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Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric form
of Hebbian learning induced by tight temporal correlations between the spikes of pre-
and postsynaptic neurons. As with other forms of synaptic plasticity, it is widely
believed that it underlies learning and information storage in the brain, as well as
the development and refinement of neuronal circuits during brain development (e.g.
Bi and Poo, 2001; Sjöström et al., 2008). With STDP, repeated presynaptic spike
arrival a few milliseconds before postsynaptic action potentials leads in many synapse
types to long-term potentiation (LTP) of the synapses, whereas repeated spike arrival
after postsynaptic spikes leads to long-term depression (LTD) of the same synapse.
The change of the synapse plotted as a function of the relative timing of pre- and
postsynaptic action potentials is called the STDP function or learning window and
varies between synapse types. The rapid change of the STDP function with the relative
timing of spikes suggests the possibility of temporal coding schemes on a millisecond
time scale.
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1.1 Experimental STDP Protocol

In a typical STDP protocol (Markram and Sakmann, 1997; Bi and Poo, 1998; Sjöström
et al., 2001), a synapse is activated by stimulating a presynaptic neuron (or presynap-
tic pathway) shortly before or shortly after making the postsynaptic neuron fire by
injection of a short current pulse. The pairing is repeated for 50-100 times at a fixed
frequency (for example 10 Hz). The weight of the synapse is measured as the ampli-
tude (or initial slope) of the postsynaptic potential. The change of the synaptic weight
is plotted as a function of the relative timing between presynaptic spike arrival and
postsynaptic firing, see Fig.1. The resulting plot is the STDP function or learning
window. It is worth noting that different synapse types can have quite different forms
of STDP function (Abbott and Nelson, 2000; Bi and Poo, 2001). Compared to many
other synaptic plasticity induction protocols, STDP is especially attractive since it is
believed to be biologically plausible. In the intact brain, action potentials are often
quite precisely timed to stimuli in the outside world, although this is not true for all
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Fig. 1.1: The STDP function shows the change of synaptic connections as a function of the relative
timing of pre- and postsynaptic spikes after 60 spike pairings. Schematically redrawn after Bi and Poo
(1998).

brain regions and cell types. Nevertheless, STDP is very likely to be induced under
such circumstances and many studies provide strong evidence that this is indeed the
case (Zhang et al., 1998; Allen et al., 2003; Jacob et al., 2007; Meliza and Dan, 2006).

1.2 Basic STDP Model

The weight change ∆wj of a synapse from a presynaptic neuron j depends on the
relative timing between presynaptic spike arrivals and postsynaptic spikes. Let us
name the presynaptic spike arrival times at synapse j by tfj where f = 1, 2, 3, ... counts
the presynaptic spikes. Similarly, tn with n = 1, 2, 3, ... labels the firing times of the
postsynaptic neuron. The total weight change ∆wj induced by a stimulation protocol
with pairs of pre- and postsynaptic spikes is then (Gerstner and al. 1996, Kempter et
al. 1999)

∆wj =
N∑

j=1

N∑
n=1

W (tni − t
f
j ) (1.1)

where W (x) denotes one of the STDP functions (also called learning window) illustrated
in Fig.1.1.

A popular choice for the STDP function W (x)

W (x) = A+ exp(−x/τ+) for x > 0 (1.2)

W (x) = −A− exp(x/τ−) for x < 0 (1.3)

which has been used in fits to experimental data (Zhang et al. 1998) and models (e.g,
Song et al. 2000). The parameters A+ and A− may depend on the current value of the
synaptic weight wj . The time constants are on the order of τ+ = 10ms and τ− = 10ms

1.3 Variants of STDP Models

1.3.1 Online implementation of STDP models

Spike-Timing Dependent Plasticity with an STDP function as in Eq. (1.2) can be im-
plemented in an on-line update rule using the following assumptions. Each presynaptic
spike arrival leaves a trace xj(t) which is updated by an amount a+(x) at the moment
of spike arrival and decays exponentially in the absence of spikes:

τ+
dxj

dt
= −x+ a+(x)

∑
j

δ(t− tfj ) (1.4)
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Fig. 1.2: Spike-Timing Dependent Plasticity can be implemented by local variables. Top: A presy-
naptic spike leaves a trace xj(t) which is read out (arrow) at the moment of the postsynaptic spike.
The weight change is proportional to that value xj(tn) Bottom: A postsynaptic spike leaves a trace
y(t) which is read out (arrow) at the moment of a presynaptic spike.
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Fig. 1.3: Top: Potentiation remains bounded if the parameter A+(wj) has hard bounds (magenta),
linear soft bounds (red), a nonlinear soft-bound at wmax(blue), or two-sided nonlinear soft bounds
(green). With the yellow weight-dependence, potentiation is the smaller the larger the weight, but does
not have a fixed upper bound. Bottom: Analogously, depression is stopped at zero weights choosing
some bounds for A−(wj).

The biophysical nature of the variable x need not to be specified, but potential candi-
dates are the amount of glutamate bound to postsynaptic receptors; or the fraction of
NMDA receptors in the open state. Similarly, each postsynaptic spike leaves a trace y

τ−
dy

dt
= −y + a−(x)

∑
n

δ(t− tn) (1.5)

which increases by an amount a−(y) at the moment of postsynaptic spikes. This trace
could possibly be interpreted as the voltage at the synapse caused by a backpropagating
action potential; or by calcium entry due to a backpropagating action potential. The
weight change is then

dwj

dt
= A+(wj)x(t)

∑
n

δ(t− tn)−A−(wj)y(t)
∑

f

δ(t− tfj ) (1.6)

Thus, the weight is increased at the moment of postsynaptic firing by an amount that
depends on the value of the trace x left by the presynaptic spike. Similarly, the weight
is depressed at the moment of presynaptic spikes by an amount proportional to the
trace y left by previous postsynaptic spikes. Integration of Eq. (1.6) yields Eq. (1.2).
For an illustration see Fig.1.2

1.3.2 Weight dependence: hard bounds and soft bounds

For biological reasons, it is desirable to keep the synaptic weights in a range wmin <
wj < wmax. This can be achieved by an appropriate choice of the functions A+(wj)
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Fig. 1.4: Top: All three presynaptic spikes interact (black arrows) with a later postsynaptic spike
(all-to-all interaction). This can be implemented by a trace xj(t) which accumulates. Bottom: Only the
most recent presynaptic spike interacts (black arrow) with a later postsynaptic spike (nearest-neighbor
interaction). This can be implemented by a trace xj(t) which starts after each presynaptic spike at the
same value.

and A−(wj). For the sake of simplicity, the lower bound is set in most models to zero,
wmin = 0. A choice: A+(wj) = (wmax − wj)η+

and A−(wj) = wjη− with positive constants η+ and η− is called soft bounds
or multiplicative weight dependence. The choice :A+(wj) = Θ(wmax − wj)η+ and
A−(wj) = Θ(−wj)η− is called hard bounds, see Fig.1.3. Here Θ(x) denotes the Heav-
iside step function. In practice, hard bounds mean that an update rule with fixed
parameters η+ and η− is used until the bounds are reached (Gerstner et al., 1996,
Kempter et al., 1999, Roberts et al., 1999, Song et al., 2000). Soft bounds mean
that, for large weights, synaptic depression dominates over potentiation (Kistler and
van Hemmen, 2000; van Rossum et al., 2000, Rubin et al., 2001). It is possible to
interpolate between the two cases (Guetig et al., 2003).

1.3.3 Temporal all-to-all versus nearest-neighbor spike-interaction

If the sum in Eq. (1.2) goes over all presynaptic spike arrivals and all postsynaptic
spikes, then all spike pairs contribute equally. This case has been called all-to-all
spike interaction (Fig. 1.4). It is also possible to restrict the interactions so that only
nearest spikes interact. In the mechanistic update rule of Eq. (1.6), nearest-neighbor
interaction can be implemented as follows. The potentiation at the moment of the
postsynaptic spike should depend only on the time since the most recent presynaptic
spike. To achieve this, suppose that the trace variable x is increased at the moment of
presynaptic spikes by an amount a+(x) = 1 − x− where x− denotes the value of the
variable x just before the update. In other words, the update of x is not cumulative but
goes always to a fixed value of one, so that the influence of previous spikes is cancelled;
see Morrison et al. (2008) for a review.

1.3.4 Triplet rule of STDP

Pair-wise interaction between spikes as in Eq. (1.1) would predict that 60 repetitions of
pre-post pairings (say, presynaptic spikes 10 ms before postsynaptic ones) give the same
result independent of whether the pairing is repeated at 1 Hz or 5Hz. At frequencies
above 25 Hz, a pair-wise interaction model would predict a reduced potentiation, since
in addition to the pre-post pair at 10ms virtual post-pre pairs at 30ms are created -
that should lead to depression. However, in experiments the opposite is observed (Senn
et al., 2001; Sjöström et al., 2001). The frequency-dependence of STDP experiments
can be accounted for if one assumes that the basic building block of potentiation during
STDP experiments is not a pair-wise interaction as assumed in Eq. (1.1), but a triplet
interaction between two postsynaptic spikes and one presynaptic spike (see Fig.1.5).
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Fig. 1.5: Top: In a triplet model, the elementary building block of LTP is not a pair, but a combi-
nation of 1 pre and 2 postsynaptic spikes. Bottom: Frequency dependence of LTP. The same number
of pre-post pairings at 10ms is repeated at different intervals T. On the right, the amount of LTP is
given as a function of the repetition frequency 1/T, redrawn after Sjöström et al. (2001)

Such a triplet interaction can be implemented in the mechanistic model if one works
with two postsynaptic traces y1 and y2 with two different time constants, rather than a
single trace (Pfister and Gerstner, 2006). Such a model is also compatible with explicit
triplet experiments (Wang et al., 2005) while a pair-based model is not.

1.3.5 Homeostatic terms

In addition to the pair-based and triplet-based STDP effects mentioned above, one can
also consider STDP models where an isolated postsynaptic or presynaptic spike induces
a small change of the synaptic weight, even if not paired with another spike. These
terms can be used in models to yield a homeostatic control of the total input into the
postsynaptic neuron (Kempter et al., 1999, van Rossum, 2001).

Another possibility to implement homeostasis into STDP models is by making the
parameter A− in Eq. (1.2) depend on the mean firing rate calculated as a running
average over a time scale of seconds (Pfister and Gerstner, 2006).

1.3.6 Voltage dependence

Experiments and models of Spike-Timing Dependent Plasticity suggest that synaptic
weight changes are caused by the tight temporal correlations between pre- and post-
synaptic spikes. However, other experimental protocols where presynaptic spikes are
paired with a fixed depolarization of the postsynaptic neuron (e.g. under voltage clamp)
show that postsynaptic spikes are not necessary to induce long-term potentiation and
depression of the synapse (Artola et al., 1990; Ngezahayo et al., 2000; Sjöström et al.,
2004). Moreover, the voltage of the postsynaptic neuron just before generation of action
potentials influences the direction of change of the synapse, even if the spike timing is
held fixed (Sjöström et al., 2001), suggesting that postsynaptic voltage is more funda-
mental than spike timing. Indeed, a model of synaptic plasticity that postulates pairing
between presynaptic spike arrival and postsynaptic voltage contains STDP models as
a special case (Brader et al., 2007, Clopath et al., 2008).

1.3.7 Biophysical models

Since signaling chains involved in the induction of Long-Term Potentiation and De-
pression are partially unknown, most models of STDP are phenomenological models.
However, some models attempt to identify variables such as the traces x and y in the
above mechanistic model with specific biophysical quantities. A few examples:

* Senn-Markram-Tsodyks model. The model shares features with the mechanistic
triplet model above and identifies some of the variables with internal states of the
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NMDA receptor and unspecified second messengers (Senn et al., 1997, 2001).
* Karmarkar-Buonomano model. The model emphasizes the fact that the path-

ways for upregulation and downregulation are independent and give interpretations of
internal variables in terms of NMDA receptor, calcium, and backpropagating action
potentials (Karmarkar and Buonomano, 2002).

* Shouval model. The model of Shouval starts from the hypothesis that the in-
tracellular calcium concentration in the vicinity of the synapse controls the up- and
downregulation of synaptic weights (Shouval et al., 2002).

* Rubin et al. model. The model gives a detailed account of some of the signaling
steps translating the calcium time course into synaptic weight changes (Rubin et al.,
2005).

* Lisman model. The model focuses on the autophosphorylation of CaMKII as a
critical step for memory formation (Lisman and Zhabotinsky, 2001; Lisman 2003). The
calcium based model can be simplified and shows STDP (Graupner and Brunel, 2007).

1.4 Relation of STDP to other learning rules

1.4.1 STDP and Hebbian learning rules

STDP can be seen as a spike-based formulation of a Hebbian learning rule. Hebb
formulated that a synapse should be strengthened if a presynaptic neuron ’repeatedly
or persistently takes part in firing’ the postsynaptic one (Hebb 1949). This formulation
suggests a potential causal relation between the firing of the two neurons. Causality
requires that the presynaptic neuron fires slightly before the postsynaptic one. Indeed,
in standard STDP experiments on synapses onto pyramidal neurons, potentiation of
the synapse occurs for pre-before-post timing, in agreement with Hebb’s postulate.
Hebb did not, however, postulate the existence of synaptic weakening (Hebb 1949).
The existence of a temporal window for weakening of connective strength in the typical
STDP learning rule is in a sense an extension to the Hebbian postulate.

The existence of synaptic weakening, however, was postulated long before the dis-
covery of STDP. Stent argued already in 1973 that the input from a presynaptic cell
that is consistently not co-active with the postsynaptic cell should be weakened (Stent,
1973). One important distinction as compared to STDP is that the Stentian extension
to Hebb’s postulate does not emphasize temporal contrast, only persistent lack of co-
incidence (Stent 1973), and it is therefore more akin to heterosynaptic LTD than to
STDP (Sjöström et al., 2008). Standard STDP, on the other hand, possesses a char-
acteristic temporal asymmetry (Fig. 1; Caporale and Dan, 2008; Abbott and Nelson,
2000; Sjöström et al., 2008).

1.4.2 STDP versus Rate based learning rules

Under the assumption of stationary Poisson statistics for the firing times of pre- and
postsynaptic neurons, the most relevant aspect of the STPD function is its integral and
an STDP model can mapped to an equivalent rate-based learning rule (Kempter et al.,
1999). Under the assumption of independence between pre- and postsynaptic firing,
the total weight change is ∆wij = αfi(t)fj(t) where fj(t) and fi(t) denote the firing
rate of pre- and postsynaptic neurons averaged over some time T and α =

∫
W (s)ds is

the integral over the learning window. If the integral is positive, STDP is identical to
standard rate-based Hebbian learning. For negative integral, as often used in modeling,
STDP corresponds to a anti-Hebbian rate rule.
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Fig. 1.6: A STDP rule (top) where post-pre pairs cause LTD and post-pre-post triplets cause LTP
generates for Poisson input a frequency dependence of weight changes as in the BCM model (bottom).

However, the assumption of independence of pre- and postsynpatic firing is ob-
viously wrong since it neglects the causal correlations generated by the interaction
of the two neurons. A more precise mapping to rate models can be achieved if the
postsynaptic neuron is described as an inhomogeneous Poisson Process with a rate
fi(t) = γ

∑
j

∑
f ε(t − tfj ) where tfj denotes the spike times of a presynaptic neuron

j generated by a Poisson process of rate fj(t) and ε(s) for s > 0 describes the time
course of a postsynpatic potential. The total weight change in a period T is then
∆wij = αfi(t)fj(t)+βfj(t) where β = γ

∫∞
0 ε(s)W (s)ds is the integral over the ’causal’

part of the learning window, i.e., over all times with ’pre-before-post’ relation (Kempter
et al. 1999). For standard STDP models β > 0, i.e., presynaptic spike arrival leads on
average to a positive change of the synapse, because it is likely to cause postsynaptic
firing. This is then often combined with a negative integral over the STDP function
α < 0 so that random pairings of pre- and postsynaptic firings leads to a decrease of
the synapse (Gerstner et al., 1996, Song et al., 2000). The functional consequences of
such a choice are discussed below (see Rate normalization).

1.4.3 STDP and Bienenstock-Cooper-Munro (BCM) rule

STDP can also be related to a nonlinear rate model where the weight change depends
linearly on the presynaptic rate, but nonlinearly on the postsynaptic rate (Bienen-
stock et al., 1982). This can be achieved in two different ways. The first possibility
is to implement standard STDP with nearest-neighbor instead of all-to all coupling
(see above). This leads to a nonlinearity consistent with the BCM rule (Izikhevich
and Desai, 2003). The second possibility is to use a triplet STDP rule (see above)
instead of the standard pair-based rule (Fig. 1.6). If potentiation requires a triplet of
two postsynaptic spike and one presynaptic spike (with post-pre-post or pre-post-post
firings in temporal proximity) while depression is modeled by the interaction of a post-
pre-pair, then the equivalent rate model under a Poisson firing assumption as above is
∆wij = a+[fi]2fj − a−fifj = φ(fi − ϑ)fj where ϑ describes the minimal postsynaptic
frequency for potentiation and φ is a quadratic function (Pfister and Gerstner, 2006).
If the amount a− of depression increases with the mean postsynaptic frequency, then
the threshold shifts with the mean postsynaptic rate. In this case the triplet rule of
STDP becomes identical to BCM rule (Bienenstock et al. 1982).

1.5 Functional Consequences

As described above, STDP models can be related to rate models under the assumption
of Poisson firing of both pre- and postsynaptic neurons. Hence STDP rules inherit
functional consequences known for rate models. In particular, the potential of synaptic
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Fig. 1.7: Top: Presynaptic neurons are firing one after the other and cause the postsynaptic neuron
to fire a single action potential (green vertical bar). The STDP function will strengthen those synapses
that have been activated just before the postsynaptic spike. Bottom: If the stimulation pattern repeats
the new synaptic weights make the postsynaptic neuron fire earlier.

learning to principal component analysis; to receptive field development; to clustering
and map formation does not change fundamentally if one switches from rate-based to
spike-based models (Kempter et al., 1999; Song and Abbott, 2001). In the rest of this
section we focus on aspects that are specific to STDP and go beyond known features
of rate-based learning.

1.5.1 Spike-spike correlations

The postsynaptic depolarization caused by spike arrival at an excitatory synapse makes
the postsynaptic neuron more likely to fire. In all spiking neuron models (including
Poisson models driven by presynaptic input) this leads to a correlation of the spikes
of pre- and postsynaptic neurons on the timescale of milliseconds. These spike-spike
correlations contribute to learning in STDP models (Kempter et al., 1999), but are
completely neglected in standard rate models of learning. See the section ’STDP versus
rate based learning rules’.

1.5.2 Reduced latency

Suppose a postsynaptic neuron is connected to N presynaptic neurons that fire one
after another in a sequence 1-2-3-...-N over several milliseconds; see Fig. 1.7. Suppose
that the synaptic input makes the postsynaptic neuron fire between the firings of presy-
naptic neurons N-1 and N. As a result of STDP the connection from neuron N to the
postsynaptic neuron is weakened (because of the post-before-pre timing) whereas the
connections from neurons N-1, N-2, N-3 ... to the postsynaptic neuron are reinforced
(because of appropriate pre-before-post firing). After several repetitions of the same
stimulus, the postsynaptic neuron fires earlier, i.e. with reduced latency, because of
the stronger input. Hence the timing of the postsynaptic spike shifts forward in time
(Song et al., 2000, Mehta et al., 2000).

1.5.3 Temporal coding

Since STDP is sensitive to spike timing on the millisecond rate, it can be used in
temporal coding paradigms. Examples include tuning of synaptic connections in a
model of sound source localisation in the auditory pathway (Gerstner et al., 1996);
learning of spatio-temporal spike patterns in a model of associative memory (Gerstner
et al., 1993); suppression of predictable signals in a model of the electrosensory system
of electric fish (Roberts and Bell, 2000); learning time-order codes (Guyonneau et al.
2005); amongst others.
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1.5.4 Rate normalization

Rate-based Hebbian learning is intrinsically unstable: synaptic inputs that drive the
neuron to a high firing rate will be strengthened further. On one hand, such an instabil-
ity is necessary to make the neuron detect, and become sensitive, to weak correlations
in the input. On the other hand, this leads not only to a growth of individual synapses,
but also to an explosion of the firing rate of the postsynaptic neuron. In practice, in rate
based learning the growth of synapses and firing rates is controlled by (i) introducing
upper and lower bounds for individual weights and (ii) renormalization of the weights
of each time step or each episode. Renormalization can alternatively be implemented
online by a rate-dependent decay term of the weights (Oja 1982). Surprisingly, STDP
models with an appropriate set of parameters do not need such an explicit normalisation
step (Kempter et al., 1999, Song et al., 2000, Kempter et al., 2001).

As discussed above in section ’STDP versus Rate based learning rules’, the equiva-
lent rate model of a standard STDP rule is ∆wij = αfi(t)fj(t) + βfj(t). For a choice
of parameter where the integral over the STDP function is negative (α < 0) and pre-
before-post firings lead to potentiation (β > 0), the firing rate of the postsynaptic
neuron has a stable fixed point, while the learning rule is sensitive to the temporal
correlations between pre- and postsynaptic neurons (Kempter et al., 2001).

1.6 Experimental results and open questions

1.6.1 Diversity of STDP

STDP varies tremendously across synapse types and brain regions (Abbott and Nelson,
2000). Even so, it is worth recollecting that the temporal asymmetry of classical STDP
is also remarkably well preserved and is found in species as different as rat, frog, locust,
zebra finch, cat, and probably also humans (reviewed in Sjöström et al., 2008; Caporale
and Dan, 2008). In mammals, STDP has also been uncovered in multiple brain regions,
such as prefrontal, entorhinal, somatosensory, and visual cortices, hippocampus, stria-
tum, the cochlear nucleus, and the amygdala (cf. Sjöström et al., 2008; Caporale and
Dan, 2008). The activity requirements that govern STDP at many of these different
synapses, however, is variable. For example, the width of the temporal windows for
LTD and LTP appear to be roughly equal at hippocampal excitatory synapses (Bi and
Poo, 1998; Nishiyama et al., 2000; Zhang et al., 1998), whereas the LTD timing window
is considerably wider than that of LTP at several neocortical synapses (Feldman et al.,
2000; Sjöström et al., 2001).

For some synapses, the STDP timing windows is inverted as compared to the clas-
sical form of STDP, so that pre-before-post timings result in LTD whereas the opposite
temporal order results in LTP. This is the case at e.g. inhibitory connections onto
neocortical L2/3 pyramidal neurons (Holmgren and Zilberter, 2001), at corticostriatal
synapses (Fino et al., 2005) as well as in the electrosensory lobe of the mormyrid elec-
tric fish (Bell et al., 1997). The timing requirements for STDP at connections between
spiny stellate cells in rat somatosensory cortex are yet again different: Here, synapses
undergo LTD seemingly regardless of temporal order (Egger et al., 1999). In neocortical
layer-5 pyramidal neurons, the timing requirements also depend critically on synapse
location in the dendritic tree: Whereas proximal inputs undergo classical STDP, dis-
tal synapses are subject to a ”temporally inverted” STDP rule (Letzkus et al., 2006).
These same inputs also undergo non-Hebbian LTD or Hebbian LTP depending on the
state of depolarization of the apical dendrite (Sjöström and Häusser, 2006).

The activity requirements of STDP may thus vary considerably not only across
brain regions and synapse types, but also within a cell, in different dendritic compart-
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ments. One open question is what this variability is good for. Since it is well established
that synaptic plasticity underpins neural circuit development (Katz and Shatz, 1996),
this implies that the STDP rules engaged during development determine circuit func-
tionality in the mature brain. In other words, this variability of STDP is most likely
not coincidental.

1.6.2 Biophysical and biochemical mechanisms

Both LTP and LTD depend on intracellular calcium transients: LTP is triggered by
brief and strong postsynaptic calcium events, whereas LTD is induced by smaller, more
prolonged calcium elevations, a concept known as the calcium hypothesis in synaptic
plasticity (Sjöström et al., 2008). This calcium dependence of plasticity is critically de-
pendent on the activation of postsynaptic NMDA receptors residing in the spine: These
NMDA receptors detect the coincidence of glutamate release due to the presynaptic
spike and depolarization due to the postsynaptic spike, resulting in a supralinear rise
in postsynaptic calcium during LTP (Yuste and Denk, 1995; Koester and Sakmann,
1998; Schiller et al, 1998). The calcium hypothesis, however, is probably an over-
simplification, since additional sources of calcium such as voltage-dependent calcium
channels (Bi and Poo, 1998; Magee et al, 1997) and other signalling mechanisms such
as metabotropic glutamate receptors (Nevian et al, 2006) also contribute to STDP.

Downstream to the calcium influx is calmodulin, which may provide a watershed
readout mechanism (DeMaria et al, 2001) to distinguish between LTP and LTD-
promoting calcium signals (Sjöström and Nelson, 2002; Sjöström et al, 2008). Even-
tually, the enzyme calcium/calmodulin-dependent kinase II, or CaMKII, is affected by
the calcium transient. This enzyme has been hypothesized to encode synaptic weight
through gradations in the fraction of active subunits (Lisman, 1985; 1989; Lisman and
Zhabotinsky 2001; Lisman et al, 2002).

Although there is a relative consensus regarding the mechanisms underlying poten-
tiation, it is less clear-cut with depression. In one view, sublinear calcium summation
triggers LTD (Koester and Sakmann, 1998), perhaps because postsynaptic NMDA re-
ceptors are suppressed during STDP timings inducing LTD (Froemke et al, 2005). It is,
however, becoming increasingly clear that the presynaptic terminal too actively partici-
pates in the induction of STDP. In particular, presynaptically located NMDA receptors
trigger timing-dependent LTD (Sjöström et al, 2003; Rodriguez-Moreno and Paulsen,
2008). The calcium hypothesis is thus clearly flawed and more work is required to
elucidate the biophysical and biochemical mechanisms that underpin STDP.

1.6.3 Role of backpropagating action potentials

The NMDA-receptor-based spine coincidence detector described above requires that
an action potential backpropagating from the initiation zone near the axon hillock into
the dendritic tree makes it all the way to the synapse. If, however, a synapse is so
distal from the soma that backpropagating action potentials fail and propagate pas-
sively, then it may not sufficiently depolarize NMDA receptors in the spine to allow
opening and calcium influx (Golding and Spruston, 2002; Sjöström and Häusser, 2006).
The prevalence of such failures of action potential backpropagation depend on the bio-
physical properties and morphology of the dendritic arbor, on sub and suprathreshold
activity patterns, as well as on neuromodulatory state (Sjöström et al, 2008). For
example, dendritic depolarization may boost otherwise failing backpropagating action
potentials, thus promoting LTP of suitably timed synaptic inputs in the distal dendritic
tree (Sjöström and Häusser, 2006). This is not to say that backpropagating action po-
tentials are necessarily critical for NMDA-receptor-based LTP; local dendritic spikes
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may entirely replace them, at least under some circumstances (Golding and Spruston,
2002). STDP, however, is by definition dependent on relatively global action potentials
in the postsynaptic cell.

1.6.4 Voltage dependence and cooperativity in STDP

Classically, NMDA-receptor-based synaptic plasticity is closely connected to the degree
of activation of the postsynaptic cell: Moderate depolarization only partially opens
NMDA receptors, resulting in relatively low calcium levels and in LTD, whereas strong
depolarization results in more massive calcium responses and in LTP (Artola et al 1990;
also see above). In keeping with this, pairing presynaptic spikes with subthreshold
postsynaptic depolarization results in timing-dependent depression (Sjöström et al,
2004; Markram et al, 1997).

Another hallmark feature of classical LTP is cooperativity; the notion that high-
frequency stimulation of a weak pathway results in LTP only if in synchrony with a
stronger pathway (McNaughton et al, 1978). Some have argued that this requirement
for cooperativity among inputs to reach the threshold for LTP is a reflection of a
need to reach the postsynaptic spike threshold. If this line of reasoning were true,
then STDP should not exhibit a cooperativity requirement, since there is by definition
always postsynaptic spiking. It turns out, however, that neocortical STDP does require
a sufficient number of inputs to be co-activated in order to elicit LTP, even in the
presence of postsynaptic spiking (Sjöström et al, 2001). It has been demonstrated that
this cooperativity requirement in STDP arises due to a voltage dependence, so that large
depolarizations (e.g. due to a large number of synchronous inputs) enable potentiation,
whereas small ones fail to do so (Sjöström et al, 2001). This voltage dependence is at
least in part due to the fact that action potentials backpropagate decrementally into
the dendritic tree unless they are boosted by a relatively depolarized dendritic state
(Sjöström and Häusser, 2006). In other words, in STDP, the backpropagating action
potential may require help to make it to the synapse, especially for synapses far from
the soma, otherwise it cannot sufficiently depolarize the spine coincidence detector to
trigger potentiation.

Although it is relatively well-established that STDP is voltage dependent and that
backpropagating action potentials are crucial, it is unclear to what extent other voltage
dependent mechanisms contribute. For example, calcium influx directly mediated by
voltage-dependent calcium channels may contribute. Another open question is if a form
of STDP exists for local dendritic spikes, i.e. in the absence of postsynaptic spiking
output (cf. Golding and Spruston, 2002).

1.6.5 Induction versus expression of Long-Term Potentiation

By and large, STDP refers to an experimental plasticity induction protocol. It may
thus be tempting to conclude that the controversial question of how synaptic plasticity
is expressed–in particular the so-called pre versus post debate in LTP (Malenka and
Nicoll, 1999)–is not relevant to STDP models. Such a conclusion, however, may be
hasty.

Although it has been disputed on good grounds (e.g. Bolshakov and Siegelbaum,
1994), the canonical view remains that LTP at Schaeffer collateral inputs to CA1
pyramidal cells is postsynaptically expressed (Malenka and Nicoll, 1999). In this view,
potentiation is a simple synaptic gain control that underlies information storage in the
brain.

With presynaptic LTP, however, the situation is considerably more complex, be-
cause presynaptic LTP does not only change the synaptic gain, it also affects infor-
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mation transfer across the synapse. At excitatory connections of neocortical layer 5,
LTP is apparently expressed through an upregulation of the probability of release, thus
resulting in an increase of short-term depression, a concept known as Redistribution of
Synaptic Efficacy (RSE; Markram and Tsodyks, 1996). Consistent with this finding,
the induction of timing-dependent depression at layer-5 synapses in visual cortex results
in a long-term down regulation of short-term depression through an apparent decrease
of the probability of release (Sjöström et al., 2003), which is in effect anti-RSE.

Since short-term depression effectively differentiates rates on a given input with
respect to time, this may lead to brief onset and offset bursts of activity in the postsy-
naptic cell as input rates change (Abbott et al 1997). A cell with short-term depressing
inputs thus becomes an efficient coherence detector (Abbott et al 1997; Markram and
Tsodyks, 1996). By extension, the presence of RSE at its synaptic inputs may thus
make a neuron more sensitive to input coherence (Markram and Tsodyks, 1996), while
anti-RSE (Sjöström et al, 2003) may do the opposite.

The up or down regulation of short-term depression in a network of connected
neurons would presumably alter the statistics of spike timing dramatically. Given the
acute sensitivity of STDP to spike timing, it thus follows that a network with STDP
triggering RSE may result in complex loops between STDP and network activity. The
ensuing dynamics of activity are likely to be quite different from those in a network
where STDP does not trigger RSE. To our knowledge, this possibility and its functional
consequences for network coding has not yet been explored, neither theoretically nor
experimentally. In fact, most models introduce the synaptic weight as formal parameter
that corresponds to the amplitude of the EPSP or the maximum conductance during
synaptic transmission. However, if one combines an STDP model with a model of
short-term plasticity with several parameters, the term ’synaptic weight’ is not precise
enough, since long-term plasticity may affect the parameters of short-term plasticity
differentially. The basic question of what we mean by synaptic weight thus remains to
be addressed properly.

1.6.6 Maintenance of Long-Term Potentiation

The focus of STDP as an experimental paradigm (and therefore of this article) is the
induction of plasticity by suitable protocols. The question of how the changes induced
by synaptic plasticity are maintained over a period of hours, weeks, or even years as
expected for long-term memory is the topic of Maintenance of synaptic plasticity.

1.6.7 Influence of neuromodulators

STDP depends on the presence or absence of neuromodulators such as dopamine
(Pawlak and Kerr, 2008, Zhang et al. 2009). These studies suggest that neuromodu-
lators are more than simple switches that turn plasticity on or off. Neuromodulation
cannot be considered as a simple multiplicative factor. Rather the presence of neuro-
modulators changes the temporal profile of STDP (Pawlak and Kerr, 2008, Zhang et
al. 2009).

The modulation of STDP by a third factor such as dopamine has potentially in-
teresting functional consequences that turn STDP from unsupervised learning into a
reward-based learning paradigm (Izhikevich 2007, Florian 2007, Pfister 2006, Farries
and Fairhall 2008, Legenstein et al. 2008).
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1.6.8 Discrete or continuous synapses

Most models describe the synaptic weight as a continuous variable, although it is
quite conceivable that weights are coded in discrete jumps. In fact, certain benefits
would arise from such discrete synaptic weights. For example, bistability of individual
synapses would help to assure the long-term stability of synapses over weeks or years
in the presence of molecular turnover (Lisman 1985). While this is a strong argument
in favor of discrete synapses it does not preclude that, on a shorter time scale, synaptic
weights undergo continuous synaptic depression or facilitation which would be overlaid
on the discrete long-term dynamics.

Since in the typical STDP experiment, results are averaged across several synapses,
the question of whether single synapses respond to plasticity protocols with discrete
or continuous changes cannot readily be answered. There are at least two studies
suggesting that synaptic weights onto CA1 pyramidal neurons in the hippocampus are
altered in discrete steps (Petersen et al, 1998; O’Connor et al, 2005). Other studies,
however, appear to be in disagreement with this view. For example, recent glutamate
uncaging experiments suggest that weights change continuously (Tanaka et al, 2008).

Finally, even if weights are discrete, it is difficult to provide conclusive experimental
evidence showing stepwise changes in plasticity. The stochastic nature of neurotrans-
mitter release, for example, hampers such experiments, by adding noise to the point
that stepwise changes might be masked, although glutamate uncaging would help ad-
dress this problem. Furthermore, the situation might be complex, and plasticity may
be for example be discrete postsynaptically and continuous presynaptically. Last but
not least, synapses are at different distances from the soma and their corresponding
postsynaptic potentials are therefore subjected to different amounts of dendritic filter-
ing as they propagate toward the soma. Since most connections in the brain are made
up of more than one synaptic contact, which are made onto different dendritic com-
partments at different electrotonic distances from the soma, the net result is that any
discrete steps that might exist would be exceedingly difficult to find conclusive evidence
for experimentally. Even if weights were discrete, synaptic weight distributions would
seem continuous and discrete plasticity would appear continuous.

Whether synapses typically are discrete or continuous thus remains an open but
very intriguing question.

1.7 History of STDP

The first experiments with precisely timed pre- and postsynaptic spikes at a millisecond
temporal resolution were performed by Markram et al. (1995,1997) soon followed by
others (Bell et al., 1997, Bi and Poo, 1998, Debanne et al., 1998, Zhang et al., 1998).
While the first publications on true STDP experiments came out in the mid-nineties
temporal requirements for the coincidence of pre- and postsynaptic activity had already
been investigated in 1983 in experiments by Levy and Stuart albeit with a lower tempo-
ral resolution using bursts of spikes rather than individual action potentials (Levy and
Stuart, 1983). These early experiments can be understood as temporally asymmetric
Hebbian learning under a rate coding hypothesis, but also as precursors of modern
STDP experiments.

The first model using an STDP function with potentiation and depression at a
millisecond resolution was published in 1996 (Gerstner et al. 1996). Modelers and the-
oreticians interested in Hebbian learning have been interested in temporally asymmetric
forms of Hebbian learning in the context of sequence learning with pre-before-post LTP
for spike patterns (Gerstner et al. 1993) and asymmetric LTP/LTD for behavioral se-
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quences (Abbott and Blum, 1996) and even earlier, already in the mid 1980s, in the
context of associative memories (Sompolinsky and Kanter, 1986, Herz et al., 1988, Kle-
infeld and Sompolinky 1988). In standard attractor networks of memory, the learning
rule includes terms of the Hebbian form fi(t)fj(t) where fj(t) and fi(t) denote the
firing rate of pre- and postsynaptic neurons in the rate pattern present at time step
t. In order to learn sequences of patterns (or non-stationary attractors) the learning
rule should contain terms of the form fi(t)fj(t − 1), i.e., a form of temporally asym-
metric Hebbian learning that correlates the firing rate of the postsynaptic neuron i at
time t with that of a presynaptic neuron j during the time step t − 1 (Sompolinsky
and Kanter, 1986, Herz et al., 1988, Kleinfeld and Sompolinky 1988). In 1993 Gerstner
and van Hemmen started to translate ideas from sequence learning in discrete-time rate
models to the case of spiking neurons in continuous time and formulated a learning rule
where presynaptic spikes arrival a few milliseconds before postsynaptic firing leads to a
potentiation of synapses (Gerstner et al., 1993). Depression of synapses was unspecific
and not part of the spike-timing dependent learning rule. For purely theoretical rea-
sons Gerstner and colleagues postulated in a paper submitted to Nature in 1995 that
presynaptic spike arrival before postsynaptic firing should lead to potentiation whereas
the reverse timing should lead to depression. Referees of that paper asked whether
there was any experimental support for this speculation. In the mean time Markram
et al. published an abstract in the Society of Neuroscience meeting of 1995, which was
then cited by Gerstner et al. so as to convince the referees and the theory paper was
published in Nature in 1996 (Gerstner et al., 1996). To our knowledge, this is the first
paper that plotted synaptic plasticity as a function of the relative timing of individual
pre- and postsynaptic action potentials. The work of Markram that came out in 1995
at the Society of Neuroscience meeting as an abstract and in 1997 as a full article
(Markram et al. 1997) was in fact conducted in 1992-1993 while Henry Markram was
a postdoctoral fellow in the laboratory of Bert Sakmann.
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Sjöström, P.J., Rancz, E.A., Roth, A., and Häusser, M. (2008). Dendritic Excitabil-
ity and Synaptic Plasticity. Physiological Reviews 88, 769-840.


