�c�. For the correct shot-noise dynamics the voltage is
unable to cross the boundary for inhibition; the closer the
voltage gets to Ei, the weaker the multiplicative inhibitory
drive becomes. However, in the diffusion approximation, the
excitatory noise is Gaussian �effectively predicting some
negative conductances� and so causes the voltage to overlap

amics. �a�–�c� A case demonstrating the boundary error of the diffusion
nging it close to the inhibitory potential Ei=−75 mV, with a leak potential
s the neuronal voltage relaxes to EL. �b� Diffusion simulation using Eq. �11�.
is not possible under the correct dynamics. �c� The steady-state shot-noise

ion, Eq. �11�; exact solution, Eq. �13�� gives a significant weight to the
rror of the diffusion approximation: a neuron receiving excitatory drive only
el simulation. The average voltage E is −50 mV in both cases �dotted lines�.

to the right� whereas its diffusion approximation predicts a negative skew
sed for the drive were as follows: �a�–�c� �0.5, 0.01, 10, 0.05�, �d�–�f� �0.25,
e dyn
ve bri
pulse
hich

mulat
ew e

n-lev
e, tail
,bi� u
into the forbidden zone below the inhibitory reversal poten-
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ial. This effect can be seen clearly in simulations of the
oltage time course in Fig. 1�b� well as in the distribution in
ig. 1�c�.

. The diffusion-level voltage moments

The mathematical form of the solution given in Eq. �13�
or the diffusion-level distribution PD does not provide for a
ransparent understanding of its form. A convenient way of
lassifying a distribution is via its moments, such as the
ean and variance. For the diffusion-level distribution, such
oments can be easily obtained by multiplying the Fokker-
lanck equation and integrating over the voltage range. It
roves convenient to measure the voltage as a difference
rom its mean E given in Eq. �10�. On multiplying the
teady-state form of Eq. �12� by vm, where v= �V−E�, and
ntegrating over this variable, the following recursion rela-
ion for the moments of the probability distribution is found:

0 = 
1

2
�m − 1��Rebe

2 + Ribi
2� −

1

�
�	vm
D

− �m − 1��Rebe
2Ee + Ribi

2Ei�	vm−1
D

+
1

2
�m − 1��Rebe

2Ee
2 + Ribi

2Ei
2�	vm−2
D, �14�

here the D subscripts remind the reader that the average
ere is over the diffusion-level voltage distribution. By set-
ing m=1, it is seen that the average voltage V is identical to
, i.e., 	v
D=0. From the case of m=2, the diffusion-level
oltage variance �D

2 is found to be

�D
2 =

�L

2

Rebe
2Ee

2 + Ribi
2Ei

2

1 + �LRebe�1 − be/2� + �LRibi�1 − bi/2�
. �15�

lso of interest is how non-Gaussian the distribution is. The
kew, defined as S= 	v
3 /�3, provides one such measure and
an be written in terms of the standard deviation �D by using
q. �14� with m=3:

SD = −
2�L

�D

Rebe
2Ee + Ribi

2Ei

1 + Re�Lbe�1 − be� + Ri�Lbi�1 − bi�
. �16�

or both the variance and skew, the effective time constant �
Eq. �9�� has been replaced by its form in terms of the pas-
ive time constant �L and the rates Re , Ri.

To compare the diffusion-level form for the skew with
imulation of the full model, a special case is considered in
hich inhibition is absent. In the limit of high-rate and small

mplitudes, with �LRebe held constant so as to keep the av-
rage voltage E fixed, the skew can be written

SD � −� 8�LRebe
2

1 + �LRebe
� �be �17�

nd seen to be proportional to the root of be �note that this is
he same for the standard deviation�. For the case of the
urely excitatory drive, the diffusion approximation predicts
skew that is always negative.

It is not surprising that in the extreme case near the
eversal of inhibition �shown in Figs. 1�a�–1�c�� the skew

redicted from the diffusion approximation will be inaccu-

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
rate. However, even away from the inhibitory reversal the
skew is given incorrectly by the diffusion approximation. In
Figs. 1�d� and 1�e� an example is given for a neuron driven
by an excitatory drive with a fluctuating voltage of average
value −50 mV. As can be seen in the figure, the skew pre-
dicted by the diffusion approximation is negative with a
value −0.23, whereas the distribution of voltages from the
shot-noise simulation is positively skewed with a magnitude
0.23 �a mirror-image case was chosen�. The difference be-
tween the true skew and its diffusion approximation is ex-
plored further in Fig. 2 as a function of be while �LRebe is
again held constant. As can be seen, for the examples, the
diffusion approximation is systematically in error in its esti-
mation of the skew.

IV. ACCOUNTING FOR SHOT NOISE

The full shot-noise statistics will now be addressed. As
an illustration, the case of a uniamplitude distribution of syn-
aptic weights will be considered first and the master equation
for the dynamics of the voltage distribution presented. As
will be seen, it is possible also in this case to derive arbitrary
moments of the voltage distribution; these will be compared
to the mean, variance, and skew derived in the diffusion
approximation. The link between the diffusion approxima-
tion and the full dynamics is then examined and a consistent
expansion of the master equation provided. The use of the
simple uniamplitude case �in the absence of inhibition� also
allows for an analytical recursion solution30,33,38 for the volt-
age distribution to be reviewed. The section closes with an
analysis of the more general case in which the excitatory and
inhibitory synaptic strengths take a range of values. The par-
ticular case of an exponential distribution of synaptic ampli-
tudes is given as an example.

A. The master equation for shot-noise drive

In the previous section the Fokker-Planck equation was
derived for the diffusion limit of high-rate synaptic pulses. A
more general equation, the master equation, can be written
down for the full probability density P that is valid for arbi-
trary rate pulses. This equation can be derived by considering
an ensemble of equivalent neurons. There are three ways that
neurons can enter a particular voltage range V to V+�V: �1�
from an excitatory jump into the range from some lower
voltage; �2� from an inhibitory jump into the range from a
higher voltage; and �3� by drifting in due to the leak term.
Correspondingly, there are three analogous ways of leaving
this voltage range. When the effects of these processes on the
probability �proportion of neurons within the ensemble� of
finding a neuron in this range are accounted for, the follow-
ing equation is obtained:

�

�t
P�V� = Re� 1

1 − be
P
V − beEe

1 − be
� − P�V��

+ Ri� 1

1 − bi
P
V − biEi

1 − bi
� − P�V��

+
1

�

�

�V
��V − EL�P�V�� . �18�
L
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his equation, written in a form where the probability cur-
ent is explicit, has been used previously30 in combination
ith a threshold for spike initiation to examine the interspike

nterval of neurons driven by conductance-based shot noise.
n efficient numerical scheme for the solution of this equa-

ion has also been presented.31

. Voltage moments of the master equation

The exact mean, variance, and skew of the shot-noise
ubthreshold voltage distribution can be obtained directly
rom the master equation �18� by taking voltage moments, as
as done similarly for the diffusion approximation in Sec.

II. Again, it proves convenient to take the moments with
espect to v=V−E, yielding the relation

0 = Re�1 − be�m�
v +
beEe

1 − be
�m�

− Re	vm
 + Ri�1 − bi�m�
v +
biEi

1 − bi
�m� − Ri	vm


+
m

�L
�EL	vm−1
 − 	vm
� , �19�

here EL=EL−E. From this equation it can be shown that
he mean voltage is equal to E and the variance �2 is iden-
ical to �D

2 given in Eq. �15�: the diffusion approximation as
ormulated in Sec. III gives the first two moments exactly as
as seen in the top two panels of Figs. 2�a�–2�c�.

IG. 2. Comparison of the voltage moments calculated for the shot-noise an
onstant �marked on panels� while be is varied over its full range �0, 1� in t
he diffusion-level mean, Eq. �10�, and variance, Eq. �15� �here plotted in

oments derived from Eq. �19�. The diffusion-level skew, Eq. �16�, howev
ven in its expected range of validity for be small �LRe large. �a� Lower
egative value. �c� Lower panel: both the shot-noise and diffusion-approx
ntermediate case. In all examples EL=−80 mV and �L=20 ms.
The third central moment can be written

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
	v3
 =
�L

3

Rebe
3Ee

3 + Ribi
3Ei

3

1 + Re�Lbe�1 − be + be
2/3� + Ri�Lbi�1 − bi + bi

2/3�

− �L

	v2
�Rebe
2Ee�2 − be� + Ribi

2Ei�2 − bi��

1 + Re�Lbe�1 − be + be
2/3� + Ri�Lbi�1 − bi + bi

2/3�
,

�20�

which can be used to obtain the skew S= 	v3
 /�3 exactly. To
give a transparent comparison with the prediction of the
skew for the diffusion approximation SD, the case of a purely
excitatory drive is again considered. In this case the skew
becomes

S =
1 − �LRebe�2 − be�

1 + �LRebe�1 − be + be
2/3�

�8�1 + �LRebe�1 − be/2��
9�LRe

,

�21�

which in the diffusion limit, i.e., be small but with Re�Lbe

held constant, the skew simplifies to

S �
1 − 2�LRebe

1 + �LRebe
�8be�1 + �LRebe�

9�LRebe
� �be. �22�

For 2�LRebe�1 this skew is positive and clearly different
from that calculated from the Fokker-Planck equation �17�,
which is negative. A comparison of the diffusion-level skew
and full skew is given in Fig. 2 for different values of �LRebe

as be is varied �this choice ensures that the mean voltage E

fusion-level dynamics. Three cases are considered for which �LRebe is held
sence of inhibition. In the upper panels, for all cases �a�–�c�, it is seen that
form of the standard deviation�, agree with the corresponding shot-noise

n be seen to be incorrect in comparison with the shot-noise form, Eq. �21�,
the true skew is positive, whereas the diffusion approximation predicts a

n skew are negative, but with different magnitudes. �b� Lower panel: the
d dif
he ab

the
er, ca
panel:
imatio
remains constant�. Data from simulations are also provided
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Do
ith the exact results to underline the fact that approaches
hat use simulations in which Poissonian fluctuations are re-
laced by Gaussian white noise will also be in error at the
evel of the skew.

. Consistent expansions of the master equation

The master equation can be expanded directly in powers
f be with �LRebe held constant to ensure a constant mean E.
he term of Eq. �18� that deals with excitatory pulses can be
xpanded to second order in be to yield

1

1 − be
P
V − beEe

1 − be
� − P�V�

= beP�V� + be�V − Ee�
�P�V�

�V

+
be

2

2

�2

�V2 ��V − Ee�2P�V�� + O�be
3� . �23�

n inserting this expansion, and the equivalent for inhibi-
ion, into the master equation �18�, it is straightforward to
how that the Fokker-Planck equation �12� is obtained.
ence in this expansion the mean and variance are given

orrectly, whereas the skew is given incorrectly. This is, of
ourse, not too surprising: though there are some contribu-
ions to the skew at second order arising from the multipli-
ative noise, there are also terms missed that come from the
igher-order terms dropped in the truncation of the expan-
ion �23�.

For a consistent solution it would be better to derive a
ystematic expansion that gives the moments correctly order
y order in be. For the steady-state subthreshold distribution,
entered around E, this can be achieved by writing the equa-
ion in a dimensionless variable y= �V−E� /�. This removes
he implicit be , bi scale in V−E. The expansion analogous to
23� for the distribution f�y� to order be yields

be
�

�y
�fy� −

beEe

�

�f

�y
+

1

2

be
2Ee

2

�

�2f

�y2 , �24�

here it should be noted that be /���be. Together with the
est of the master equation, this yields

�
�f0

�t
=

�2f0

�y2 +
�

�y
�f0y� �25�

t zero order. The steady-state solution in terms of the volt-
ge V is a Gaussian of mean E and variance � given by Eqs.
10� and �15� and with vanishing skew. In comparison with
he Fokker-Planck equation �12�, it can be shown that Eq.
25� is identical to that of the diffusion approximation except
hat in the argument of the second derivative of Eq. �12� the
oltage in the quadratic term has been replaced by its aver-
ge value E.

A heuristic way of arriving at this approximation is to
xpand the synaptic drive given in Eq. �2�. Considering just
he excitatory component, the conductance can be first ex-

anded into tonic ge0 and fluctuating geF components:

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
ge�V − Ee� = ge0�V − Ee� + geF�V − Ee� . �26�

The first term on the right-hand side is absorbed directly into
the leak conductance, leading to the effective time constant �
and reversal potential E. The second term on the right-hand
side represents the noise. This noise term can be expanded
around the average voltage E to give

geF�V − Ee� = geF�E − Ee� + geF�V − E� . �27�

In terms of the variable V–E, which measures the difference
of the voltage from its mean, the expansion on the right-hand
side represents additive and multiplicative components, re-
spectively. If the amplitude of geF is zero, then V−E=0.
Hence, if geF is small, the multiplicative term must be less
significant than the additive term. Keeping the leading-order
additive fluctuations and dropping the multiplicative term
yields an approximation for the synaptic drive that comprises
a tonic conductance with additive current-based noise. In the
diffusion approximation this results in a Fokker-Planck equa-
tion equivalent to that given in Eq. �25�. This approximation
has been used previously under the name of the “effective
time constant” or “Gaussian approximation”12,26,39–42 and
can be justified �via Eq. �24�� as the leading term in the
expansion of the master equation �18�. Moreover, it allows
for a perturbative approach for calculating the skew by ex-
panding to higher order, as was shown recently for a filtered
synaptic drive.6

D. Voltage distribution for excitatory shot noise

For the case of combined excitation and inhibition, an
analytic solution of Eq. �18� appears difficult. However, in
the absence of inhibition a solution can be found using a
generalization of a standard method38 developed for Poisso-
nian shot noise. This recursive approach, which has been
used previously30,33 in the context of neuronal firing rates, is
now reviewed.

In the absence of inhibition the dynamics are governed
by the relaxation, due to the leak conductance, and the exci-
tatory jumps. The recursive method breaks the voltage range
into a number of segments that can be solved successively.
The first segment is between the leak potential EL and the
voltage V1=EL+be�Ee−EL� to which an excitatory jump
brings the neuron from this leak potential. The dynamics in
this segment are governed purely by the relaxation and the
excitatory jumps out. The probability distribution within the
segment P01, between V0=EL and V1, therefore obeys

�LReP01 =
�

�V
��V − EL�P01� �28�

and has the solution

P01 = A�V − EL��LRe−1, �29�

where A is a constant to be determined by normalization. For
cases of moderate rate and higher �LRe
0, the distribution
vanishes at V=EL. The distribution P12 between V1 and V2

can now be calculated using �18�, where V2 is the voltage
that an excitatory jump takes the neuron to V1. Clearly, this

can be continued for arbitrary ranges Vk to Vk+1, where Vk
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Ee− �Ee−EL��1−be�k and the voltage distribution Pk,k+1 sat-
sfies

Pk,k+1 = Pk−1,k�Vk�
 V − EL

Vk − EL
��LRe−1

−
�LRe

1 − be
�

Vk

V dW

W − EL

 V − EL

W − EL
��LRe−1

�Pk−1,k
W − beEe

1 − be
� . �30�

his method is best suited for cases in which the probability
ensity is dominated by the first few segments. If this is not
he case, the necessity of calculating the integrals �30� nu-

erically makes a more direct numerical approach desirable.
owever, this uniamplitude case is rather artificial; as can be

een in Fig. 1�c�, even for the case where inhibition is
resent, there is a discontinuity in the gradient of the distri-
ution. This is an artifact that is not present if the more
iologically realistic case of a distribution of synaptic ampli-
udes is considered.

. Shot noise with amplitude distributions

In the previous section the uniamplitude synapse was
mployed to illustrate the differences between the shot-noise
ynamics and the diffusion approximation. The more general
ase of an amplitude distribution, for which pulses within an
mplitude range be→be+dbe arrive at a rate density �e�be�,
s now examined.

From a direct generalization of the argument that lead to
q. �18� the master equation comprising an amplitude distri-
ution can be written

�

�t
P�V� = �

0

1

dbe� 1

1 − be
P
V − beEe

1 − be
� − P�V���e�be�

+ �
0

1

dbi� 1

1 − bi
P
V − biEi

1 − bi
� − P�V���i�bi�

+
1

�L

�

�V
��V − EL�P�V�� , �31�

here the integral of the rate density �e over the range of be

ields the net rate of pulses Re. The approach used to calcu-
ate the moments of the distribution �Eq. �19�� is identical to
he previous section. Using the definition

be
m =

1

Re
�

0

1

dbebe
m��be� , �32�

nd similarly for bi
m, the following results for the mean and

ariance are found:

	V
 =
EL + Ee�LRebe + Ei�LRibi

, �33�

1 + �LRebe + �LRibi

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
�2 =
�L

2

Rebe
2Ee

2 + Ribi
2Ei

2

�1 + �LRe�be − be
2/2� + �LRi�bi − bi

2/2��
. �34�

It can be seen that the variance is identical in form to Eq.
�15�, which is also the exact shot-noise variance for a uni-
amplitude distribution, except that the be

m forms in the nu-
merator and denominator have been replaced by be

m. Further-
more, by inserting the expansion �23� into Eq. �31� the
corresponding Fokker-Planck equation can be derived, which
is identical in form to the case �12� except that again the
quantities be

m and bi
m are replaced by their expectations.

The skew for this case also follows accordingly from Eq.
�20�. In the absence of inhibition this skew can be written

S =
be

3

be
2 3/2

1 − �LRe�3be
22

/be
3 − be − be

2�

1 + �LRe�be − be
2 + be

3/3�

��1 + �LRe�be − be
2/2�

9�LRe/8
. �35�

A specific choice for the amplitude distribution will be con-
sidered below. However, it should be noted that the prefactor
of Eq. �35� allows for the skew to be stronger than the uni-
amplitude case.

1. Numerical solution for the excitation-only
distribution

The recursion solution of the Gilbert and Pollak form38

reviewed in the previous section is clearly not appropriate for
the case of an amplitude distribution. An efficient numerical
method31 has been developed for master equations of the
form �31� in which both excitation and inhibition are present.
However, here the case of excitation only will be considered
for which the following elementary numerical scheme can be
used to find the steady-state density.

By replacing the integral over be in Eq. �31� by an inte-
gral over the corresponding voltage, the master equation can
be written

0 = �
EL

V dWP�W�
Ee − W

�L�e
 W − V

W − Ee
� + �1 − �LRe�P�V�

+ �V − EL�
�P�V�

�V
. �36�

The voltage range is now discretized over a lattice Vk=EL

+k�V with lattice constant �V �please note that this definition
of Vk differs from that used previously in the context of
uniamplitude distributions near Eq. �28��. With the probabil-
ity density Pk evaluated on these lattice points, the corre-
sponding difference equation, valid for k�1, can be written
as

Pk+1 = Pk +
�V

Vk − EL
��Re�L − 1�Pk − �k� , �37�
with the integral in Eq. �36� approximated by
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�k = �
j=1

k
Pj�V

Ee − Vj
�L�e
Vk − Vj

Ee − Vj
� −

Pk�V

Ee − Vk

�L

2
�e�0� , �38�

nd with the boundary conditions P�EL�= P0=0 and P1=1;
he normalization is enforced after the integration �37� is
omplete.

. An exponential distribution of amplitudes

A specific choice for the synaptic amplitude distribution
s now considered for which be is exponentially distributed.
iven that be has an upper bound of 1, a cutoff has to be

nforced. However, for mean values be�1 this cutoff can be
eglected and the approximation �e=Re exp�−be /be� /be is a
ood one. Assuming this approximation to hold, the expec-
ations of the second and third powers of be are

be
2 = 2be

2
and be

3 = 6be

3
. �39�

ecause the exponential distribution has a tail, it can be ex-
ected that the skew is correspondingly stronger than that for
he uniamplitude distribution considered in a previous sec-
ion. To compare these two skews the quantities �39� are

nserted into Eq. �35� and terms of order Rebe

2
or higher

ropped. The resulting form of the skew, written in terms of
he mean be, is

S �
3
�2

1 − �LRebe

1 + �LRebe

�8be�1 + �LRebe�

9�LRebe

. �40�

n comparison with Eq. �22�, it can be seen that this skew is
tronger and has a larger range of positivity than that derived

IG. 3. Comparison of shot-noise, diffusion-level, and Gaussian-approxim
mplitudes. The upper panels show example voltage trajectories for each cas
a� Large-amplitude shot noise; Re=0.1 kHz, be=0.0533 giving mean pulse a
slightly better account of the full distribution, which is positively skewe
oderate-amplitude shot noise; Re=0.3 kHz, be=0.0267 giving mean pulse
significant positive skew. As can be seen in the inset, the diffusion appro

robability density for V
−55 mV. Despite being at the tail of this distribu
he firing rate of neurons in the presence of a threshold for the generatio
50 mV. �c� Low-amplitude shot noise; Re=5 kHz, be=0.00267 giving me
orresponding to the diffusion limit, both the diffusion approximation and th
he shot-noise distribution was calculated using the numerical scheme given
or the uniamplitude distribution: the effect of the positive

wnloaded 05 Jul 2006 to 128.178.74.82. Redistribution subject to AIP
skew is yet more enhanced for biologically realistic distribu-
tions.

In Fig. 3 subthreshold voltage densities are plotted for
the amplitude-distributed shot-noise dynamics and the corre-
sponding diffusion and Gaussian approximations �these are
obtained by appropriately replacing be and be

2 in Eqs. �7�, �8�,
and �24� by their expectations�. As can be seen clearly in
Figs. 3�a� and 3�b�, the full shot-noise distribution is signifi-
cantly positively skewed �peak to the left of the mean with a
tail extending to the right�. In the detail of the distribution in
Fig. 3�b� it should be noted that the Gaussian
approximation—the zero-order expansion of the master
equation—provides a slightly better approximation to the
correct dynamics than the negatively skewed diffusion ap-
proximation does. For Fig. 3�c�, which shows a case in
which the diffusion approximation is expected to be good
�Re�L=80�, all distributions approach the Gaussian form.

V. CONCLUSION

The shot-noise dynamics of the subthreshold voltage of
neurons subject to a barrage of synaptic input was consid-
ered. A number of results and methods existing in the litera-
ture were reviewed and new, exact results for the voltage
moments derived. The role of shot noise as the cause of the
positive skew of the distribution, with a peak to the left of
the voltage mean and a long tail to the right, was emphasized
and the weakness of the diffusion approximation identified:
specifically its crossing of the inhibitory boundary and its
prediction of a negative skew. An expansion of the corre-
sponding master equation was also developed, the zero-order
of which predicts a Gaussian distribution for the voltage. For

voltage densities for neurons receiving synapses with a distribution of
ere from �a� to �c�, the dynamics becomes more diffusive and less shot-like.
udes of 4 mV from the leak potential EL. The Gaussian approximation gives
n the diffusion approximation does, which itself is negatively skewed. �b�
itudes of 2 mV from the leak potential EL. Again the full distribution shows
tion, and to a lesser extent, the Gaussian approximation underestimate the
this difference could potentially cause a significant error for estimations of
outgoing action potentials, which is typically set in the range V=−55 to
lse amplitudes of 0.2 mV from the reversal leak EL. In this high-rate case
shot-noise distribution approach the Gaussian approximation. For all cases,
q. �37� with the leak potential set at EL=−75 mV and with �L=20 ms.
ation
e, wh
mplit

d, tha
ampl
xima
tion,
n of
an pu
e full
the subthreshold case this gives a better indication of the
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istribution than the diffusion approximation does and al-
ows for higher-order moments to be obtained systematically
ia a perturbation expansion, both for unfiltered and filtered6

hot-noise drives. It should be noted that in this approach the
oltage is expanded around its mean subthreshold value: for
ring neurons care must be taken in using the Gaussian ap-
roximation as the mean voltage is shifted away from this
alue by the imposition of a threshold for the generation of
utgoing spikes.

As the skew is clearly a high-order effect, it is legitimate
o question whether this detail has a measurable influence on
he input-output properties of neurons beyond that predicted
y the diffusion or Gaussian approximations. In Fig. 3 the
ull shot-noise distribution was shown to extend for voltages

−55 mV. Though an analysis of the firing rate of neurons

eceiving synaptic shot noise is beyond the scope of this
ocus Article, it should be noted that this voltage range is

ypical for action potential generation. So, though the skew is
ndeed a high-order feature that affects mostly the tail of the
istribution, it can potentially have a significant effect on the
ring rate of a neuron. This is consistent with results from a
umerical study31 in which the difference in firing rate be-
ween the diffusion approximation and the full shot-noise
ynamics were quoted at 15% for the case of excitatory
umps of 2 mV �as used here in Fig. 3�b�� and 30% for 4 mV
umps. A systematic analysis of the role of shot noise and its
elated skew in the generation of action potentials, which is
urrently lacking in the literature, has the potential to provide
urther insight into the role of fluctuations in neuronal
ignaling.43–45
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