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Abstract

Continuous attractor models of working-memory store continuous-valued information in

continuous state-spaces, but are sensitive to noise processes that degrade memory reten-

tion. Short-term synaptic plasticity of recurrent synapses has previously been shown to

affect continuous attractor systems: short-term facilitation can stabilize memory retention,

while short-term depression possibly increases continuous attractor volatility. Here, we

present a comprehensive description of the combined effect of both short-term facilitation

and depression on noise-induced memory degradation in one-dimensional continuous

attractor models. Our theoretical description, applicable to rate models as well as spiking

networks close to a stationary state, accurately describes the slow dynamics of stored mem-

ory positions as a combination of two processes: (i) diffusion due to variability caused by

spikes; and (ii) drift due to random connectivity and neuronal heterogeneity. We find that

facilitation decreases both diffusion and directed drifts, while short-term depression tends to

increase both. Using mutual information, we evaluate the combined impact of short-term

facilitation and depression on the ability of networks to retain stable working memory.

Finally, our theory predicts the sensitivity of continuous working memory to distractor inputs

and provides conditions for stability of memory.

Author summary

The ability to transiently memorize positions in the visual field is crucial for behavior.

Models and experiments have shown that such memories can be maintained in networks

of cortical neurons with a continuum of possible activity states, that reflects the contin-

uum of positions in the environment. However, the accuracy of positions stored in such

networks will degrade over time due to the noisiness of neuronal signaling and imperfec-

tions of the biological substrate. Previous work in simplified models has shown that syn-

aptic short-term plasticity could stabilize this degradation by dynamically up- or down-

regulating the strength of synaptic connections, thereby “pinning down” memorized posi-

tions. Here, we present a general theory that accurately predicts the extent of this “pinning
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down” by short-term plasticity in a broad class of biologically plausible network models,

thereby untangling the interplay of varying biological sources of noise with short-term

plasticity. Importantly, our work provides a novel theoretical link from the microscopic

substrate of working memory—neurons and synaptic connections—to observable behav-

ioral correlates, for example the susceptibility to distracting stimuli.

Introduction

Information about past environmental stimuli can be stored and retrieved seconds later from

working memory [1, 2]. Strikingly, this transient storage is achieved for timescales of seconds

with neurons and synapse transmission operating mostly on time scales of tens of milliseconds

and shorter [3]. An influential hypothesis of neuroscience is that working memory emerges

from recurrently connected cortical neuronal networks: memories are retained by self-gener-

ating cortical activity through positive feedback [4–7], thereby bridging the time scales from

milliseconds (neuronal dynamics) to seconds (behavior).

Sensory stimuli are often embedded in a physical continuum: for example, positions of

objects in the visual field are continuous, as are frequencies of auditory stimuli, or the position

of somatosensory stimuli on the body. Ideally, the organization of cortical working memory

circuits should reflect the continuous nature of sensory information [3]. A class of cortical

working memory models able to store continuously structured information is that of continu-
ous attractors, characterized by a continuum of meta-stable states, which can be used to retain

memories over delay periods much longer than those of the single network constituents [8].

Continuous attractors were proposed as theoretical models for cortical working memory [9–

11], path integration [12–14], and other cortical functions [15–17] (see e.g. [3, 18–21] for

recent reviews), well before experimental evidence was found in cortical networks [22] and the

limbic system [18, 23]. The one-dimensional ring-attractor in the fly responsible for self-orien-

tation [24, 25] is a particularly intriguing example.

Continuous attractor models have been successfully employed in the context of visuospatial

working memory to explain behavioral performance [26–29], to predict the effects of neuro-

modulation [30, 31], or the implications of cognitive impairment [32, 33]. However, in net-

works with heterogeneities, the continuum of memory states quickly breaks down, since noise

and heterogeneities break, transiently or permanently, the crucial symmetry necessary for con-

tinuous attractors [10, 11, 13, 16, 34–40]. For example, the stochasticity of neuronal spiking

(“fast noise”) leads to transient asymmetries that randomly displace encoded memories along

the continuum of states [10, 11, 35, 37, 39, 40], leading, averaged over many trials, to diffusion
of encoded information. More drastically, introducing fixed asymmetries (“frozen noise”) due

to network heterogeneities causes a directed drift of memories and a collapse of the continuum

of attractive states to a set of discrete states. Examples of heterogeneities in biological scenarios

include the sparsity of recurrent connections [13, 36], or randomness in neuronal parameters

[36] and values of recurrent weights [16, 34, 38]. Since both (fast) noise and heterogeneities are

expected in cortical settings, the feasibility of continuous attractors as computational systems

of the brain has been called into question [3, 6, 41].

The question then arises, whether short-term plasticity of recurrent synaptic connections

can rescue the feasibility of continuous attractor models. In particular, short-term depression

has a strong effects on the directed drift of attractor states in rate models [42, 43], but no strong

conclusions were drawn in a spiking network implementation [44]. Short-term facilitation, on

the other hand, increases the retention time of memories in continuous attractor networks

Stability of continuous attractor networks under the control of short-term plasticity
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with noise-free [38] and, as shown parallel to this study, noisy [45] rate neurons. In simulations

of continuous attractors implemented with spiking neurons for a fixed set of parameters, facili-

tation was reported to cause slow drift [46, 47] and a reduced amount of diffusion [47]. How-

ever, despite the large number of existing studies, several fundamental questions remain

unanswered. What are the quantitative effects of short-term facilitation in more complex neu-

ronal models and across facilitation parameters? How does short-term depression influence

the strength of diffusion and drift, and how does it interplay with facilitation? Do phenomena

reported in rate networks persist in spiking networks? Finally, can a single theory be used to

predict all of the effects observed in simulations?

Here, we present a comprehensive description of the effects of short-term facilitation and

depression on noise-induced displacement of one-dimensional continuous attractor models.

Extending earlier theories for diffusion [39, 40, 45] and drift [38], we derive predictions of the

amount of diffusion and drift in ring-attractor models of randomly firing neurons with short-

term plasticity, providing, for the first time, a general description of bump displacement in

the presence of both short-term facilitation and depression. Our theory is formulated as a rate

model with noise, but since the gain-function of the rate model can be chosen to match that of

integrate-and-fire models, our theory is also a good approximation for a large class of hetero-

geneous networks of integrate-and-fire models as long as the network as a whole is close to a

stationary state. The theoretical predictions of the noisy rate model are validated against simu-

lations of ring-attractor networks realized with spiking integrate-and-fire neurons. In both

theory and simulation, we find that facilitation and depression play antagonistic roles: facilita-

tion tends to decrease both diffusion and drift while depression increases both. We show that

these combined effects can still yield reduced diffusion and drift, which increases the retention

time of memories. Importantly, since our theory is, to a large degree, independent of the

microscopic network configurations, it can be related to experimentally observable quantities.

In particular, our theory predicts the sensitivity of networks with short-term plasticity to dis-

tractor stimuli.

Results

We investigated, in theory and simulations, the effects of short-term synaptic plasticity (STP)

on the dynamics of ring-attractor models consisting of N excitatory neurons with distance-

dependent and symmetric excitation, and global (uniform) inhibition provided by a popula-

tion of inhibitory neurons (Fig 1A). For simplicity, we describe neurons in terms of firing

rates, but our theory can be mapped to more complex neurons with spiking dynamics. An

excitatory neuron i with 0� i< N is assigned an angular position yi ¼
2p

N i � p 2 � p;p½ Þ,

where we identify the bounds of the interval to form a ring topology (Fig 1A). The firing rate

ϕi (in units of Hz) for each excitatory neuron i (0� i< N − 1) is given as a function of the neu-

ronal input:

�iðtÞ ¼ FðJiðtÞ þ JinhÞ: ð1Þ

Here, the input-output relation F relates the dimensionless excitatory Ji and inhibitory Jinh

inputs of neuron i to its firing rate. This represents a rate-based simplification of the possibly

complex underlying neuronal dynamics [48]. We assume that the excitatory input Ji(t) to neu-

ron i at time t is given by a sum over all presynaptic neurons

JiðtÞ ¼
XN� 1

j¼0

wijsjðtÞ; ð2Þ

Stability of continuous attractor networks under the control of short-term plasticity
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Fig 1. Drift and diffusion in ring-attractor models with short-term plasticity. A Excitatory (E) neurons (red circles) are distributed on a ring with coordinates in

[−π, π]. Excitatory-to-excitatory (E-E) connections (red lines) are distance-dependent, symmetric, and subject to short-term plasticity (facilitation and depression,

see Eq (3)). Inhibitory (I) neurons (blue circles) project to all E and I neurons (blue lines) and receive connection from all E neurons (gray lines). Only outgoing

connections from shaded neurons are displayed. In simulations with integrate-and-fire neurons, each neuron also receives noisy excitatory spike input generated

by independent homogeneous Poisson processes. B1 Example simulation: E neurons fire asynchronously and irregularly at low rates until (dotted line) a subgroup

of E neurons is stimulated (external cue), causing them to spike at elevated rates (red dots, input was centered at 0, starting at t = 2s for 1s). During and after

(dashed line) the stimulus, a bump state of elevated activity forms and sustains itself after the external cue is turned off. The spatial center of the population activity

is estimated from the momentary firing rates (red line, plotted from t = 2.5s onward). Inset: Activity profile in the bump state, centered at 0. B2 Center positions of

20 repeated spiking simulations for 10 different initial cue positions each for a network with short-term depression (U = 1, τx = 150ms). Random E-E connections

(with connection probability p = 0.5) lead to directed drift in addition to diffusion. Right: Normalized histogram (200 bins) of final positions at time t = 13.5. C

Illustration of quantities used in theoretic calculations. Neurons in the bump fire at rates ϕ0,i (dashed black line, compare to B1, inset) due to the steady-state

synaptic input J0,i (blue line). Movement of the bump center causes a change of the synaptic input
dJ0;i
dφ (orange line). D Diffusion along the attractor manifold is

calculated (see Eq (5)) as a weighted sum of the neuronal firing rates in the bump state (dashed black line). Spiking noise (red line) is illustrated as a random

Stability of continuous attractor networks under the control of short-term plasticity
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where wijsj(t) describes the total activation of synaptic input from the presynaptic neuron j
onto neurons i. The maximal strength wij of recurrent excitatory-to-excitatory connections is

chosen to be local in the angular arrangement of neurons, such that connections are strongest

to nearby excitatory neurons (Fig 1A, red lines). The momentary input depends also on the

synaptic activation variables sj, to be defined below. Finally, connections to and from inhibi-

tory neurons are assumed to be uniform and global (all-to-all) (Fig 1A, blue lines), thereby

providing non-selective inhibitory input Jinh to excitatory neurons.

As a model of STP, we assume that excitatory-to-excitatory connections are subject to

short-term facilitation and depression, which we implemented using a widely adopted model

of short-term synaptic plasticity [49]. The outgoing synaptic activations sj of neuron j are mod-

eled by the following system of ordinary differential equations:

_sj ¼ �
sj
ts
þ ujxj�j;

_uj ¼ �
uj � U
tu
þ Uð1 � ujÞ�j;

_xj ¼ �
xj � 1

tx
� ujxj�j:

ð3Þ

The synaptic time scale τs governs the decay of the synaptic activations. The timescale of recov-

ery τx is the main parameter of depression. While the recovery from facilitation is controlled

by the timescale τu, the parameter 0<U� 1 controls the baseline strength of unfacilitated syn-

apses as well as the timescale of their strengthening. For fixed τu, we consider smaller values

of U to lead to a “stronger” effect of facilitation, and take U = 1 as the limit of non-facilitating

synapses.

As a reference implementation of this model, we simulated networks of spiking conduc-

tance-based leaky-integrate-and-fire (LIF) neurons with (spike-based) short-term plastic syn-

aptic transmission (Fig 1B1, see Spiking network model in Materials and methods for details).

For these networks, under the assumption that neurons fire with Poisson statistics and the net-

work is in a stationary state, neuronal firing can be approximated by the input-output relation

F of Eq (1) [50, 51] (see Firing rate approximation in Materials and methods), which allows us

to map the network into the general framework of Eqs (1) and (2). In the stationary state, syn-

aptic depression will lead to a saturation of the synaptic activation variables sj at a constant

value as firing rates increase. This nonlinear behavior enables spiking networks to implement

bi-stable attractor dynamics with relatively low firing rates [46, 52] similar to saturating

NMDA synapses [11, 47]. Since we found that without depression (for τx! 0) the bump state

was not stable at low firing rates (in agreement with [52]), we always keep the depression time-

scale τx at positive values.

Particular care was taken to ensure that networks display nearly identical bump shapes

(similar to Fig 1B1, inset; see also S1 Fig), which required the re-tuning of network parameters

(recurrent conductance parameters and the width of distance-dependent connections; see

deviation from the mean rate with variance proportional to the rate. The symmetric weighting factors (blue lines show
C2
i

S2

�
dJ0;i
dφ

�2

for varying U) are non-zero at the

flanks of the firing rate profile. Stronger short-term depression and weaker facilitation increase the magnitude of weighting factors. E Deterministic drift is

calculated as a weighted sum (see Eq (7)) of systematic deviations of firing rates from the bump state (frozen noise): a large positive firing rate deviation in the left

flank (red line) will cause movement of the center position to the left (red arrow) because the weighting factors (blue lines show
Ci
S

dJ0;i
dφ for varying U) are asymmetric.

https://doi.org/10.1371/journal.pcbi.1006928.g001
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Optimization of network parameters in Materials and methods) for each combination of the

STP parameters above.

Simulations with spiking integrate-and-fire neurons generally show a bi-stability between

a non-selective state and a bump state. In the non-selective state, all excitatory neurons emit

action potentials asynchronously and irregularly at roughly identical and low firing rates (Fig

1B1, left of dotted line). The bump state can be evoked by stimulating excitatory neurons local-

ized around a given position by additional external input (Fig 1B1, red dots). After the external

cue is turned off, a self-sustained firing rate profile (“bump”) emerges (Fig 1B1, right of dashed

line, and inset) that persists until the network state is again changed by external input. For

example, a short and strong uniform excitatory input to all excitatory neurons causes a tran-

sient increase in inhibitory feedback that is strong enough to return the network to the uni-

form state [11].

During the bump state, fast fluctuations in the firing of single neurons transiently break the

perfect symmetry of the firing rate profile and introduce small random displacements along

the attractor manifold, which become apparent as a random walk of the center position. If the

simulation is repeated for several trials, the bump has the same shape in each trial, but infor-

mation on the center position is lost in a diffusion-like process. We additionally included vary-

ing levels of biologically plausible sources of heterogeneity (frozen noise) in our networks:

random connectivity between excitatory neurons (E-E) and heterogeneity of the single neuron

properties of the excitatory population [36], realized as a random distribution of leak reversal

potentials. Heterogeneities makes the bump drift away from its initial position in a directed

manner. For example, the bump position in the randomly connected (p = 0.5) network of Fig

1B1 shows a clear upwards drift towards center positions around 0. Repeated simulations of

the same attractor network with bumps initialized at different positions provide a more

detailed picture of the combined drift and diffusion dynamics: bump center trajectories sys-

tematically are biased towards a few stable fixed points (Fig 1B2) around which they are dis-

tributed for longer simulation times (histogram in Fig 1B2, t = 13.5s). The theory developed in

this paper aims at analyzing the above phenomena of drift and diffusion of the bump center.

Theory of diffusion and drift with short-term plasticity

To untangle the observed interplay between diffusion and drift and investigate the effects of

short-term plasticity, we derived a theory that reduces the microscopic network dynamics to a

simple one-dimensional stochastic differential equation for the bump state. The theory yields

analytical expressions for diffusion coefficients and drift fields, that depend on short-term

plasticity parameters, the shape of the firing rate profile of the bump, as well as the neuron

model chosen to implement the attractor.

First, we assume that the system of Eq (3) together with the network Eqs (1) and (2) has a

1-dimensional manifold of meta-stable states, i.e. the network is a ring-attractor network as

described in the introduction. This entails, that the network dynamics permit the existence of

a family of solutions that can be described as a self-sustained and symmetric bump of firing

rates ϕ0,i(φ) = F(J0,i(φ)) with corresponding inputs J0,i(φ) (for 0� i< N). Importantly, the cen-

ter φ of the bump can be located at any arbitrary position φ 2 j
N 2p � pj0 � j < N
� �

. For

example, if ϕ0,i(0) is a solution with input J0,i(0), then �0;iþ1
2p

N

� �
is also a solution with input

J0;iþ1
2p

N

� �
. This solution is illustrated in Fig 1C for a bump centered at φ = 0. Second, we assume

that the number N of excitatory neurons is large (N!1), such that we can think of the possi-

ble positions φ as a continuum. Third, we assume that network heterogeneities are small

enough to capture their effect as a linear (first order) perturbation to the stable bump state.

Our final assumption is that neuronal firing is noisy, with spike counts distributed as Poisson

Stability of continuous attractor networks under the control of short-term plasticity
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processes, and that we are able to replace the shot-noise of Poisson spiking by white Gaussian

noise with the same mean and autocorrelation, similar to earlier work [39, 53]; see Diffusion in

Materials and methods, and Discussion. Under these assumptions, we are able to reduce the

network dynamics to a one-dimensional Langevin equation, describing the dynamics of the

center φ(t) of the firing rate profile (see Analysis of drift and diffusion with STP in Materials

and methods):

_φ ¼
ffiffiffi
B
p

ZðtÞ þ AðφÞ: ð4Þ

Here, η(t) is white Gaussian noise with zero mean and correlation function hη(t), η(t0)i = δ(t − t0).
The first term is diffusion characterized by a diffusion strength B1, which describes the ran-

dom displacement of bump center positions due to fluctuations in neuronal firing. For A(φ) =

0 this term causes diffusive displacement of the center φ(t) from its initial position φ(t0), with a

mean (over realizations) squared displacement of positions h[φ(t) − φ(t0)]2i = B � (t − t0) that,

during an initial phase, increases linearly with time [14, 54, 55], before saturating due to the

circular domain of possible center positions [39]. Our theory shows (see Diffusion in Materials

and methods) that the coefficient B can be calculated as a weighted sum over the neuronal fir-

ing rates (Fig 1D)

B ¼
X

i

�Ci

S

�2� dJ0;i
dφ

�2

�0;i; ð5Þ

where
dJ0;i
dφ is the change of the input to neuron i under shifts of the center position (Fig 1C,

orange line), and S is a normalizing constant that tends to increase additionally with the synap-

tic time constant τs.
The analytical factors Ci express the spatial dependence of the diffusion coefficient on the

short-term plasticity parameters through

Ci ¼
Uð1þ 2tu�0;i þ Ut2

u�
2

0;iÞ

ð1þ U�0;iðtu þ txÞ þ Ututx�
2

0;iÞ
2
: ð6Þ

The dependence of the single summands in Eq (5) on short-term plasticity parameters is visu-

alized in Fig 1D, where we see that: a) due to the squared spatial derivative
dJ0;i
dφ of the bump

shape and the squared factors Ci/S, the important contributions to the sum arise primarily

from the flanks of the bump; b) for a fixed bump shape, summands increase with stronger

short-term depression (larger τx) and decrease with stronger short-term facilitation (smaller

U, larger τu).

The second term in Eq (4) is the drift field A(φ), which describes deterministic drifts due to

the inclusion of heterogeneities. For heterogeneity caused by variations in neuronal reversal

potentials and random network connectivity, we calculate (see Frozen noise in Materials and

methods) systematic deviations Δϕi(φ) of the single neuronal firing rates from the steady-state

bump shape that depend on the current position φ of the bump center. In Drift in Materials

and Methods, we show that the drift field is then given by a weighted sum over the firing rate

deviations:

AðφÞ ¼
X

i

Ci

S
dJ0;i
dφ

D�iðφÞ; ð7Þ

with weighing factors depending on the spatial derivative of the bump shape
dJ0;i
dφ and the param-

eters of the synaptic dynamics through the same factors Ci/S. This is illustrated in Fig 1E: in

Stability of continuous attractor networks under the control of short-term plasticity
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contrast to Eq (5) summands are now asymmetric with respect to the bump center, since the

spatial derivative is not squared.

Analytical considerations

To calculate the diffusion and drift terms of the last section, we assume the number of neurons

N to be large enough to treat the center position φ as continuous: this allows us (similar to

[39]) to derive projection vectors (see Projection of dynamics onto the attractor manifold in

Materials and methods) that yield the dynamics of the center position. However, the actual

projection yields sums over the system size N, whose scaling we made explicit (see System size
scaling in Materials and methods). For the diffusion strength

ffiffiffi
B
p

(cf. Eq (5)) we find a scaling

as as 1=
ffiffiffiffi
N
p

, in agreement with earlier work [11, 14, 36, 39, 46]. For drift fields caused by ran-

dom connectivity, we find a scaling with the connectivity parameter p and the system size N to

leading order as 1=ð
ffiffiffipp NÞ, whereas drift fields due to heterogeneity of leak potentials (and

other heterogeneous single-neuron parameters) will scale as 1=
ffiffiffiffi
N
p

, both in accordance with

earlier results [16, 36, 38, 46].

In addition to reproducing the previously known scaling with the system size N, our theory

exposes the scaling of both drift and diffusion with the parameters τx, τu, and U of short-term

depression and facilitation via the analytical pre-factors Ci/S appearing in Eqs (5) and (7). Our

result extends the calculation of the diffusion constant [39] to synaptic dynamics with short-

term plasticity: In the limiting case of no facilitation and depression (U! 1, τx! 0ms), the

pre-factor reduces to Ci = 1 and the normalization factor simplifies to Sstatic ¼ ts
P

i

�
dJ0;i
dφ

�2

�
0

0;i,

where �
0

0;i ¼
d�i
dJi

�
�
�
J0;i

is the derivative of the firing rate of neuron i at its steady-state input J0,i.

For static synapses we thereby recover the known result for diffusion [39, Eq. S18], but also

add an analogous relation for the drift AstaticðφÞ ¼
P

i
dJ0;i
dφ D�iðφÞ

� �
= ts

P
i
dJ0;i
dφ

2

�
0

0;i

� �
. Our

approach relies on the existence of a stationary bump state (which is stable for large noise-free

homogeneous networks), around which we calculate drift and diffusion as perturbations. Fol-

lowing earlier work [11, 50, 52], we use in our simulations with spiking integrate-and-fire neu-

rons a slow synaptic time constant (τs = 100ms) as an approximation of recurrent (NMDA

mediated) excitation. While our theory captures the effects of changing this time constant τs in

the pre-factors Ci/S, we did not check in simulations whether the bump state remains stable

and whether our theory remains valid for very short time constants for τs.
Finally, two limiting cases are worth highlighting. First, for strong facilitation (U! 0) we

obtain pre-factors Ci=S ¼ ð1þ 2tu�0;iÞ
�P

i

�
dJ0;i
dφ

�2

�
0

0;i ts 1þ 2tu�0;i

� �
þ t2

u�0;i

� ��� 1

, indicat-

ing that (i) this limit will leave residual drift and diffusion which (ii) will both be controlled

by the time constants for facilitation (τu) and synaptic transmission (τs), with no dependence

upon depression. Second, for vanishing facilitation (U! 1 and τu! 0) we find that the nor-

malization factor S will tend to zero if the depression time constant τx is increased to a finite

value τx,c. Through the pre-factors Ci/S this, in turn, yields exploding diffusion and drift

terms (see S8 Fig). While this is a general feature of bump systems with short-term depres-

sion, the exact value of the critical time constant τx,c depends on the firing rates and neural

implementation of the bump state (see section 6 in S1 Text): for the spiking network investi-

gated here, we find a critical time constant τx,c = 223.9ms (see S8 Fig). In networks with

both facilitation and depression, the critical τx,c increases as facilitation becomes stronger

(see S8 Fig).
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Prediction of continuous attractor dynamics with short-term plasticity

To demonstrate the accuracy of our theory, we chose random connectivity as a first source of

frozen variability. Random connectivity was realized in simulations by retaining only a ran-

dom fraction 0< p� 1 (connection probability) of excitatory-to-excitatory (EE) connections.

The uniform connections from and to inhibitory neurons are taken as all-to-all, since the

effects of making these random or sparse would have only indirect effects on the dynamics of

the bump center positions.

Our theory accurately predicts the drift-fields A(φ) (see Eq (7)) induced by frozen variabil-

ity in networks with short-term plasticity (Fig 2). Briefly, for each neuron 0� i< N, we treat

each realization of frozen variability as a perturbation Δi around the perfectly symmetric sys-

tem and use an expansion to first order of the input-output relation F to calculate the resulting

changes in firing rates (see Frozen noise for details):

D�iðφÞ ¼
dF
dDi

Di: ð8Þ

The resulting terms are then used in Eq (7) to predict the magnitude of the drift field A(φ) for

any center position φ, which will, importantly, depend on STP parameters. The same approach

can be used to predict drift fields induced by heterogeneous single neuron parameters [36]

(see next sections) and additive noise on the E-E connection weights [16, 38].

We first simulated spiking networks with only short-term depression and without facilita-

tion (Fig 2A, left, same network as in Fig 1B1), for one instantiation of random (p = 0.5)

connectivity. Numerical estimates of the drift in spiking simulations (by measuring the

displacement of bumps over time as a function of their position, see Spiking simulations in

Materials and methods for details) yielded drift-fields in good agreement with the theoretical

prediction (Fig 2B, left). At points where the drift field prediction crosses from positive to neg-

ative values (e.g. Fig 2B, left, φ ¼ p

2
), we expect stable fixed points of the center position dynam-

ics in agreement with simulation results, which show trajectories converging to these points.

Similarly, unstable fixed points (negative-to-positive crossings) can be seen to lead to a separa-

tion of trajectories (e.g. Fig 2A, left, φ ¼ � p

2
). In regions where the positional drifts are pre-

dicted to lie close to zero (e.g. Fig 2A, left φ = 0) the effects of diffusive dynamics are more

pronounced. Finally, numerical integration of the full 1-dimensional Langevin equation Eq (4)

with coefficients predicted by Eqs (5)–(7), produces trajectories with dynamics very similar to

the full spiking network (Fig 2C, left). When comparing the center positions after 13.5s of

delay activity between the full spiking simulation and the simple 1-dimensional Langevin sys-

tem, we found very similar distributions of final positions (Fig 2D, left, compare to Fig 1B1,

histogram). Our theory thus produces an accurate approximation of the dynamics of center

positions in networks of spiking neurons with STP, thereby reducing the complex dynamics of

the whole network to a simple equation. It should be noted that, in regions with strong drift or

steep negative-to-positive crossings, the numerically estimated drift-fields deviate from the

theory due to under-sampling of these regions as trajectories move quickly through them,

yielding fewer data points. In Short-term plasticity controls drift we additionally show that the

theory, as it relies on a linear expansion of the effects of heterogeneities on the neuronal firing

rates, tends to generally over-predict drift-fields as heterogeneities become stronger.

Introducing strong short-term facilitation (U = 0.1) reduces the predicted drift fields (Fig

2B, left, dashed line), which resemble a scaled-down version of the drift-field for the unfacili-

tated case. We confirmed this theoretical prediction by simulations including facilitation (Fig

2A, right): the resulting drift fields show significant reduction of speeds (Fig 2B, right) while

zero crossings remained similar to the unfacilitated network, similar to the results in [38].
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Fig 2. Drift field predictions for varying short-term facilitation. All networks have the same instantiation of random

connectivity (p = 0.5), similar to Fig 1B1. A Centers of excitatory population activity for 50 repetitions of 13.5s delay

activity, for 20 different positions of initial cues (cue is turned off at t = 0) colored by position of the cues. Left: no

facilitation (U = 1). Right: with facilitation (U = 0.1). B Drift field as a function of the bump position. The theoretical

prediction (blue line, see Eq (7)) of the drift field is compared to velocity estimations along the trajectories shown in A,

colored by the line they were estimated from. The thick black line shows the binned mean of data points in 60 bins. For

comparison, the predicted drift field for U = 0.1 is plotted (thin dashed line). Left: no facilitation (U = 1), for

comparison the theoretical prediction for the case U = 0.01 is plotted as a dashed line. Right: with facilitation

(U = 0.01). C Trajectories under the same conditions as in A, but obtained by forward-integrating the one-dimensional

Langevin equation, Eq (4). D Normalized histograms of final positions at time t = 13.5 for data from spiking

simulations (gray areas, data from A) and forward solutions of the Langevin equations (blue areas, data from C). Other

STP parameters were: τu = 650ms, τx = 150ms.

https://doi.org/10.1371/journal.pcbi.1006928.g002
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Theoretical predictions of the drift fields with bump shapes extracted from these simulations

again show an accurate prediction of the dynamics (Fig 2B, right). Thus, as before, forward

integrating the simple 1-dimensional Langevin-dynamics yields trajectories (Fig 2C, right)

highly similar to those of the full spiking network, with closely matching distributions of final

positions (Fig 2D, right), indicative of a matching strength of diffusion. In summary, our the-

ory predicts the effects of STP on the joint dynamics of diffusion and drift due to network het-

erogeneities, which we will show in detail in the next sections.

Short-term plasticity controls diffusion

To isolate the effects of STP on diffusion, we simulated networks without frozen noise for vari-

ous STP parameters. For each combination of parameters, we simulated 1000 repetitions of

13.5s delay activity (after cue offset) distributed across 20 uniformly spaced initial cue positions

(see Fig 3A for an example). From these simulations, the strength of diffusion was estimated

by measuring the growth of variance (over repetitions) of the distance of the center position

from its initial position as a function of time (see Spiking simulations in Materials and methods

for details). For all parameters considered, this growth was well fit by a linear function (e.g. Fig

3A, inset), the slope of which we compared to the theoretical prediction obtained from the dif-

fusion strength B (Eq (5)).

We find that facilitation and depression control the amount of diffusion along the attractor

manifold in an antagonistic fashion (Fig 3B and 3C). First, increasing facilitation by lowering

the facilitation parameter U from its baseline U = 1 (no facilitation) towards U = 0, while keep-

ing the depression time constant τx = 150ms fixed, decreases the measured diffusion strength

over an order of magnitude (Fig 3B, dots). On the other hand, increasing the facilitation time

constant τu from τu = 650ms to τu = 1000ms (Fig 3B, orange and blue dots, respectively) only

slightly reduces diffusion. Our theory further predicts that increasing the facilitation time con-

stants above τu = 1s will not lead to large reductions in the magnitude of diffusion (see S2 Fig).

Second, we find that increasing the depression time constant τx for fixed U, thereby slowing

down recovery from depression, leads to an increase of the measured diffusion (Fig 3C). More

precisely, increasing the depression time constant from τx = 120ms to τx = 200ms leads only to

slight increases in diffusion for strong facilitation (U = 0.1), but to a much larger increase for

weak facilitation (U = 0.8).

For a comparison of these simulations with our theory, we used two different approaches.

First, we estimated the diffusion strength by using the precise shape of the stable firing rate

profile extracted separately for each network with different sets of parameters. This first com-

parison with simulations confirms that the theory closely describes the dependence of diffu-

sion on short-term plasticity for each parameter set (Fig 3B, crosses). The observed effects

could arise directly from changes in STP parameters for a fixed bump shape, or indirectly

since STP parameters also influence the shape of the bump. To separate such direct and indi-

rect effects, we used for a second comparison a theory with fixed bump shape, i.e. the bump

shape measured in a “reference network” (U = 1, τx = 150ms) and extrapolated curves by

changing only STP parameters in Eq (5). This leads to very similar predictions (Fig 3B, dashed

lines) and supports the following conclusions: a) the diffusion to be expected in attractor net-

works with similar observable quantities (mainly, the bump shape) depends only on the short-

term plasticity parameters; b) the bump shapes in the family of networks we have investigated

are sufficiently similar to be approximated by measurement in a single reference network. It

should be noted that the theory tends to slightly over-estimate the amount of diffusion, espe-

cially for small facilitation U (see Fig 3B and 3C left). This may be because slower bump move-

ment decreases the firing irregularity of flank neurons, which deviates from the Poisson firing
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Fig 3. Diffusion on continuous attractors is controlled by short-term plasticity. A Center positions of 20 repeated

simulations of the reference network (U = 1, τx = 150ms) for 10 different initial cue positions each. Inset: Estimated

variance of deviations of center positions φ(t) from their positions φ(0.5) at t = 0.5s (purple) as a function of time

(h[φ(t) − φ(0.5)]2i), together with linear fit (dashed line). The slope of the dashed line yields an estimate of B (Eq (5)).

B,C Diffusion strengths estimated from simulations (dots, error bars show 95% confidence interval, estimated by

bootstrapping) compared to theory. Dashed lines show theoretical prediction using firing rates measured from the

Stability of continuous attractor networks under the control of short-term plasticity
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assumption of our theory (see Discussion). However, given the simplifying assumptions

needed to derive the theory, the match to the spiking network is surprisingly accurate.

Short-term plasticity controls drift

Having established that our theory is able to predict the effect of STP on diffusion, as well as

drift for a single instantiation of random connectivity, we wondered how different sources of

heterogeneity (frozen noise) would influence the drift of the bump. We considered two sources

of heterogeneity: First, random connectivity as introduced above, and second, heterogeneity of

the leak reversal potential parameters of excitatory neurons: leak reversal potentials of excit-

atory neurons are given by VL + ΔL, where ΔL is normally distributed with zero mean and

standard deviation σL [36]. The resulting fields can be calculated by calculating the resulting

perturbations to the firing rates of neurons by Eq (8) (see Frozen noise in Materials and

methods for details).

The theory developed so far allowed us to predict drift-fields for a given realization of fro-

zen noise, controlled by the noise parameters p (for random connectivity) and σL (for hetero-

geneous leak reversal-potentials) (see S3 Fig for a comparison of predicted drift fields to those

measured in simulations for varying STP parameters and varying strengths of frozen noises).

We wondered, whether we could take the level of abstraction of our theory one step further, by

predicting the magnitude of drift fields from the frozen noise parameters only, independently

of a specific realization. First, the expectation of drift fields under the distributions of the fro-

zen noises vanishes for any given position: hA(φ)ifrozen = 0, where the expectation h.ifrozen is

taken over both noise parameters. We thus turned to the expected squared magnitude of drift

fields under the distributions of these parameters (see Squared field magnitude in Materials

and methods for the derivation):

hA2ifrozen ¼
1
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where s0,j is the steady-state synaptic activation. Here, we introduced the derivatives of the

input-output relation with respect to the noise sources that appear in Eq (8): �
0

0;i ¼
dF
dJ ðJ0;iðφÞÞ

is the derivative with respect to the steady state synaptic input, and
d�0;i
dDL

i
is the derivative with

respect to the perturbation in the leak potential. In Squared field magnitude in Materials and

Methods, we show that Eq (9) is independent of the center position φ, and can be estimated

from simulations as the variance of the drift field across positions, averaged over an ensemble

of network instantiations.

We defined the root of the expected squared magnitude of Eq (9) as the expected field mag-
nitude:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2ifrozen

p
: ð10Þ

This quantity predicts the magnitude of the deviations of drift-fields from zero that are

reference network (U = 1, τx = 150ms), while crosses are theoretical estimates using firing rates measured for each set of

STP parameters separately (crosses). B Diffusion strength as a function of facilitation parameter U. Inset shows zoom

of region indicated in the dashed area in the lower left. Increasing the facilitation time constant τu = 650ms (blue) to

τu = 1s (orange) affects diffusion only slightly. In panels A and B, the depression time constant is τx = 150ms. C

Diffusion strength as a function of depression time constant τx. Results for three different values of U are shown (note

the change in scale). Colors indicate the two different values for the facilitation time constant also used in panel B.

https://doi.org/10.1371/journal.pcbi.1006928.g003
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expected from the parameters that control the frozen noise—in analogy to the standard devia-

tion for random variables, it predicts the standard deviation of the fields. To compare this

quantity to simulations, we varied both heterogeneity parameters. First, the connectivity

parameter p was varied between 0.25 and 1. Second, for heterogeneities in leak reversal-poten-

tials, we chose values for the standard deviation σL of leak-reversal potentials between 0mV
and 1.5mV, which lead to a similar range of drift magnitudes as those of randomly connected

networks. For each combination of heterogeneities and STP parameters (networks had either

random connections or heterogeneous leaks) we then realized 18–20 networks, for which we

simulated 400 repetitions of 6.5s of delay activity each (20 uniformly spaced positions of the

initial cue). We then estimated the drift-field numerically by recording displacements of bump

centers along their trajectories (as in Fig 2A and 2B) and measured the standard deviation of

the resulting fields across all positions.

Similar to the analysis of diffusion above, we find that facilitation and depression elicit

antagonistic control over the magnitude of drift fields. In both simulations and theory, we

find (Fig 4A and 4B) that the expected field magnitude decreases as the effect of facilitation

is increased from unfacilitated networks (U = 1) through intermediate levels of facilitation

(U = 0.4) to strongly facilitating networks (U = 0.1). Our theory predicts this effect surprisingly

well, which we validated twofold (as for the diffusion magnitude). First, we used Eq (10) with

all parameters and coefficients estimated from each spiking simulation separately (Fig 4A and

4B, plus-signs and crosses). Second, we extrapolated the theoretical prediction by using coeffi-

cients in Eq (9) from the unfacilitated reference network only (U = 1, τx = 150ms) but changed

the facilitation and heterogeneity parameters (Fig 4A and 4B, dashed lines). The largest differ-

ences between the extrapolated and full theory are seen for U< 1 and randomly connected

networks (p< 1), which we found to result from the fact that bump shapes for these networks

tended to be slightly reduced under random and sparse connectivity (e.g. the top firing rate is

reduced to� 35Hz for U = 0.1, p = 0.25). Generally, as noise levels increase, our theory tends

to over-estimate the squared magnitude of fields, since we rely on a linear expansion of pertur-

bations to the firing rates to calculate fields (Eq (8)). Such deviations are expected as the mag-

nitude of firing rate perturbations increases, and could be counter-acted by including higher-

Fig 4. Drift field magnitude is controlled by short-term plasticity. A Expected magnitude of drift fields as a function of the sparsity parameter p of recurrent

excitatory-to-excitatory connections. Dots are the standard deviation of fields estimated from 400 trajectories (see main text) of each network, averaged over 18–20

realizations for each noise parameter and facilitation setting (error bars show 95% confidence of the mean). Theoretical predictions (dashed lines) are given by Eq

(10) extrapolated from the reference network (U = 1, τx = 150). For validation, we also estimated Eq (10) with coefficients measured from each simulated network

separately (plus signs). The depression time constant was τx = 150ms. B Same as in panel A, with heterogeneous leak-reversal potentials as the source of frozen noise.

Validation predictions are plotted as crosses. C Same as in panels A,B but varying the depression time constant τx for a fixed level of frozen noise (random

connectivity, p = 0.6). In all panels, the facilitation time constant was τu = 650ms.

https://doi.org/10.1371/journal.pcbi.1006928.g004
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order terms. Since in the theory facilitation (and depression) only scales the firing rate pertur-

bations (Eq (7)), these deviations can also be observed across facilitation parameters. Finally,

we performed a similar analysis to investigate the effect of short-term depression on drift

fields. Here, we varied the depression time constant τx for randomly connected networks with

p = 0.6, by simulating networks with combinations of short-term plasticity parameters from

U 2 {0.1, 0.4, 0.8} and τx 2 {120ms, 160ms, 200ms} (Fig 4C). We find that an increase of the

depression time constant leads to increased magnitude of drift fields, which again is well pre-

dicted by our theory.

Short-term plasticity controls memory retention

The theory developed in previous sections shows that diffusion and drift of the bump center φ
are controlled antagonistically by short-term depression and facilitation. In a working memory

setup, we can view the attractor dynamics as a noisy communication channel [56] that maps a

set of initial positions φ(t = 0s) (time of the cue offset in the attractor network) to associated

final positions φ(t = 6.5s), after a memory retention delay of 6.5s. We used the distributions of

initial and (associated) final positions to investigate the combined impact of diffusion and drift

on the retention of memories (Fig 5A). Because of diffusion, distributions of positions will

widen over time, which degrades the ability to distinguish different initial positions of the

bump center (Fig 5A, top). Additionally, directed drift of the dynamics will contract distribu-

tions of different initial positions around the same fixed points, making them essentially indis-

tinguishable when read out (Fig 5A, bottom).

As a numerical measure of this ability of such systems to retain memories over the delay

period, we turned to mutual information (MI), which provides a measure of the amount of

information contained in the readout position about the initially encoded position [57, 58]. To

measure MI from simulations (see Mutual information measure in Materials and methods), we

analyzed network simulations for varying short-term facilitation parameters (U) and magni-

tudes of frozen noises (p and σL) (same data set as Fig 4A and 4B). We recorded the center

positions encoded in the network at the time of cue-offset (t = 0) and after 6.5s of delay activity,

and used binned histograms (100 bins) to calculate discrete probability distributions of initial

(t = 0) and final positions (t = 6.5). For each trajectory simulated in networks of spiking inte-

grate-and-fire neurons, we then generated a trajectory starting at the same initial position by

using the Langevin equation Eq (4) that describes the drift and diffusion dynamics of center

positions. The MI calculated from the resulting distributions of final positions (again at

t = 6.5) for each network serve as the theoretical prediction for each network. As a reference,

we used the spiking network without facilitation (U = 1, τu = 650ms, τx = 150ms) and no frozen

noises (p = 1, σL = 0mV) and normalized the MI of all other networks (both for spiking simula-

tions and theoretical predictions) with respect to the reference, yielding the measure of relative
MI presented in Fig 5B–5E.

We found that the relative MI decreased compared to the reference network as network

heterogeneities were introduced (Fig 5B, green). This was expected, since directed drift caused

by heterogeneities leads to a loss of information about initial positions. There were two effects

of increased short-term facilitation (by decreasing the parameter U). First, diffusion was

reduced, which was visible in a vertical shift of the relative MI for facilitated networks (Fig 5A,

orange and blue, at 0 heterogeneity). Second, the effects of frozen noise decreased with increas-

ing facilitation, which was visible in the slopes of the MI decrease (see also S4 Fig). The MI

obtained by integration of the Langevin equations (see above) matched those of the simula-

tions well (Fig 5A, lines). From earlier results, we expected the drift-fields to be slightly over-

estimated by the theory as the heterogeneity parameters increase (Fig 4), which would lead to
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an under-estimation of MI. We did observe this here, although for U = 1 the effect was slightly

counter-balanced by the under-estimated level of diffusion (cf. Fig 3A, right), which we

expected to increase the MI. For networks with stronger facilitation (U = 0.1), we systemati-

cally over-estimated diffusion (cf. Fig 3, left), and therefore under-estimated MI.

Using our theory, we were able to simplify the functional dependence between MI, short-

term plasticity, and frozen noise. Combining the effects of both diffusion and drift into a single

quantity for each network, we replaced the field A(φ) by our theoretical prediction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2ifrozen

p

in Eq (4) and forward integrated the differential equation for a time interval Δt = 1s, to arrive

at the expected displacement in 1s:

jDφjð1sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2ifrozen

p
� 1sþ

ffiffiffiffiffiffiffiffiffiffiffi
B � 1s
p

: ð11Þ

This quantity describes the expected absolute value of displacement of center positions during

1s: it increases as a function of the frozen noise distribution parameters (Fig 5C), but even in

Fig 5. Short-term facilitation increases memory retention. A Illustration of the effects of diffusion (top) and additional drift (bottom) on the temporal evolution

of distributions of initial positions p(start) towards distributions of final positions p(end) over 6.5s of delay activity. The bump is always represented by its center

position φ. Two peaks in the distribution of initial positions φ(0) and their corresponding final positions φ(6.5) are highlighted by colors (purple, red), together

with example trajectories of the center positions. Top: Diffusion symmetrically widens the initial distribution. Bottom: Strong drift towards one single fixed point

of bump centers (φ = 0) makes the origin of trajectories indistinguishable. B Normalized mutual information (MI, see text for details) of distributions of initial and

final bump center positions in working memory networks for different STP parameters and heterogeneity parameters(blue: strong facilitation, see legend in panel

D). Dots and triangles are average MI (18–20 realizations, error bars show 95% CI) obtained from spiking network simulations. Lines show average MI calculated

from Langevin dynamics for the same networks, repetitions and realizations (see text, shaded area shows 95% CI). Heterogeneity parameters are σL (triangles, in

units of mV) and 1 − p (circles), where p is the connection probability. C Expected displacement |Δφ|(1s) for the same networks as in panel B. Dashed lines indicate

displacement induced by diffusion only (
ffiffiffi
B
p

), solid lines show the total displacement (including displacement due to drift, calculated as the expected field

magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2ifrozen

p
). D Same as panel B, with x-axis showing the expected field magnitude. E Same as panel B, with x-axis showing the expected displacement.

In panels B-D, all STP parameters except U were kept constant at τu = 650ms, τx = 150ms.

https://doi.org/10.1371/journal.pcbi.1006928.g005
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the absence of frozen noise it is nonzero due to diffusion. Plotting the MI data in dependence

of the first term only (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2ifrozen

p
), shows that the MI curves collapse onto a single curve for

each facilitation parameter (Fig 5D). Finally, plotting the MI data against |Δφ|(1s) we find that

all data collapse on to nearly a single curve (Fig 5E). Thus, the effects of the two sources of fro-

zen noise (corresponding to hA2ifrozen) and diffusion (corresponding to B) are unified into a

single quantity |Δφ|(1s).
We performed the same analyses on a large set of network simulations with fixed random

connectivity (p = 0.6) and varying STP parameters for both depression (τx) and facilitation (U)

(same data set as in Fig 4C). Increasing the short-term depression time constant τx leads to

decreased relative MI with a positive offset induced through stronger facilitation (Fig 6A, blue

line). Calculating the expected displacement for these network configurations collapsed the

data points mostly onto the same curve as earlier (Fig 6B). For strong depression combined

with weak facilitation (τx = 200ms, U = 0.8), the drop-off of the relative MI saturates earlier,

indicating that for these strongly diffusive networks the effect on MI may not be sufficiently

captured by its relationship to |Δφ|(1s).

Linking theory to experiments: Distractors and network size

The abstraction of our theory condenses the complex dynamics of bump attractors in spiking

integrate-and-fire networks into a high-level description of a few macroscopic features, which

in turn allows matching the theory to behavioral experiments. Here, we demonstrate how such

quantitative links could be established using two different features: 1) the sensitivity of the

working memory circuit to distractors, and 2) the stability of working memory expressed by

the expected displacement. We stress that our model is a simplified description of biological

circuits, in which several further sources of variability and also dynamical processes influenc-

ing displacement should be expected (see Discussion). Thus, at the current level of simplifica-

tion, the results presented in this section should be seen as proofs of principle rather than

quantitative predictions for a cortical setting.

Predicting the sensitivity to distractor inputs. In a biological setting, drifts introduced

by network heterogeneities (frozen noise) could be significantly reduced by (long-term) plas-

ticity [36]. To measure the intrinsic stability of continuous attractor models, earlier studies

Fig 6. Short-term depression decreases memory retention. A Same as Fig 5B, for network simulations with varying

τx and U (see legend in panel B). MI is normalized to the same value as there. B Same as panel A, with x-axis showing

the expected displacement. Gray data points and lines are the data plotted in Fig 5E. The facilitation time constant was

kept constant at τu = 650ms.

https://doi.org/10.1371/journal.pcbi.1006928.g006
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[11, 47, 59] have proposed to use distractor inputs (Fig 7A): providing a short external input

centered around a position φD to the network, the center position of an existing bump state

will be biased towards the distracting input, with stronger biases appearing for closer distrac-

tors. In the context of our theory, we consider a weak distractor as an additional heterogeneity

that induces drift. Therefore the time scale of bump drift caused by distractor-induced hetero-

geneity enables us link our theory to behavioral experiments [59].

Our theory can readily yield quantitative predictions for the distractor paradigm. To

accommodate distractor inputs in the theory, we assume that they cause some units i to fire at

elevated rates ϕ0,i + Δϕi, which will introduce a drift field according to Eq (7) (Fig 7A, purple

dashed line). The resulting dynamics (Eq (4)) of diffusion and drift during the presentation of

the distractor input then allow us to calculate the expected shift of center positions as a func-

tion of all network parameters, including those of short-term plasticity. Repeating this para-

digm for varying positions of the distractor inputs (see Distractor analysis in Materials and

methods for details), our theory predicts that strong facilitation will strongly decrease both the

effect and radial reach of distractor inputs (Fig 7B, blue), when compared to the unfacilitated

system (Fig 7B, green)—in qualitative agreement with simulation results involving a related

Fig 7. Effect of short-term plasticity on distractor inputs. A While a bump (“Bump”) is centered at an initial angle

φ0 (chosen to be 0), additional external input causes neurons centered around the position φD to fire at elevated rates

(“Distractor”). The theory predicts the shape and magnitude of the induced drift field (“Field”) and the mean bump

center φ1 after 250ms of distractor input. Gray trajectories are example simulations of bump centers of the

corresponding Langevin equation Eq (4). B Mean final positions φ1 of bump centers (1000 repetitions, shaded areas

show 1 standard deviation) as a function of the distractor input location φD. Increased short-term facilitation (blue:

strong facilitation, U = 0.1; orange: intermediate facilitation, U = 0.4; green: no facilitation U = 1) leads to less

displacement due to the distractor input. Other STP parameters were kept constant at τu = 650ms, τx = 150ms. C Same

as panel B, for three different depression time constants τx, while keeping U = 0.8, τu = 650ms fixed. D Same as panel B,

with a broader bump half-width (σg = 0.8rad� 45.8 deg). All other panels use the same bump half-width as in the rest

of the study (σg = 0.5rad� 28.7 deg) (see S1 Fig).

https://doi.org/10.1371/journal.pcbi.1006928.g007
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(cell-intrinsic) stabilization mechanism [47]. Conversely, we predict that longer recovery

from short-term depression tends to increase the sensitivity to distractors (Fig 7C). The total

displacement caused by a distractor input is found by integrating the resulting dynamics of Eq

(4) over the stimulus duration. As such, the magnitude of the displacement will increase both

with the amplitude and the duration of the distractor input. Finally, our theory demonstrates

that the bump shape, in particular the width of the bump, influence the radial reach of distrac-

tor inputs (Fig 7D).

Relating displacement to network size in working memory networks. The simple theo-

retical measure of expected displacement |Δφ|(1s) introduced in the last section can be related

to behavioral experiments: a value of |Δφ|(1s) = 1.0 deg lies in the upper range of experimen-

tally reported deviations due to diffusive and systematic errors in behavioral studies [60, 61].

What are the microscopic circuit compositions that can attain such a (high) level of working

memory stability? In particular, since an increase in network size can reduce diffusion [11]

and the effects of random heterogeneities [16, 36, 38, 46], we turned to the question: which net-
works size would be needed to yield this level of stability in a one-dimensional continuous mem-
ory system?

To address the question of network size, we extended our theory to include the size N of

the excitatory population as an explicit parameter (see System size scaling in Materials and

methods for details). Using numerical coefficients in Eq (4) extracted from the spiking simu-

lation of a reference network (U = 1, τx = 150 and NE = 800), we extrapolated the theory by

changing the system size N and short-term plasticity parameters. We then constrained

parameters of our theory by published data (Table 1). Short-term plasticity parameters were

based on two groups of strongly facilitating synapses found in a study of mammalian (ferret)

prefrontal cortex [62]. The same study reported a general probability p = 0.12 of pyramidal

cells to be connected. However, for pairs of pyramidal cells that were connected by facilitat-

ing synapses, the study found a high probability of reciprocal connections (prec = 0.44): thus

if neuron A was connected to neuron B (with probability p), neuron B was connected to neu-

ron A with high probability (prec), resulting in a non-random connectivity. To approximate

this in the random connectivities supported by our theory, we evaluated a second, slightly

elevated, level of random connectivity, that has the same mean connection probability as the

non-random connectivity with these additional reciprocal connections: p + p � prec = 0.1728.

Table 1. Upper bounds on system-sizes for stable continuous attractor memory in prefrontal cortex.

STP parameters Δφ(1s) p σL Network size N

U = 0.17

τu = 563ms
τx = 242ms
[62, E1b]

1.0 deg [60, 61] 0.12

[62]

1.7mV [63, RS] 79 504

2.4mV [64, fa-RS] 127 465

0.1728

[62]

1.7mV 79 047

2.4mV 127 205

0.5 deg [60] 0.12 2.4mV 507 607

U = 0.35

τu = 482ms
τx = 163ms
[62, E1a]

1.0 deg 0.12 1.7mV 102 292

2.4mV 163 896

0.1728 1.7mV 101 836

2.4mV 163 638

0.5 deg 0.12 2.4mV 653 350

Theoretical predictions of Eq (11) optimized for the number of excitatory neurons N that are needed to achieve a given level of expected displacement |Δφ|(1s) under

given parameters of short-term plasticity and frozen noises. RS: regular spiking pyramidal cells, fa-RS: fast-adapting regular spiking pyramidal cells.

https://doi.org/10.1371/journal.pcbi.1006928.t001
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For the standard deviation of leak reversal-potentials σL, we used values measured in two

studies [63, 64].

The resulting theory makes quantitative predictions for combinations of network size N
and all other parameters that yield the desired levels of working memory stability (Table 1,

see also S5 Fig). Network sizes were all smaller than 106 neurons, with values depending

most strongly on the value of the facilitation parameter U and the magnitude of the leak

reversal-potential heterogeneities σL. Since the expected field magnitude scales weakly

(1=
ffiffiffipp ) with the recurrent connectivity p, increasing p lead only to comparatively small

decreases in the predicted network sizes. Finally, we see that the increasing the reliability of

networks comes at a high cost: decreasing the expected displacement to |Δφ|(1s) = 0.5 deg

[60] increases the required number of neurons by nearly a number of 4 for both facilitation

settings we investigated. Nevertheless, these network sizes still lie within anatomically rea-

sonable ranges [65].

In summary, we have provided a proof of principle, that the high-level description of our

theory can be used to predict network sizes, by exposing features that can be constrained by

experimental measurements. Given the simplifying assumptions of our models and the sources

of variability that we could include at this stage, continuous attractor networks with realistic

values for the strength of facilitation and depression of recurrent connections could achieve

sufficient stability, even in the presence of biological variability.

Discussion

We presented a theory of drift and diffusion in continuous working memory models, exempli-

fied on a one-dimensional ring attractor model. Our framework generalizes earlier approaches

calculating the effects of fast noise by projection onto the attractor manifold [37, 39, 40] by

including the effects of short-term plasticity (see [45] for a similar analysis for facilitation

only). Our approach further extends earlier work on drift in continuous attractors with short-

term plasticity [38] to include diffusion and the dynamics of short-term depression. Our the-

ory predicts that facilitation makes continuous attractors robust against the influences of both

dynamic noise (introduced by spiking variability) and frozen noise (introduced by biological

variability) whereas depression has the opposite effect. We use this theory to provide, together

with simulations, a novel quantitative analysis of the interaction of facilitation and depression

with dynamic and frozen noise. We have confirmed the quantitative predictions of our theory

in simulations of a ring-attractor implemented in a network model of spiking integrate-and-

fire neurons with synaptic facilitation and depression, and found theory and simulation to be

in good quantitative agreement.

In Section Short-term plasticity controls memory retention, we demonstrated the effects of

STP on the information retained in continuous working memory. Using our theoretical pre-

dictions of drift and diffusion we were able to derive the expected displacement |Δφ| as a func-

tion of STP parameters and the frozen noise parameters, which provides a simple link between

the resulting Langevin dynamics of bump centers and mutual information (MI) as a measure

of working memory retention. Our results can be generalized in several directions. First, the

choice of 1s of forward integrated time for |Δφ| (Eq (11)) was arbitrary. While a choice of� 2s
lets the curves in Fig 5E collapse slightly better, we chose 1s to avoid further heuristics. Second,

we expect values of MI to decrease as the length of the delay period is increased. Our choice of

6.5s is comparable to delay periods often considered in behavioral experiments (usually 3-6s)

[61, 66, 67]. However, a more rigorous link between the MI measure and the underlying

attractor dynamics would be desirable. Indeed, for noisy channels governed by Fokker-Planck

equations, this might be feasible [68], but goes beyond the scope of this work.
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In Section Linking theory to experiments: Distractors and network size, we demonstrated

that the high-level description of the microscopic dynamics obtained by our theory allows its

parameters to be constrained by experiments. Considering that our model is a simplified

description of its biological counterparts (see next paragraph), these demonstrations are to be

seen as a proof of principle as opposed to quantitative predictions. However, since distractor

inputs can be implemented in silico as well as in behavioral experiments (see e.g. [59]), they

could eventually provide a quantitative link between continuous attractor models and working

memory systems, by matching the resulting distraction curves. Our theory goes beyond previ-

ous models in which these distraction curves had to be extracted through repeated microscopic

simulations for single parameter settings [47]. We further used our theory to derive bounds on

network parameters, in particular the size of networks, that lead to “tolerable” levels of drift

and diffusion in the simplified model. For large magnitudes of frozen noise our theory tends

to over-estimate the expected magnitude of drift-fields slightly (cf. Fig 4). Thus, we expect the

predictions made here to be upper bounds on network parameters needed to achieve a certain

expected displacement. Finally, while the predictions of our theory might deviate from biologi-

cal networks, they could be applied to accurately characterize the stability of, and the effects

of inputs to, bump attractor networks implemented in neuromorphic hardware for robotics

applications [69].

Our results show, that strong facilitation (small values of U) does not only slow down

directed drift [38], but also efficiently suppresses diffusion in spiking continuous attractor

models. However, in delayed response tasks involving saccades, that presumably involve con-

tinuous attractors in the prefrontal cortex [11, 22], one does observe an increase of variability

in time [66]: quickly accumulating systematic errors (alike drift) [61] as well as more slowly

increasing variable errors (with variability growing linear in time, alike diffusion) have been

reported [60]. Indeed, there are several other possible sources of variability in cortical working

memory circuits, which we did not consider here. In particular, we expect that heterogeneous

STP parameters [62], noisy synaptic transmission and STP [70] or noisy recurrent weights

[38] (see Random and heterogeneous connectivity in Materials and methods), for example, will

induce further drift and diffusion beyond the effects discussed in this paper. Additionally, vari-

able errors might be introduced elsewhere in the pathway between visual input and motor out-

put (but see [71]) or by input from other noisy local circuits during the delay period [72]. Note

that we excluded AMPA currents from the recurrent excitatory interactions [11]. However,

since STP acts by presynaptic scaling of neurotransmitter release, it will act symmetrically on

both AMPA and NMDA receptors so that an analytical approach similar to the one presented

here is expected to work.

Several additional dynamical mechanisms might also influence the stability of continuous

attractor working memory circuits. For example, intrinsic neuronal currents that modulate the

neuronal excitability [47] or firing-rate adaptation [73] affect bump stability. These and other

effects could be accommodated in our theoretical approach by including their linearized

dynamics in the calculation of the projection vector (cf. Projection of dynamics onto the
attractor manifold in Materials and methods). Fast corrective inhibitory feedback has also

been shown to stabilize spatial working memory systems in balanced networks [74]. On the

timescale of hours to days, homeostatic processes counteract the drift introduced by frozen

noise [36]. Finally, inhibitory connections that are distance-dependent [11] and show short-

term plasticity [75] could also influence bump dynamics.

We have focused here on ring-attractor models that obtain their stable firing-rate profile

due to perfectly symmetric connectivity. Our approach can also be employed to analyze ring-

attractor networks with short-term plasticity in which weights show (deterministic or stochas-

tic) deviations from symmetry (see Frozen noise in Materials and methods for stochastic
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deviations). Although not investigated here, continuous line-attractors arising through a dif-

ferent weight-symmetry should be amenable to similar analyses [39]. Finally, it should be

noted that adequate structuring of the recurrent connectivity can also positively affect the sta-

bility of continuous attractors [14]. For example, translational asymmetries included in the

structured heterogeneity can break the continuous attractor into several isolated fixed points,

which can lead to decreased diffusion along the attractor manifold [58].

We provided evidence that short-term synaptic plasticity controls the sensitivity of attractor

networks to both fast diffusive and frozen noise. Control of short-term plasticity via neuromo-

dulation [76] would thus represent an efficient “crank” for adapting the time scales of compu-

tations in such networks. For example, while cortical areas might be specialized to operate in

certain temporal domains [7, 77], we show that increasing the strength of facilitation in a task-

dependent fashion could yield slower and more stable dynamics, without changing the net-

work connectivity. On the other hand, modulating the time scales of STP could provide higher

flexibility in resetting facilitation-stabilized working memory systems to prepare them for new

inputs [47], although there might be evidence for residual effects of facilitation between trials

[45, 78]. By changing the properties of presynaptic calcium entry [79], inhibitory modulation

mediated via GABAB and adenosine A1 receptors can lead to increased facilitatory compo-

nents in rodent cerebellar [80] and avian auditory synapses [81]. Dopamine, serotonin and

noradrenaline have all been shown to differentially modulate short-term depression (and facil-

itation when blocking GABA receptors) at sensorimotor synapses [82]. Interestingly, next to

short-term facilitation on the timescale of seconds, other dynamic processes up-regulate recur-

rent excitatory synaptic connections in prefrontal cortex [62]: synaptic augmentation and

post-tetanic potentiation operate on longer time scales (up to tens of seconds), and might be

able to support working memory function [83]. While the long time scales of these processes

might again render putative short-term memory networks inflexible, there is evidence that

they might also be under tight neuromodulatory control [84]. Finally, any changes in recurrent

STP properties of continuous attractors (without retuning networks as done here) will also

lead to changes in the stable firing rate profiles, with further effects on their dynamical stability

(see final section of the Discussion). This interplay of effects remains to be investigated in

more detail.

Comparison to earlier work

Similar to an earlier theoretical approach using a simplified rate model [38], we find that the

slowing of drift by facilitation depends mainly on the facilitation parameter U, while the time

constant τu has a less pronounced effect. While the approach of [38] relied on the projection of

frozen noise onto the derivative of the first spatial Fourier mode of the bump shape along the

ring, here we reproduce and extend this result (1) for arbitrary neuronal input-output relations

and (2) a more detailed spatial projection that involves the full synaptic dynamics and the

bump shape. While, our theory can also accommodate noisy recurrent connection weights as

frozen noise, as used in in [38] (see Frozen noise in Materials and methods for derivations), the

drifts generated by these heterogeneities were generally small compared to diffusion and the

other sources of heterogeneity.

A second study investigated short-term facilitation and showed that it reduces drift and dif-

fusion in a spiking network, for a fixed setting of U (although the model of short-term facilita-

tion differs slightly from the one employed here) [47]. Contrary to what we find here, these

authors find that an increase in τu leads to increased diffusion, while we find that an increase

over the range they investigated (� 0.5s − 4s) would decrease the diffusion by a factor of nearly

two. More precisely, for our shape of the bump state (which we keep fixed) we predict a
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reduction from� 26 to� 16 deg2/s for a similar setting of facilitation U. These differences

might arise from an increasing width of the bump attractor profile for growing facilitation

time constants in [47], which would then lead to increased diffusion in our model. Whether

this effect persists under the two-equation model of saturating NMDA synapses used there

remains to be investigated. Finally, increasing the time constant of recurrent NMDA conduc-

tances has been shown to also reduce diffusion [47], in agreement with our theory, according

to which the normalization constant S increases with τs [39].

A study performed in parallel to ours [45] used a similar theoretical approach to calculate

diffusion with short-term facilitation in a rate-based model with external additive noise, but

did not compare the results for varying facilitation parameters. The authors report a short ini-

tial transient of stronger diffusion as synapses facilitate, followed by weaker diffusion that is

dictated by the fully facilitated synapses. Our theory, by assuming all synaptic variables to be at

steady-state, disregards the initial strong phase of diffusion. We also disregarded such initial

transients when comparing to simulations (see Numerical methods).
In a study that investigated only a single parameter value for depression (τx = 160ms, no

facilitation) in a network of spiking integrate-and-fire neurons similar to the one investigated

here, the authors observed no apparent effect of short-term depression on the stability of the

bump [44]. In contrast, we find that stronger short-term depression will indeed increase both

diffusion and directed drift along the attractor. Our result agrees qualitatively with earlier stud-

ies in rate models, which showed that synaptic depression, similar to neuronal adaptation [10,

85], can induce movement of bump attractors [42, 43, 86, 87]. In particular, simple rate models

exhibit a regime where the bump state moves with constant speed along the attractor manifold

[42]. We did not find any such directed movement in our networks, which could be due to fast

spiking noise which is able to cancel directed bump movement [85].

Extensions and shortcomings

The coefficients of Eq (4) give clear predictions as to how drift and diffusion will depend on

the shape of the bump state and the neural transfer function F. The relation is not trivial,

since the pre-factors Ci and the normalization constant S also depend on the bump shape.

For the diffusion strength Eq (5), we explored this relation numerically, by artificially varying

the shape of the firing rate profile (while extrapolating other quantities). Although a more

thorough analysis remains to be performed, a preliminary analysis shows (see S6 Fig) that

diffusion increases both with bump width and top firing rate, consistent with earlier findings

[11, 32].

Our theory can be used to predict the shape and effect of drift fields that are generated by

localized external inputs due to distractor inputs; see Section Linking theory to experiments:
Distractors and network size. Any localized external input (excitatory or inhibitory) will cause

a deviation Δϕi from the steady-state firing rates, which, in turn, generates a drift field by Eq

(7). This could predict the strength and location of external inputs that are needed to induce

continuous shifts of the bump center at given speeds, for example when these attractor net-

works are designed to track external inputs (see e.g. [10, 88]). It should be noted that in our

simple approximation of this distractor scheme, we assume the system to remain at approxi-

mately steady-state, i.e. that the bump shape is unaffected by the additional external input,

except for a shift of the center position. For example, we expect additional feedback inhibition

(through the increased firing of excitatory neurons caused by the distractor input) to decrease

bump firing rates. A more in depth study and comparison to simulations will be left for further

work.
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Our networks of spiking integrate-and-fire neurons are tuned to display balanced inhibi-

tion and excitation in the inhibition dominated uniform state [53, 89], while the bump state

relies on positive currents, mediated through strong recurrent excitatory connections (cf. [44]

for an analysis). Similar to other spiking network models of this class, this mean–driven bump

state shows relatively low variability of neuronal inter-spike-intervals of neurons in the bump

center [90, 91] (see also next paragraph). Nevertheless, neurons at the flanks of the bump still

display variable firing, with statistics close to that expected of spike trains with Poisson statis-

tics (see S7 Fig), which may be because the flank’s position slightly jitters. Since the non-zero

contributions to the diffusion strength are constrained to these flanks (cf. Fig 1D), the simple

theoretical assumption of Poisson statistics of neuronal firing still matches the spiking network

quite well. As discussed in Short-term plasticity controls diffusion, we find that our theory over-

estimates the diffusion as bump movement slows down for small values of U—this may be due

to a decrease in firing irregularity in stable bumps in particular in the flank neurons, at which

the Poisson assumption becomes inaccurate.

More recent bump attractor approaches allow networks to perform working memory func-

tion with a high firing variability also during the delay period [3], in better agreement with

experimental evidence [92]. These networks show bi-stability, where both stable states show

balanced excitation and inhibition [90] and the higher self-sustained activity in the delay activ-

ity is evoked by an increase in fluctuations of the input currents (noise-driven) rather than an

increase in the mean input [93]. This was also reported for a ring-attractor network (with dis-

tance-dependent connections between all populations), where facilitation and depression are

crucial for irregularity of neuronal activity in the self-sustained state [46]. Application of our

approach to these setups is left for future work.

Materials and methods

Analysis of drift and diffusion with STP

For the following, we define a concatenated 3 � N dimensional column vector of state variables

y = (sT, uT, xT)T of the system Eq (3). Given a (numerical) solution of the stable firing rate pro-

file~�0 we can calculate the stable fixed point of this system by setting the l.h.s. of Eq (3) to

zero. This yields steady-state solutions for the synaptic activations, facilitation and depression

variables y0 = (s0, u0, x0):

s0;i ¼ tsu0;ix0;i�0;i;

u0;i ¼ U
1þ tu�0;i

1þ Utu�0;i
;

x0;i ¼
1þ Utu�0;i

1þ Uðtu�0;i þ tutx�
2

0;i þ tx�0;iÞ
:

ð12Þ

We then linearize the system Eq (3) at the fixed point y0, introducing a change of variables

consisting of perturbations around the fixed point: y = y0 + δ y = y0 + (δ sT, δ uT, δ xT) and

ϕi = ϕ0,i + δϕi. To reach a self-consistent linear system, we further assume a separation of

time scales between the neuronal dynamics and the synaptic variables, in that the neuronal

firing rate changes as an immediate function of the (slow) input. This allows replacing

d�i ¼
d�i
dJi

�
�
�J0;i
X

j
dJi
dsj
dsj ¼ �

0

0;i

X

j
wijdsj, where we introduce the shorthand �

0

0;i �
d�i
dJi

�
�
�J0;i.

Finally, keeping only linear orders in all perturbations, we arrive at the linearized system
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equivalent of Eq (3):

_dy ¼

�
1

ts
Iþ D u0 � x0 �

~� 0
0

� �
W D

�
~�0 � x0

�
D
�
~�0 � u0

�

UD
�
ð1 � u0Þ �

~�0
0

�
W �

1

tu
I � UD ~�0

� �
0

� D
�
u0 � x0 �

~�0
0

�
W � D

�
x0 �

~�0

�
�

1

tx
I � D ~�0 � u0

� �

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

dy

� Kdy

ð13Þ

Here, dots between vectors indicate element-wise multiplication, the operator D : Rn ! Rn�n

creates diagonal matrices from vectors, and W = (wij) is the synaptic weight matrix of the

network.

Projection of dynamics onto the attractor manifold. To project the dynamical system

Eq (13) onto movement of the center position φ of the firing rate profile, we assume that N is

large enough to treat the center position φ as a continuous variable. We also assume that the

network implements a ring-attractor: the system dynamics are such that the firing rate profile

~�0 can be freely shifted to different positions along the ring, changing the center position φ,

while retaining the same shape. All other possible directions of change in this system are

assumed to be constrained by the system dynamics. In the system at hand, this implies that the

matrix K of Eq (13), which captures the linearized dynamics around any of these fixed points,

will have a zero eigenvalue corresponding to the eigenvector of a change of the dynamical vari-

ables under a change of position φ, while all other eigenvalues are negative [39].

Formally, the column eigenvector to the eigenvalue 0 is given by changes in the state vari-

ables as the bump center position φ is translated along the manifold:

er ¼
dy

0

dφ
¼

 
ds0

dφ

T

;
du0

dφ

T

;
dx0

dφ

T
!T

: ð14Þ

Let el be the associated row left-eigenvector (also to eigenvalue 0) of K, normalized such that:

el � er ¼ 1: ð15Þ

In Section 1 of S1 Text, we show that the eigenvector el projects the system Eq (13) onto

dynamics of of the center position:

_φ ¼ el _dy ¼ elKdy ¼ el � 0 � dy: ð16Þ

Under the linearized ring-attractor dynamics K, the center position is thus not subject to

any dynamics, making it susceptible to any displacements by noise.

Calculation of the left eigenvector el. If the matrix K is symmetric, the left and right

eigenvectors el and er for the same eigenvalue 0 are the transpose of each other. Unfortunately,

here this is not the case (see Eq (13)), and we need to compute the unknown vector el, which

will depend on the coefficients of the known vector er. In particular, we look for a parametrized

vector y0(y) = (tT(y), vT(y), zT(y))T that for y = er fulfills the transposed eigenvalue equation of

the left eigenvector:

KTy0ðerÞ ¼ 0: ð17Þ

In Section 2 of S1 Text, we derive variables y0 that fulfill the transposed dynamics _y 0 ¼ KTy0

and for which it holds that _y 0ðerÞ ¼ 0, thus fulfilling the condition Eq (17). In this case we
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know that (due to uniqueness of the 1-dimensional eigenspace associated to the 0 eigenvalue)

the vector y0T is proportional to el:

el ¼
1

S
y0ðerÞ

T
¼

 
dJ0

dφ

T

;

�

a1

du0

dφ
þ a2

dx0

dφ

�T

;

�

b1

du0

dφ
þ b2

dx0

dφ

�T
!

; ð18Þ

where S is a proportionality constant and
dJ0;i
dφ ¼

P
jwij

ds0;j
dφ is the change of the steady-state input

arriving at neuron i under shifts of the center position φ.

Finally, the proportionality constant S can be calculated by using Eq (18) in Eq (15) (see

Section 3 of S1 Text for details):

S ¼ y0ðerÞ
T
� er

¼ U
X

i

� dJ0;i

dφ

�2

�
0

i

½U�0;iðtuðtx�0;i þ 1Þ þ txÞ þ 1�3

"

ts½tu�0;iðUtu�0;i þ 2Þ þ 1�½U�0;iðtuðtx�0;i þ 1Þ þ txÞ þ 1�

� �0;i½ðU � 1Þt2
u þ Ut2

xðtu�0;i þ 1Þðtu�0;iðUtu�0;i þ 2Þ þ 1Þ�

�
ðU � 1ÞUt2

utx�0;iðtu�0;i þ 1Þ

ðUtu�0;i þ 1Þ

#

;

ð19Þ

where �
0

0;i ¼
d�i
dJi

�
�
�J0;i is the linear change of the firing rate of neuron i at its steady-state input J0,i.

Diffusion. To be able to describe diffusion on the continuous attractor, we need to extend

the model by a treatment of the noise induced into the system through the variable process of

neuronal spike emission. Starting from Eq (3), we assume that neurons i fire according to inde-

pendent Poisson processes ξi(t) = ∑k δ(t − ti,k), where ti,k is a Poisson point process with time-

dependent rate ϕi. The variability of the point process ξi(t) introduces noise in the synaptic var-

iables. We assume that the shot-noise (jump-like) nature of this process is negligible, given

that we average all individual contributions over the network (see below), allowing us to cap-

ture the neurally induced variability simply as white noise with variance proportional to the

incoming firing rates [48, 53], xiðtÞ ¼ �i þ
ffiffiffiffi
�i

p
� ZiðtÞ, where ηi are white Gaussian noise pro-

cesses with mean hηii = 0, and correlation function hηi(t)ηj(t0)i = δ(t − t0)δij. This model of ξi(t)
preserves the mean and the auto-correlation function of the original Poisson processes. Here,

we introduce diffusive noise for each synaptic variable separately, but later average their linear
contributions over the large population, when projecting onto movement along the continu-

ous manifold (see below, and also [39], Supplementary Material] for a discussion).

Substituting the noisy processes ξi(t) for ϕi(t) in Eq (3) results in the following system of

3�N coupled Ito-SDEs:

_si ¼ �
si
ts
þ uixi �i þ Zi

ffiffiffiffi
�i

p� �
;

_ui ¼ �
ui � U
tu
þ Uð1 � uiÞ �i þ Zi

ffiffiffiffi
�i

p� �
;

_xi ¼ �
xi � 1

tx
� uixi �i þ Zi

ffiffiffiffi
�i

p� �
:

ð20Þ

Stability of continuous attractor networks under the control of short-term plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006928 April 19, 2019 26 / 48

https://doi.org/10.1371/journal.pcbi.1006928


Note that the noise inputs ηi to the synaptic variables for neuron i are all identical, since they

result from the same presynaptic spike train.

Linearizing this system around the noise-free steady-state Eq (12) and considering only the

unperturbed noise (we neglect multiplicative noise terms by replacing the terms
ffiffiffiffi
�i

p
!

ffiffiffiffiffiffiffi
�0;i

p
),

we arrive at the linearized system equivalent of Eq (20):

_dy ¼ Kdy þ

~Zu0x0

ffiffiffiffiffi
~�0

q

~ZUð1 � u0Þ

ffiffiffiffiffi
~�0

q

� ~Zu0x0

ffiffiffiffiffi
~�0

q

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

� Kdy þ L: ð21Þ

Note that the same vector of white noises~Z � ðZ1; . . . ; ZnÞ
T

appears three times.

Left-multiplying this system with the eigenvector el yields a stochastic differential equation

for the center position (cf. Eq (16)):

_φ ¼ el _dy ¼ 0 � K þ elL ¼
X

k

el;kLk ð22Þ

Through the normalization by S (Eq (18)), which sums over all neurons, the individual contri-

butions el,k become small as the number of neurons N increases (this scaling is made explicit in

System size scaling). Thus, for large networks we average the small contributions of many sin-

gle noise sources, which validates the diffusion approximation above.

In Section 4 of S1 Text, we show that we can rewrite Eq (22) by introducing a single Gauss-

ian white noise process with intensity B (Eq (5) of the main text), that matches the correlation

function of the summed noises:

_φ ¼
ffiffiffi
B
p

Z; ð23Þ

where η is a white Gaussian noise process with hηi = 0 and hη(t)η(t0)i = δ(t − t0). Note, that the

value of B is the same under changes of the center position φ: these correspond to index-shift-

ing (mod N) all vectors in Eq (5), which leaves the sum invariant.

Drift. While the diffusion coefficient calculated above is invariant with respect to shifts of

the bump center, the directed drift introduced by frozen variability depends on the momentary

bump center position φ. In the following we compare the heterogeneous network with bump

centered at φ to a homogeneous network (without frozen noise) with the bump also centered

at φ. The unperturbed firing rate profile in the homogeneous network with bump at φ will be

denoted by~�0ðφÞ, which is the standard profile~�0 but centered at φ. Since we choose the stan-

dard profile to be centered at −π, we have~�0 ¼
~�0ð� pÞ.

We want to derive a compact expression for the directed drift of the bump in the heteroge-

neous network with frozen noise. Given a bump center position φ, we first shift the origin of

the coordinate system that describes the angular position on the ring of neurons such that the

firing rate profile is centered at the standard position φ0 = −π. In a system with frozen variabil-

ity, the actual firing rate profile of the bump is

~�0 þ D
~�ðφÞ: ð24Þ

where D~�ðφÞ summarize the linear firing rate perturbations caused by a small amount of het-

erogeneities. These firing rate perturbations stem from any deviation of the neural system

from the “baseline” case and change with the center position φ of the bump. The resulting drift
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field derived from a linearization of the dynamics will thus depend on the center position.

In subsection Frozen noise we calculate the perturbations induced by random network connec-

tivity, as well as heterogeneous leak reversal-potentials in excitatory neurons of the spiking

network.

The firing rate perturbations Eq (24) add an additional term in the linearized equations

Eq (21):

d _y ¼ Kdy þ

x0u0D
~�ðφÞ

Uð1 � u0ÞD
~�ðφÞ

� x0u0D
~�ðφÞ

0

B
B
B
B
@

1

C
C
C
C
A
þ L: ð25Þ

As before, we left-multiply by the left eigenvector el, thereby projecting the dynamics onto

changes of the center position. This eliminates the linear response kernel K and yields a drift-

term in the SDE Eq (23) (see Section 5 of S1 Text for details):

_φ ¼
X

i

dJ0;i
dφ

1

S
Uð1þ 2tu�0;i þ Ut2

u�
2

0;iÞ

ðU�0;iðtutx�0;i þ tu þ txÞ þ 1Þ2
D�iðφÞ þ

ffiffiffi
B
p

Z: ð26Þ

Here, ϕ0,i is the firing rate of the ith neuron in a homogeneous network with the bump cen-

tered at −π and Δϕi(φ) is the firing rate change of this neuron caused by heterogeneities where

the heterogeneities are calculated under the assumption that (before shift of the coordinate sys-

tem) the bump is at φ.

In the above equation, we have assumed that the number of neurons N is large enough to

treat the center position as a continuous variable φ 2 [−π, π) with the associated drift-field A
(φ) in Eq (7). In practice, we calculate this drift field according to the first term in Eq (26) for

each realizable center position φk ¼ k 2p

N � p (for 0� k< N), which yields a discretized field. It

is important to note that this field will vary nearly continuously with changes in these discre-

tized center positions. Intuitively, the sum weighs the vector D~�ðφkÞ of firing-rate perturba-

tions with a smooth function of the smoothly varying firing-rate profile~�0 (the coefficients in

the sum). Shifts in the center position φk yield (to first order) index-shifts in the vector of fir-

ing-rate perturbations (see Frozen noise), equivalent to index-shifts of the vector of firing rates

~�0. Thus, small changes in center positions will lead to small changes in the summands of Eq

(26). While our results validate the approach, a more rigorous proof of these arguments will be

left for future work.

Spiking network model

Spiking simulations are based on a variation of a popular ring-attractor model of visuospatial

working memory of [11] (and used with variations in [27, 29, 32, 36, 47]). The recurrent

excitatory connections of the original network model have been simplified, to allow for

faster simulation as well as analytical derivations of the recurrent synaptic activation. The

implementation details are given below, however the major changes are: 1) all recurrent

excitatory conductances are voltage independent; 2) a model of synaptic short-term plasticity

via facilitation and depression [49, 94, 95] is used to dynamically regulate the weights of the

incoming spike-trains 3) recurrent excitatory conductances are computed as linear filters of

the weighted incoming spike trains instead of the second-order kinetics for NMDA satura-

tion used in [11].
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Neuron model. Neurons are modeled by leaky integrate-and-fire dynamics with conduc-

tance based synaptic transmission [11, 50]. The network consists of recurrently connected

populations of NE excitatory and NI inhibitory neurons, both additionally receiving external

spiking input with spike times generated by Next independent, homogeneous Poisson pro-

cesses, with rates νext. We assume that external excitatory inputs are mediated by fast AMPA

receptors, while, for simplicity, recurrent excitatory currents are mediated only by slower

NMDA channels (as in [11]).

The dynamics of neurons in both excitatory and inhibitory populations are governed by the

following system of differential equations indexed by i 2 {0, . . ., NE/I − 1}:

Cm
_ViðtÞ ¼ � IL

i ðtÞ � IExt
i ðtÞ � II

i ðtÞ � IE
i ðtÞ;

IPi ¼ gP sPi ðtÞ ðViðtÞ � VPÞ;
ð27Þ

where P 2 {L,Ext,I,E}, V denotes voltages (membrane potential) and I denotes currents. Here,

Cm is the membrane capacitance and VL, VE, VI are the reversal potentials for leak, excitatory

currents, and inhibitory currents, respectively. The parameters gP for P 2 {L,Ext,I,E} are fixed

scales for leak (L), external input (Ext) and recurrent excitatory (E) and inhibitory (I) synaptic

conductances, which are dynamically gated by the unit-less gating variables sPi ðtÞ. These gating

variables are described in detail below, however we set the leak conductance gating variable to

sL
i ¼ 1. For excitatory neurons, we refer to the excitatory and inhibitory conductance scales by

gEE� gE and gEI� gI, respectively. Similarly, for inhibitory neurons, we refer to the excitatory

and inhibitory conductance scales by gIE� gE and gII� gI, respectively.

The model neuron dynamics (Eq 27) are integrated until their voltage reaches a threshold

Vthr. At any such time, the respective neuron emits a spike and its membrane potential is reset

to the value Vres. After each spike, voltages are clamped to Vres for a refractory period of τref.

See the Tables in S1 and S2 Tables. for parameter values used in simulations.

Synaptic gating variables and short-term plasticity. The unit-less synaptic gating vari-

ables sPi ðtÞ for P 2 {Ext,I} (external and inhibitory currents) are exponential traces of the spike

trains of all presynaptic neurons j with firing times tj:

_sPi ðtÞ ¼ �
sPi ðtÞ
tP
þ
X

j2preðPÞ

wP
ij

X

tj

d t � tj
� �

; ð28Þ

where pre(P) indicates all neurons presynaptic to the neuron i for the the connection type P.

The factors wP
ij are unit-less synaptic efficacies for the connection from neuron j to neuron i.

For the excitatory gating variables of inhibitory neurons sIE
i (IE denotes connections from E to

I neurons) we also use the linear model of Eq (28) with time constant τIE = τE.

For excitatory to excitatory conductances, we use a well established model of synaptic

short-term plasticity (STP) [49, 94, 95] which provides dynamic scaling of synaptic efficacies

depending on presynaptic firing. This yields two additional dynamical variables, the facilitat-

ing synaptic efficacy uj(t), as well as the fraction of available synaptic resources xj(t) of the

outgoing connections of a presynaptic neuron j, which are implemented according to the fol-

lowing differential equation:

_uj ¼ �
1

tu
ðuj � UÞ þ Uð1 � u�j Þ

X

tj

dðt � tjÞ;

_xj ¼ �
1

tx
ðxj � 1Þ � x�j u

�

j

X

tj

dðt � tjÞ:
ð29Þ
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Here, the indices u�j and x�j indicate that for the incremental update of the variables upon

spike arrival, we use the values of the respective variables immediately before the spike arrival

[95]. Note that the variable U appears in the equation for u(t) both as the steady-state value in

the absence of spikes and as a scale for the update per spike.

The dynamics of recurrent excitatory-to-excitatory transmission with STP are then given

by gating variables that linearly filter the incoming spikes scaled by facilitation and depression:

sEE
i ðtÞ ¼

X

j2preðEEÞ

wEE
ij sj ð30Þ

_sj ¼ �
sj
ts
þ
X

tj

dðt � tjÞu
�

j ðtÞx
�

j ðtÞ: ð31Þ

Here, pre(EE) indicates all excitatory neurons that make synaptic connections to the neuron i.
See ‘S2 Table’ for synaptic parameters used in simulations. Note that a synapse j that has been

inactive for a long time is described by variables x�j ¼ 1 and u�j ¼ U and sj = 0 so that the ini-

tial strength of the synaptic connection is UwEE
ij [49].

The system of Eqs (29)–(31) is a spiking variant of the rate-based dynamics of Eq (3), with

sEE
i a variable related to the input Ji (cf. Eq (2)). In Subsection Firing rate approximation we will

make this link explicit.

Network connectivity. All connections except for the recurrent excitatory connections are

all-to-all and uniform, with unit-less connection strengths set to wI
ij ¼ wext

ij ¼ 1 and for inhibi-

tory neurons additionally wE
ij ¼ 1. The recurrent excitatory connections are distance-depen-

dent and symmetric. Each neuron of the excitatory population with index i 2 {0, . . ., NE − 1} is

assigned an angular position yi ¼ i � 2p

NE
2 ½0; 2pÞ. Recurrent excitatory connection weights wEE

ij

from neuron j to neuron i are then given by the Gaussian function wEE(θ) as (see the Table in

S2 Table for parameters used in simulations):

wEE
ij ¼ wEEðyi � yjÞ

¼ w0 þ wþ � w0

� �
exp � ½minðjyi � yjj; 2p � jyi � yjjÞ�

2 1

2s2
w

� �

:
ð32Þ

Additionally, for each neuron we keep the integral over all recurrent connection weights

normalized, resulting in the normalization condition 1

2p

R p
� p

dφwEEðφÞ ¼ 1: This normalization

ensures that varying the maximum weight w+ will not change the total recurrent excitatory

input if all excitatory neurons fire at the same rate. Here, we choose w+ as a free parameter con-

straining the baseline connection weight to:

w0 ¼

wþswerf
p
ffiffiffi
2
p

sw

 !

�
ffiffiffiffiffiffi
2p
p

swerf
p
ffiffiffi
2
p

sw

 !

�
ffiffiffiffiffiffi
2p
p

:

Firing rate approximation. We first replace the synaptic activation variables sP(V, t) for

P 2 {I, ext} by their expectation values under input with Poisson statistics. We assume that the
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inhibitory population fires at rates νI. For the linear synapses this yields

hsexti ¼ textNextnext; ð33Þ

hsIi ¼ tINInI: ð34Þ

For the recurrent excitatory-to-excitatory synapses with short-term plasticity, we set the dif-

ferential Eq (29) to zero, and also average them over the Poisson statistics. Akin to the “mean-

field” model of [49], we average the steady-state values of facilitation and depression separately

over the Poisson statistics. This implicitly assumes that facilitation and depression are statisti-

cally independent, with respect to the distributions of spike times—while this is not strictly

true, the approximations work well, as has been previously reported [49]. This allows a fairly

straightforward evaluation of the mean steady-state value of the combined facilitation and

depression variables huj xji, under the assumption that the neuron j fires at a mean rate νj with

Poisson statistics, and yields rate approximations of the steady-state values similar to Eq (12):

hujxji ¼ hujihxji ¼
Uðnjtu þ 1Þ

Unjðtu þ tx þ njtutxÞ þ 1
: ð35Þ

We now assume that the excitatory population of NE neurons fires at the steady-state rates

ϕj (0� j< N). To calculate the synaptic activation of excitatory-to-excitatory connections

hsEE
i i, we set Eq (30) to zero, and average over Poisson statistics (again neglecting correlations),

which yieldshsji = τEhuj xjiϕj and hsEE
i i ¼

P
jw

EE
ij tEhujxji�j. Let the the normalized steady-state

input Ji be:

Ji �
1

NE
hsEE

i i ¼
1

NE

X

j

wEE
ij hsji: ð36Þ

The steady-state input Eq (36) links the general framework of Eq (2) to the spiking network.

The additional factor 1/NE is introduced to make the scaling of the excitatory-to-excitatory

conductance with the size of the excitatory population NE explicit, which will be used in

System size scaling. To see this, we assume that the excitatory conductance scale of excitatory

neurons gEE is scaled such that the total conductance is invariant under changes of NE [96]:

gEE ¼ ~g EE=NE, for some fixed value ~gEE. This yields the total excitatory-to-excitatory conduc-

tance gEEsEE
i ¼ ~gEEJi with Ji as introduced above, where the scaling with NE is now shifted to the

input variable Ji.
For the synaptic activation of excitatory to inhibitory connections, we get the mean activa-

tions:

hsIEi ¼ tE

X

j

�j: ð37Þ

We then follow [50] to reduce the differential equations of Eq (27) to a dimensionless form.

The main difference consists in the absence of the voltage dependent NMDA conductance,
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which is achieved by setting the two associated parameters β! 0, γ! 0 in [50], to arrive at:

ti
_Vi ¼ � ðVi � VLÞ þ mi þ si

ffiffiffiffi
ti
p

ZiðtÞ

Si ¼ 1þ TInI þ Textnext þ TEJi ð38Þ

miSi ¼ ðVI � VLÞTInI þ ðVE � VLÞTextnext þ ðVE � VLÞTEJi ð39Þ

si ¼
gext

Cm
hVi � VEð Þtext

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiNextnext

p
: ð40Þ

ti ¼
Cm

gLSi

hZiðtÞi ¼ 0

hZiðtÞZiðt0Þi ¼
1

text
expð�

jt � t0j
text
Þ ð41Þ

where Text ¼ Nexttext
gext
gL
; TI ¼ NItI

gI
gL

are effective timescales of external and inhibitory inputs,

and TE ¼ NE
gE
gL

is a dimensionless scale for the excitatory conductance. Here, μi is the bias of

the membrane potential due to synaptic inputs, and σi measures the scale of fluctuations in the

membrane potential due to random spike arrival approximated by the Gaussian process ηi.
The mean firing rates F and mean voltages hVii of populations of neurons governed by this

type of differential equation can then be approximated by:

F½mi; si; ti� ¼

 

tref þ
ffiffiffi
p
p

ti

Z aðmi ;siÞ

bðmi ;siÞ

du expðu2Þ½1þ erfðuÞ�

!� 1

ð42Þ

aðmi; si; tiÞ ¼
Vreset � VL � mi

si
1þ

text

2ti

� �

þ 1:03

ffiffiffiffiffiffi
text

ti

r

�
text

ti
; ð43Þ

bðmi; siÞ ¼
Vreset � VL � mi

si
; ð44Þ

hVii ¼ mi þ VL � ðVthr � VresetÞ�iti: ð45Þ

Derivatives of the rate prediction. Here we calculate derivatives of the input-output rela-

tion (Eq (42)) that will be used below in Frozen noise.
The expressions for drift and diffusion (see Analysis of drift and diffusion with STP) contain

the derivative �
0

i ¼
dF
dJ jJi of the input-output relation F (Eq (42)) with respect to the recurrent

excitatory input Ji. Note, that F depends on Ji through all three arguments μi, σi and τi. First, we

define X(u)� exp(u2)[1 + erf(u)], and the shorthand Fi = F[μi, σi, τi]. The derivative can then

be readily evaluated as (to shorten the notation in the following, we skip noting the evaluation
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points for derivatives in the following):

dF
dJi
¼ � Fi

TE

Si
Fitref � 1ð Þ þ

ffiffiffi
p
p

F2

i ti XðbÞ
db
dJi
� XðaÞ

da
dJi

� �

; ð46Þ

da=b
dJi
¼

@a=b

@mi
þ
@a=b

@si

@si

@hVii

� �
TE

Si
� mi þ VE � VLð Þð Þ

�
@a=b

@si

@si

@ti
�

@si

@hVii
Vthr � Vresetð Þ�i

� �

þ
@a=b

@ti

� �
TE

Si
ti:

where α/β stands as a placeholder for either function, and the expressions for α and β are given

in Eqs (43) and (44).

A second expression involving the derivative of Eq (42) is
d�0;i
dDL

i
which appears in the theory

when estimating firing rate perturbations caused by frozen heterogeneities in the leak poten-

tials of excitatory neurons (see Eq (54)). The resulting derivatives are almost similar, which

can be seen by the fact that replacing VL ! VL þ D
L
i in Eq (27) only leads to an additional

term D
L
i in Eq (39). Thus, for neuron i the derivative can be evaluated to

dF
dDL

i

¼
ffiffiffi
p
p

F2

i ti XðbÞ
@b

@D
L
i

� XðaÞ
@a

@D
L
i

� �

; ð47Þ

da=b
dDL

i

¼
@a=b

@mi
þ
@a=b

@si

@si

@hVii

� �
1

Si
:

In practice, given a vector ϕi,0 of firing rates in the attractor state, as well as the mean firing

rate of inhibitory neurons νI, we evaluate the right hand side of Eqs (46) and (47) by replacing

Fi! ϕi,0. This allows efficiently calculating the derivatives without having to perform any

numerical integration. The two terms will be exactly equal if ϕ0,i is a self-consistent solution of

Eq (42) for firing rates of the excitatory neurons across the network. We used numerical esti-

mates of ϕi,0 and νI that were measured from simulations and were very close to firing-rate pre-

dictions for all networks we investigated.

Optimization of network parameters. We used an optimization procedure [97] to retune

network parameters to produce approximately similar bump shapes as the parameters of

short-term plasticity are varied. Briefly, we replace the network activity ϕj in the total input Ji
of Eq (36) by a parametrization

gðyjÞ ¼ g0 þ g1 exp �

"
jyjj

gs

#gr !

: ð48Þ

Approximating sums 1

NE

PNE � 1

j¼0
with integrals 1

2p

R p
� p

dφ we arrive at

JiðgÞ �
1

2p

Z p

� p

dφwEE yi � φð ÞhsjiðgðφÞÞ;

where Ji(g) indicates that the total input depends on the parameters g0, g1, gσ, gr of the parame-

trization g.

We then substitute this relation in Eq (42) to arrive at a self-consistency relation between

the parametrized network activity g(θi) at the position of neuron i and the firing-rate F
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predicted by the theory:

gðyiÞ ¼ F½miðgÞ; siðgÞ; tiðgÞ; hViiðgÞ�: ð49Þ

The argument g indicates the dependence of quantities upon the parameters of the bump

parametrization Eq (48). The explicit dependence of the voltage hVii on g is obtained by substi-

tuting ϕi! g(θi) in Eq (45).

We then optimized networks to fulfill Eq (49). First, we imposed the following targets for

the parameters of g: g0 = 0.1Hz, g1 = 40Hz, νE,basal = 0.5Hz, νI,basal = 3Hz. For all networks we

chose w+ = 4.0, gr = 2.5. The following parameters were then optimized: νI, gσ, gEE (excitatory

conductance gE on excitatory neurons); gIE (excitatory conductance gE on inhibitory neurons);

gEI (inhibitory conductance gI on excitatory neurons); gII (inhibitory conductance gI on inhibi-

tory neurons). The basal firing rates (firing rates in the uniform state of the network, prior to

being cued) yielded two equations from Eq (49) by setting w+ = 1. This left 4 free parameters,

which were constrained by evaluating Eq (49) at 4 points as described in [97]. The basal firing

rates were chosen to be fairly low to make the uniform state more stable (as in [44]). This pro-

cedure does not yield a fixed value for gσ, since gσ is optimized for and is not set as a target

value. We thus iterated the following until a solution was found with gσ� 0.5: a) change the

width of the recurrent weights wσ; b) optimize network parameters as described here; c) opti-

mize the expected bump shape for the new network parameters to predict gσ. The resulting

parameter values are given in Table in S2 Table.

Frozen noise

Random and heterogeneous connectivity. Introducing random connectivity, we replace

the recurrent weights in Eq (36) by:

wEE
ij ! wEE

ij þ D
w
ij

h i pij

p
: ð50Þ

Here, pij 2 {0, 1} are Bernoulli variables, with P(pij = 1) = p, where the connectivity parameter

p 2 (0, 1] controls the overall sparsity of recurrent excitatory connections. For p = 1 the entire

network is all-to-all connected. Additionally, we provide derivations for additive synaptic het-

erogeneities D
w
ij ¼ Zijsw (as in [38]), where {ηij|1� i, j� NE} are independent, normally dis-

tributed random variables with zero mean and unit variance. We did not investigate this type

of heterogeneity in the main text, since increasing σw lead to a loss of the attractor state before

creating large enough directed drifts to be comparable to the other sources of frozen noise con-

sidered here—most of the small effects were “hidden” behind diffusive displacement [85]. Nev-

ertheless, we included this case in the analysis here for completeness.

Let the center position of the bump be φk ¼ k 2p

N � p (for 0� k< N). Subject to the per-

turbed weights, the recurrent steady-state excitatory input Ji(φk) Eq (36) to any excitatory neu-

ron can be written as the unperturbed input J0,i(φk) plus an additional input Jstruct
i ðφkÞ arising

from the perturbed connectivity. Note that the synaptic steady-state activations s0,j(φk) change
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with varying bump centers—in the following, we denote sk
0;j � s0;jðφkÞ:

JiðφkÞ ¼
1

NE

X

j

wEE
ij þ D

w
ij

h i pij

p
sk

0;j

¼
1

NE

1

p

X

j

wEE
ij þ D

w
ij

h i
sk

0;j �
X

j

wEE
ij þ D

w
ij

h i
1 � pij

� �
sk

0;j

" #

¼
1

NE

X

j
wEE

ij s
k
0;j

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
J0;iðφkÞ

þ
1

NE

1

p

X

j

wEE
ij þ D

w
ij

h i
pijs

k
0;j � p

X

j
wEE

ij s
k
0;j

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jstruct
i ðφkÞ

:

Note that J0,i(φk) is an index-shifted version of the steady-state input: J0,i(φk) = J0,i−k. However,

such a relation does not hold for Jstruct
i ðφkÞ, since the random numbers pij will change the

resulting value for varying center positions.

We calculate the firing rate perturbations δϕi(φk) resulting from the additional input by a

linear expansion around the steady-state firing rates ϕ0,i(φk)! ϕ0,i(φk) + δϕi(φk). These evalu-

ate to:

d�iðφkÞ ¼
dF
dJ

�
�
�
�
J0;i

ðφkÞ � J
struct
i ðφkÞ

¼ �
0

i;0ðφkÞ � J
struct
i ðφkÞ:

ð51Þ

See Derivatives of the rate prediction for the derivation of the function dF
dJ ðJ0;iÞ for the spiking

network used in the main text.

In the sum of Eq (7), we keep the firing rate profile~�0 centered at φ0 while calculating the

drift for varying center positions. To accommodate the shifted indices resulting from moving

center positions, we re-index the summands to yields the perturbations ϕ0,i! ϕ0,i + Δϕi(φk)

used there:

D�iðφkÞ ¼ �
0

i;0 � J
struct
iþk ðφkÞ: ð52Þ

Heterogeneous leak reversal potentials. We further investigated random distributions of

the leak reversal potential VL. These are implemented by the substitution

VL ! VL þ D
L
i ; ð53Þ

where the D
L
i are independent normally distributed variables with zero mean, i.e.

hD
L
i i ¼ 0mV; hDL

i D
L
j i ¼ s

2
Ldij. The parameter σL controls the standard deviation of these ran-

dom variables, and thus the noise level of the leak heterogeneities.

Let φk ¼ k 2p

N � p for 0� k< N be the center position of the bump. First, note that the

heterogeneities D
L
i do not depend on the center position φk, since they are single neuron

properties. As in the last section, we calculate the firing rate perturbations δϕi(φk)

resulting from the additional input by a linear expansion around the steady-state firing
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rates ϕ0,i(φk)! ϕ0,i(φk) + δϕi(φk):

d�iðφkÞ ¼
dFi

dDL
i

ðJiðφkÞÞ � D
L
i

�
d�0;i

dDL
i

ðφkÞ � D
L
i :

ð54Þ

Here,
dFi
dDL

i
ðJiðφkÞÞ is the derivative of the input-output relation of neuron i in a bump cen-

tered at φk, with respect to the leak perturbation. We introduced
d�0;i
dDL ðφkÞ as a shorthand

notation for this derivative, since it is evaluated at the steady-state input Ji,0(φk). For the

spiking network of the main text, this is derived in Derivatives of the rate prediction.

In the sum of Eq (7), we keep the firing rate profile~�0 centered at φ0 while calculating the

drift for varying center positions. As in the last section, we re-index the sum to yield the per-

turbations ϕ0,i! ϕ0,i + Δϕi(φk) used there:

D�iðφkÞ ¼
d�0;i

dDL
i

� D
L
iþk: ð55Þ

Squared field magnitude. Using the equation of the drift field in Eq (7), and the firing

rate perturbations Eqs (51)–(54), it is straight forward to see that for any center position φ the

expected drift field averaged over the noise parameters is 0, since all single firing rate perturba-

tions vanish in expectation. In the following we calculate the variance of the drift field averaged

over noise realizations, which turns out to be additive with respect to the two noise sources.

We begin by calculating the correlations between frozen noises caused by random connec-

tivity and leak heterogeneities. For the Bernoulli distributed variables pij it holds that hpiji = p,

hpij plki = δilδjkp + (1 − δilδjk)p2. For the other independent random variables it holds that

hD
L
i i ¼ 0mV; hðDL

i Þ
2
i ¼ s2

L; hD
w
ij i ¼ 0; hðD

w
ij Þ

2
i ¼ s2

w. Again, the weight heterogeneities D
w
ij are

only included for completeness—all analyses of the main text assume that σw = 0.

For the correlations between the perturbations we then know that (for brevity, we omit the

dependence on the center position φ):

hJstruct
i D

L
i i ¼ 0

hJstruct
i Jstruct

l i ¼
1

N2
E

X

j;k

s0;jw
EE
ij s0;kw

EE
lk

� pij

p
� 1

� �
plk

p
� 1

� �� !

þ
1

N2
E

1

p2

X

j;k

s0;js0;khD
w
ijD

w
lkihpijplki

 !

¼
1

N2
E

X

j

s2

0;jðw
EE
ij Þ

2 1

p
� 1

� �

þ
1

p

X

j

s2

0;js
2

w

 !

dil:

Starting from Eq (7), we use as a firing rate perturbation the sum of firing rate perturbations

from both Eqs (51) and (54). With the pre-factor Ci ¼
dJ0;i
dφ

1þtu�0;iðUtu�0;iþ2Þ

ðU�0;iðtutx�0;iþtuþtxÞþ1Þ2
, the expected
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squared field averaged over ensemble of frozen noises is then:

hAðφÞ2ifrozen ¼
1

S2

X

i;j

CiðφÞCjðφÞ
�

�0;i0 ðφÞJ
struct
i ðφÞ þ

d�0;i

dDL
ðφÞDL

i

� �

�

�
0

0;jðφÞJ
struct
j ðφÞ þ

d�j

dDL
ðφÞDL

j

� ��

frozen

¼
1

S2

X

i

C2

i ðφÞ �

"
ð�0;i0 ðφÞÞ

2

N2
E

1

p
� 1

� �
X

j

ðs0;jðφÞÞ
2
ðwEE

ij Þ
2
þ

1

p

X

j

s2

0;jðφÞs
2

w

 !

þ
d�0;i

dDL
ðφÞ

� �2

s2

L

�

:

ð56Þ

One can see directly that the two last terms are invariant under shifts of the bump center φ,

since these introduce symmetric shifts of the indexes i. Similarly, it is easy to see that the first

term is also invariant. Let φ0 be shifted to the right by one index from φ. It then holds that:

X

i

C2

i ðφ
0Þ
ð�
0

0;iðφ
0ÞÞ

2

N2
E

1

p
� 1

� �
X

j

ðs0;jðφ
0ÞÞ

2
ðwEE

ij Þ
2

 !

¼
X

i

C2

i� 1

ð�
0

0;i� 1
ðφÞÞ2

N2
E

1

p
� 1

� �
X

j

ðs0;j� 1ðφÞÞ
2
ðwEE

ij Þ
2

 !

¼
X

i

C2

i� 1

ð�
0

0;i� 1
ðφÞÞ2

N2
E

1

p
� 1

� �
X

j

ðs0;jðφÞÞ
2
ðwEE

i� 1;jÞ
2

 !

:

The final equation holds since, in ring-attractor networks, wEE
ij consists of index-shifted rows

of the same vector (see e.g. Network connectivity for the spiking network weights).

In summary, hA(φ)2ifrozen will evaluate to the same quantity hA2ifrozen for all center posi-

tions φ. In the main text, we use this fact to estimate hA2ifrozen from simulations, by addition-

ally averaging over the all center positions and interchanging the ensemble and positional

averages:

hA2ifrozen ¼
1

NE

X

k

hAðφkÞ
2
ifrozen ¼

�
1

NE

X

k

AðφkÞ
2

�

frozen

:

Thus, we can compare the value of hA2ifrozen to the mean squared drift field over all center

positions, averaged over instantiations of noises.

System size scaling. Generally, sums over the discretized intervals [−π, π) as they appear

in Eqs (5) and (7) will scale with the number N chosen for the discretization of the positions

on the continuous ring φðiÞ ¼ i
N 2p � p. Consider two discretizations of the ring, partitioned

into N1 and N2 uniformly spaced bins of width 2p

N1
and 2p

N2
. We can then approximate integrals

over any continuous (Riemann integrable) function f on the ring by the two Riemann sums:

2p

N1

XN1 � 1

i¼0

f ðφ
1;iÞ �

Z p

� p

f ðφÞdφ �
2p

N2

XN2 � 1

i¼0

f ðφ
2;iÞ; ð57Þ

where, i 2p

N1
� φ

1;i < iþ 1ð Þ 2p

N1
(for N2 and φ2,i analogously) are points in the bins [98].

Numerical quantities for the results of the main text have been calculated for NE = 800. In

the following we denote all of these quantities with an asterisk (�). To generalize these results

to arbitrary system size N, we replace sums over N bins by scaled sums over NE bins using the
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relation Eq (57):

XN� 1

i¼0

!
N
NE

XNE � 1

i¼0

:

First, we find that the normalization constant scales as S ¼ N
NE
S�, and thus (dots indicate the

summands, which are omitted for clarity) for the diffusion strength B (cf. Eq (5)):

B ¼
1

S2

XN� 1

i¼0

� � � ¼
N
NE

1

S2

XNE � 1

i¼0

� � �

¼
NE

N
B�:

ð58Þ

For the drift magnitude we turn to the expected squared drift magnitude calculated earlier

(cf. Eq (56)), for which we find that (setting σw! 0 for simplicity, as throughout the main

text):

hA2ifrozen ¼

�
NE

N

�2
1

ðS�Þ2
N
NE

XNE � 1

i¼0

C2

i

 
ð�
0

iÞ
2

N2

1

p
� 1

� �
N
NE

XNE � 1

j¼0

s2

j w
2

ij þ

�
d�i

dEL

�2

s2

L

!

¼
1

ðS�Þ2
XNE � 1

i¼0

C2

i

 
1

N2
ð�
0

iÞ
2 1

p
� 1

� �
XNE � 1

j¼0

s2

j w
2

ij þ
NE

N

�
d�i

dEL

�2

s2

L

!

:

ð59Þ

Note, that we could not resolve this scaling in dependence of hA2i
�

frozen, since the two sources of

frozen noise (connectivity and leak heterogeneity) show different scaling with N.

Numerical methods

Spiking simulations. All network simulations and models were implemented in the

NEST simulator [99]. Neuronal dynamics are integrated by the Runge-Kutta-Fehlberg method

as implemented in the GSL library [100] (gsl_odeiv_step_rkf45)—this forward integration

scheme is used in the NEST simulator for all conductance-based models (at the time of writ-

ing). The short-term plasticity model is integrated exactly, based on inter-spike intervals. Code

for network simulations is available at https://github.com/EPFL-LCN/pub-seeholzer2018.

�Simulation protocol. In all experiments (except those involving bi-stability, see below)

spiking networks were simulated for a transient initial period of tinitial = 500ms. To center the

network in an attractor state at a given angle −π� φ< π, we gave an initial cue signal by stim-

ulating neurons (0.2 � NE neurons for networks with facilitation parameter U> 0.1 and 0.18 �

NE neurons for U� 0.1) centered at φ by strong excitatory input mediated by additional Pois-

son firing onto AMPA receptors (0.5s at 3kHz followed by 0.5s at 1.5kHz) with connections

scaled down by a factor of gsignal = 0.5. The external input ceased at t = toff = 1.5s. For simula-

tions to estimate the diffusion we simulated until tmax = 15s, yielding 13.5s of delay activity

after the cue offset. For simulations to estimate drift we set tmax = 8s, yielding 6.5s of delay

activity after the cue offset.

For simulations exploring the bi-stability between the uniform state and a bump state (Fig

1B1), we added an additional input prior to the spontaneous state. We stimulated simulta-

neously 20 excitatory neurons around 4 equally spaced cue points each (80 neurons in total,

500ms, 1.5kHz, AMPA connections scaled by a factor gsignal = 2). This was applied to settle net-

works into the uniform state more stably—without this perturbation, networks sometimes
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approached the bump state after being uniformly initialized. In both figures, we show popula-

tion activity only after this initial stimulus was applied.

�Estimation of centers and mean bump shapes.

To estimate centers of bump states, simulations were run until t = tmax and spikes were

recorded from the excitatory population and converted to firing rates by convolving them

with an exponential kernel (τ = 100ms) [101] and then sampled at resolution 1ms. This results

in vectors of firing rates νj(t), 0� j� NE − 1 for every time t. We calculated the population

center φ(t) for time t by measuring the phase of the first spatial Fourier coefficient of the firing

rates. This is given by φðtÞ ¼ arg
P

jexp i 2p

NE
j

� �
njðtÞ

� �
� p: For all analyses below, we identify

t = 0 to be the time t = toff of the initial cue.

To measure the mean bump shapes, we first rectified the vectors νj(t) for every t by rotating

the vector until φ(t) = 0. We then sampled the rectified firing rates starting from 1s after cue

offset at intervals of 20ms, which were used to calculate the mean firing rates. S1 Fig shows

mean rates for each simulation averaged over the� 1000 repetitions performed in the diffu-

sion estimation (below).

�Exclusion of bump trajectories.

Sometimes bump trajectories would leave the attractor state and return to the uniform

state. We identified these trajectories in all experiments by identifying maximal firing rates

across the population that dropped below 10Hz during the delay period. The such identified

repetitions were excluded from the analyses, which occurred mostly in networks with no facili-

tation for τx = 150ms, τu = 650ms: at U = 1, we excluded 222/1000 repetitions from the diffu-

sion estimation, while for all other U� 0.8 at most 15/1000 were excluded. Increasing the

depression time constant also lead to less stable attractor states: for τx = 200ms, τu = 650ms and

U = 0.8, we had to exclude 250/1000 repetitions. During the simulations for drift estimation,

we observed that frozen noise also leads to less stable bumps under weak facilitation for ran-

dom and sparse connectivity (p� 1) and high leak variability (σL� 0).

�Diffusion estimation.

Diffusion was estimated for each combination of network parameters by simulating 1000

repetitions (10 initial cue positions, 100 repetitions each) of 13.5s of delay activity. Center

positions φk(t) were estimated for each repetition k as described above. We then calculated

for each repetition the offset relative to the position at 500ms by Δφk(t) = φk(t − 500ms) −
φk(500ms), effectively discarding the first 500ms after cue-offset. The time-dependent variance

of K repetitions (excluding those repetitions in which the bump state was lost, see above) was

then calculated as VðtÞ ¼ 1

K

P
kDφ

2
kðtÞ. The diffusion strength can then be estimated from the

slope of a linear least-squares regression (using the Scipy method scipy.stats.linregress [102])

to the variance as a function of time: V(t)� D0 + D � t, where the intercept D0 is included to

account for initial transients. We estimated confidence intervals by bootstrapping [103]: sam-

pling K elements out of the K repetitions with replacement (5000 samples) and estimating the

confidence level of 0.95 by the bias corrected and accelerated bootstrap implemented in scikits-
bootstrap [104]. As a control, we calculated confidence intervals for D additionally by Jackknif-

ing: after building a distribution of estimates of D on K one-left-out samples of all repetitions,

the standard error of the mean can be calculated and is multiplied by 1.96 to obtain the 95%

confidence interval [105]—confidence intervals obtained by this method were almost indistin-

guishable from confidence intervals obtained by bootstrapping.

�Drift estimation.

Drift was estimated numerically for each combination of network and frozen noise parame-

ters by simulating 400 repetitions (20 initial cue positions, 20 repetitions each) of 6.5s of

delay activity. Centers positions φk(t) were estimated for all K repetitions (excluding those
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repetitions in which the bump state was lost, see above) as explained above. We then computed

displacements in time by computing a set of discrete differences

Dφk ¼ fðφk½t0 þ ðjþ 1Þdt� � φ½t0 þ j � dt�Þ=dt j 8j 2 N0 : t0 þ ðjþ 1Þdt � tmaxg;

where we chose dt = 1.5s and t0 2 {500ms, 700ms, 900ms, . . ., 1900ms}. All differences are cal-

culated with periodic boundary conditions on the circle [−π, π), i.e. the maximal difference

was π/dt. We then calculated a binned mean (100 bins on the ring, unless mentioned other-

wise) of differences calculated for all K trajectories, to approximate the drift-fields as a function

of positions on the ring.

Mutual information measure. We are estimating the mutual information between a set

of initial positions x 2 [0, 2π) and associated final positions y(x) 2 [0, 2π) of the trajectories of

a continuous attractor network over a fixed delay period of T. For our results, we take T = 6.5s.
We constructed binned and normalized histograms (with bin size n = 100, but see below) as

approximate probability distributions of initial positions pi ¼ p i � 1½ � 2pn � x < i 2p

n

� �
and all

final positions qi ¼ p i � 1½ � 2pn � y < i 2p

n

� �
(with bins indexed by 1� i� n), as well as the

bivariate probability distribution rij ¼ p i � 1½ � 2pn � x < i 2p

n ; j � 1½ � 2pn � yðxÞ < j 2p

n

� �
.

Using these, we can calculate the mutual information as [56, 57]

MI¼
Pn

i¼1

Pn
j¼1

rij log 2

rij
piqj

� �
. Note, that the sum effectively counts only nonzero

entries of rij (trajectories that started in bin i and ended in bin j): these imply that pi 6¼ 0

(a trajectory started in bin i) and qj 6¼ 0 (a trajectory ended in bin j), which makes the sum

well defined. Although the value of MI depends on the number of bins n, in Figs 5 and 6

we normalize MI to that of the reference network (U = 1, no frozen noise, see Short-term
plasticity controls memory retention), which leaves the resulting plot nearly invariant under a

change of bin numbers.

Numerical integration of Langevin equations. Numerically integration of the homoge-

neous Langevin equations (Eq (4)) describing drift and diffusion of bump positions φ 2 [−π, π)

(with circular boundary conditions) has been implemented as a C extension in Cython [106] to

the Python language [107]. Since the drift fields A(φ) are estimated on a discretization of the

interval [−π, π) into N bins, we first interpolate drift fields A given as N discretized values to

obtain continuous fields—interpolations are obtained using cubic splines on periodic boundary

conditions using the class gsl_interp_cspline_periodic of the Gnu Scientific Library [100].

For forward integration of the Langevin equation Eq (4) from time t = 0, we start from

an initial position φ0 = φ(t = 0). Given a time resolution dt (unless otherwise stated we use

dt = 0.1s) and a maximal time tmax we repeat the following operations until we reach t = tmax:

t ! t þ dt;

φ! φþ dt � AðφÞ þ
ffiffiffiffiffiffiffi
dtB
p

� r;

φ! ððφþ pÞ mod 2pÞ � p:

Here, for each iteration r is a random number drawn from a normal distribution with zero

mean and unit variance (hri = 0 and hr2i = 1). The last step is performed to implement the cir-

cular boundary conditions on [−π, π).

Code implementing this numerical integration scheme is available at https://github.com/

EPFL-LCN/pub-seeholzer2018-langevin.

Distractor analysis. For the distractor analysis in Fig 7, we let 40 neurons centered at the

distractor position φD ¼
360
�

N j � 180
�

fire at rates increased by 20Hz, yielding a vector of firing

rate perturbations Δϕ0,i = 20Hz if |i − j|� 20 and Δϕ0,i = 0Hz otherwise. The vectors Δϕ0,i for
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each distractor position φD are then used in Eq (7) to calculate the corresponding drift fields.

To calculate the final position φ1 after 250ms of presenting the distractor, we generate 1000

trajectories starting from φ0 = 0 by integrating the Langevin equation Eq (4) for 250ms

(dt = 0.01), the final positions of which are used to measure mean and standard deviation of

φ1. For the broader bump in Fig 7D, we stretched (and interpolated) the firing rates ϕ0 as well

as the associated vectors J0 and �
0

0
along the x-axis to obtain vectors for bumps of the desired

width, and then re-calculated the values of
dJ0
dφ .

Supporting information

S1 Fig. Spiking networks produce similar stable firing rate profiles across parameters. For

each choice of short-term plasticity parameters U, τu, and τx, we tuned the recurrent conduc-

tances (gEE, gEI, gIE, gII) and the width σw of the distance-dependent weights (cf. Eq (32))

such that the “bump” shape of the stable firing rate profile is close to a generalized Gaussian

n yð Þ ¼ g0 þ g1 exp �

�
jyj

gs

�gr� �

with parameters g0 = 0.1Hz, g1 = 40.0Hz, gσ = 0.5, gr = 2.5. See

Optimization of network parameters in Materials and methods for details, S2 Table. for param-

eter values after tuning, and S1 Table. for parameters that stay constant. A After tuning, the

resulting firing rate profiles for different parameter values of U and τu are very similar. Aver-

aged mean firing rates in bump state, measured from� 1000 spiking simulations. A1-A3

Remaining slight parameter-dependent changes of bump shapes, measured by fitting the gen-

eralized Gaussian ν(θ) to the measured firing rate profiles displayed in A. A1 Top firing rate

g1. A2 Half-width parameter gσ. A3 Sharpness parameter gr. B and B1-B3 Same as in A and

A1-A3, for additional variation of the depression time scale τx.
(TIF)

S2 Fig. Theoretical prediction of diffusion strength as a function of STP parameters. All

color values display diffusion magnitude estimated from B in Eq (4) with bump shape esti-

mated from the reference network (U = 1, τx = 150ms, compare Fig 3B and 3C, dashed lines).

Units of color values are idx2

s with values of level lines as indicated. A Diffusion as function of

facilitation U and depression time constant τx. Facilitation time constant was τu = 650ms. B

Diffusion as function of facilitation U and facilitation time constant τu. Depression time con-

stant was τx = 150ms. C Diffusion as function of depression time constant τx and facilitation

time constant τu. Facilitation U was U = 0.5.

(TIF)

S3 Fig. Comparison of theoretically predicted fields to simulations. A Averaged root mean

square error (RMSE) between predicted fields (Eq (7)) and fields extracted from simulations

(mean over 18-20 networks, error bars show 95% confidence of the mean). Both frozen noise

parameters (σL and 1 − p) are plotted on the same x-axis. B Normalized RMSE: each RMSE is

normalized by the range (max − min) of the joint data of simulated and predicted fields it is

calculated on. Colors as in A. C Average RMSE (same data as in A) plotted as a function of the

mean expected field magnitude (estimated separately for each network, then averaged). Colors

as in A. D Worst (top) and best (bottom) match between predicted field (blue line) and field

extracted from simulations (black line) of the group with the largest mean RMSE in panels A,

C (U = 1, 1 − p = 0.75). Shaded areas show 1 standard deviation of points included in the

binned mean estimate (100 bins) of the extracted field.

(TIF)
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S4 Fig. Mutual information normalized to compare slopes. Same data as in Fig 5B, but MI is

normalized to the average MI of each spiking network without heterogeneities (leftmost dot

for each green, orange, and blue group of curves/dots), making explicitly visible the change in

slope of the drop-off as heterogeneity parameters are increased. Dashed lines connect the

means, for visual guidance.

(TIF)

S5 Fig. Theoretical predictions of working memory stability. All panels show theoretically

predicted expected displacement over 1 second (Eq (11)) for networks with random and sparse

connections (p = 0.12) and leak reversal potential heterogeneity (σL = 1.7mV). White lines

show displacement contour lines for 1, 2 and 5deg. A Displacement as a function of the facili-

tation time constant τu and facilitation U for τx = 150ms and N = 5000.B Displacement as a

function of system size and facilitation U for τx = 150ms and τu = 650ms. C-D Displacement as

a function of depression time constant τx and facilitation U for N = 5000 (C) and N = 20000

(D). In both panels τu = 650ms.
(TIF)

S6 Fig. Dependence of diffusion strength B on shape parameters. Diffusion was calculated

from Eq (5) with bump solutions �0 ¼ g1 expð� j xgs j
grÞ. The values of

dJ0
dφ and �

0

0
were calculated

by fitting and extrapolating (linearly, for ϕ0 > 40.31Hz) curves �0 ! �
0

0
and ϕ0! J0 that were

obtained from the numerical values extracted for g1 = 40.31Hz, gσ = 0.51 by theory (see Firing
rate approximation in Materials and methods). Thus, any nonlinearity or saturation of the

inputs and input-output relation for ϕ0 > 40.31Hz was not included. This approximate analy-

sis shows that the major dependence of the diffusion expected in the system is on the bump

width gσ, although a minor dependence on g1 is seen.

(TIF)

S7 Fig. Short-term plasticity does not affect spiking statistics. Mean firing rate, coefficient

of variation of the inter-spike interval distribution (CV), and local CV (CV2 [92]) for two

attractor networks with different STP parameters. All measures were computed on spike-trains

measured over a period of 4s, recorded 500ms after offset of the external input which was cen-

tered at angle 0. Across STP parameters, networks display similarly reduced CVs for increased

mean firing rates, leading to large CVs for neurons located in the flanks of the firing rate pro-

file and low CVs for neurons located near the center. A Networks with large diffusion coeffi-

cient (U = 0.8, τu = 650ms, τx = 200ms) that underwent non-stationary diffusion during the

recording of spikes: the measured mean firing rates (gray line) differ visibly from the firing

rates estimated after centering the firing rate distribution at each point in time. Due to this

non-stationarity, CVs at intermediate firing rates appear elevated, while the local CV (CV2)

shows values close to stationary networks (see B). B The same network as in A, with strong

facilitation (U = 0.1). Reduced diffusion leads to a nearly stationary firing rate profile, and

coincident CV and CV2 measures.

(TIF)

S8 Fig. Diverging normalization constant S for increasing depression time constants τx

leads to diverging diffusion. All plots show quantities related to Eqs (5) and (7) for varying

depression time constants τx and facilitation strength U. The coefficients �0;i;
dJ0;i
dφ ; �

0

0;i appear-

ing therein are estimated from the spiking network used in the main text with U = 1, τx =

150ms, τu = 650ms. A The normalization constant S (“Normalizer”) of Eqs (5) and (7) shows

zero crossings as τx is increased beyond facilitation-dependent critical values. B Diffusion

strength B of Eq (5) without the normalization constant (equal to B � S2). C The full diffusion
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strength B of Eq (5) shows diverging values at the same critical points of taux. Color legend on

the right hand side shows values of U.

(TIF)

S1 Text. Detailed mathematical derivations.

(PDF)

S1 Table. Parameters for spiking simulations. Parameter values are modified from [11] and

[50]. For recurrent conductances see the table in S2 Table.

(PDF)

S2 Table. Conductance and connectivity parameters for spiking simulations. For all net-

works we set w+ = 4.0. Recurrent conductance parameters are given for combinations of short-

term plasticity parameters according to the following notation. gEE: excitatory conductance gE
on excitatory neurons; gIE: excitatory conductance gE on inhibitory neurons; gEI: inhibitory

conductance gI on excitatory neurons; gII: inhibitory conductance gI on inhibitory neurons.

(PDF)
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