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Abstract. A biologically inspired computational model of rodent repre-
sentation—based (locale) navigation is presented. The model combines vi-
sual input in the form of realistic two dimensional grey-scale images and
odometer signals to drive the firing of simulated place and head direc-
tion cells via Hebbian synapses. The space representation is built incre-
mentally and on-line without any prior information about the environ-
ment and consists of a large population of location-sensitive units (place
cells) with overlapping receptive fields. Goal navigation is performed us-
ing reinforcement learning in continuous state and action spaces, where
the state space is represented by population activity of the place cells.
The model is able to reproduce a number of behavioral and neuro-
physiological data on rodents. Performance of the model was tested on
both simulated and real mobile Khepera robots in a set of behavioral
tasks and is comparable to the performance of animals in similar tasks.

1 Introduction

The task of self-localization and navigation to desired target locations is of cru-
cial importance for both animals and autonomous robots. While robots often
use specific sensors (e.g. distance meters or compasses), or some kind of prior
information about the environment in order to develop knowledge about their
location (see [I] for review), animals and humans can quickly localize themselves
using incomplete information about the environment coming from their senses
and without any prior knowledge. Discovery of location and direction sensitive
cells in the rat’s brain (see Sect. 2]) gave some insight into the problem of how this
self-localization process might happen in animals. It appears that using exter-
nal input and self-motion information various neural structures develop activity
profiles that correlate with current gaze direction and current location of the
animal. Experimental evidence suggests that in many cases activity of the place
and direction sensitive neurons underlies behavioral decisions, although some
results are controversial (see [2], Part II for review).
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The first question that we try to answer in this work is what type of sensory
information processing could cause an emergence of such a location and direc-
tion sensitivity. Particular constraints on the possible mechanism that we focus
on are (i) the absence of any prior information about the environment, (i) the
requirement of on-line learning from interactions with the environment and (i)
possibility to deploy and test the model in a real setup. We propose a neural ar-
chitecture in which visual and self-motion inputs are used to achieve location and
direction coding in artificial place and direction sensitive neurons. During agent-
environment interactions correlations between visually— and self-motion—driven
cells are discovered by means of unsupervised Hebbian learning. Such a learning
process results in a robust space representation consisting of a large number of
localized overlapping place fields in accordance with neuro-physiological data.

The second question is related to the use of such a representation for goal
oriented behavior. A navigational task consists of finding relationships between
any location in the environment and a hidden goal location identified by a re-
ward signal received at that location in the past. These relationships can then be
used to drive goal-oriented locomotor actions which represent the navigational
behavior. The reinforcement learning paradigm [3] proposed a suitable frame-
work for solving such a task. In the terms of reinforcement learning the states
of the navigating system are represented by locations encoded in the population
activity of the place sensitive units whereas possible actions are represented by
population activity of locomotor action units. The relationships between the lo-
cation and the goal are given by a state-action value function that is stored in the
connections between the place and action units and learned online during a goal
search phase. During a goal navigation phase at each location an action with the
highest state-action value is performed resulting in movements towards the goal
location. The application of the reinforcement learning paradigm is biologically
justified by the existence of neurons whose activity is related to the difference
between predicted and actual reward (see Sect. ) which is at the heart of the
reinforcement learning paradigm.

The text below is organized as follows. The next section describes neuro-
physiological and behavioral experimental data that serve as a biological mo-
tivation for our model. Section [B] reviews previous efforts in modeling spatial
behavior and presents a bio-inspired model of spatial representation and navi-
gation. Section Ml describes properties of the model and its performance in navi-
gational tasks. A short discussion in Sect. [§] concludes the paper.

2 Biological Background

Experimental findings suggest that neural activity in several areas of the rat’s
brain can be related to the self-localization and navigational abilities of the an-
imals. Cells in the hippocampus of freely moving rats termed place cells tend to
fire only when the rat is in a particular portion of the testing environment, inde-
pendently of gaze direction [4]. Different place cells are active in different parts of
the environment and activity of the population of such cells encode the current
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location of the rat in an allocentric frame of reference []. Other cells found in
the hippocampal formation [6], as well as in other parts of the brain, called head
direction cells, are active only when the rat’s head is oriented towards a specific
direction independently of the location (see [2], Chap. 9 for review). Different
head direction cells have different preferred orientations and the population of
such cells acts as an internal neural compass. Place cells and head-direction cells
interact with each other and form a neural circuit for spatial representation [7].

The hippocampal formation receives inputs from many cortical associative
areas and can therefore operate with highly processed information from differ-
ent sensory modalities, but it appears that visual information tends to exert a
dominant influence on the activity of the cells compared to other sensory inputs.
For instance, rotation of salient visual stimuli in the periphery of a rat’s envi-
ronment causes a corresponding rotation in place [8] and head direction [6] cell
representations. On the other hand, both place and head direction cells continue
their location or direction specific firing even in the absence of visual landmarks
(e.g. in the dark). This can be explained by taking into account integration over
time of vestibular and self-movement information (that is present even in the
absence of visual input), which is usually referred to as the ability to perform
‘path integration’. There is an extensive experimental evidence for such ’'integra-
tion’ abilities of place and head direction cell populations (reviewed in [9] and
[2], Chap. 9, respectively).

One of the existing hypotheses of how the place cells can be used for nav-
igation employs a reinforcement learning paradigm in order to associate place
information with goal information. In the reinforcement learning theory [3] a
state space (e.g. location-specific firing) is associated with an action space (e.g.
goal-oriented movements) via a state-action value function, where the value is
represented by an expected future reward. This state-action value function can
be learned on-line based on the information about a current location and a dif-
ference between the predicted and an actual reward. It was found that activity
of dopaminergic neurons in the ventral tegmental area (VTA) of the brain (a
part of the basal ganglia) is related to the errors in reward prediction [T0,[1T].
Furthermore these neurons project to the brain area called nucleus accumbens
(NA) which has the hippocampus as the main input structure and is related to
motor actions [I2L[13,14,[T5]. In other words neurons in the NA receive spatial
information from the hippocampus and reward prediction error information from
the VTA. As mentioned before, these two types of information are the necessary
prerequisites for reinforcement learning. This data supports the hypothesis that
the neural substrate for goal learning could be the synapses between the hip-
pocampus and NA. The NA further projects to the thalamus which is in turn
interconnected with the primary motor cortex, thus providing a possibility that
the goal information could be used to control actions. The model of navigation
described in this paper is consistent with these experimental findings.

On the behavioral level, several experimental paradigms can be used to test
navigational abilities of animals in the tasks in which an internal space represen-
tation is necessary for the navigation (so called locale navigation, see [16] for a
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review of navigational strategies). Probably the most frequently used paradigm
is the hidden platform water maze [I7]. The experimental setup consists of a
circular water pool filled with an opaque liquid and a small platform located
inside the pool, but submerged below the surface of the liquid. At the beginning
of each trial a rat is placed into the pool at a random location and its task is to
find the platform. Since no single visual cue directly identifies the platform and
the starting locations are random, animals have to remember the location of the
hidden platform based on the extra-pool visual features. After several trials rats
are able to swim directly to the hidden platform from any location in the pool,
which indicates that they have acquired some type of spatial representation and
use it to locate the platform.

Extensive lesion studies show that damage to brain areas containing place or
direction sensitive cells, as well as lesions of the fornix (nerve fibers containing
projections from the hippocampus to the NA) or the NA itself selectively impair
navigational abilities of rats in tasks where an internal representation of space
is necessary [16,[15118].

This and other experimental data suggest that the hippocampal formation can
serve as the neural basis for spatial representation underlying navigational behav-
ior. This hypothesized strong relation between behavior and neuro-physio-logical
activity can be elaborated by means of computational models, that can in turn
generate predictions testable on the level of both neurophysiology and behavior.

3 Modeling Spatial Behavior

The ability of animals to navigate in complex task-environment contexts has
been the subject of a large body of research over the last decades. Because of
its prominent role in memory and its spatial representation properties described
above the hippocampus has been studied and modeled intensively. In the next
section we review several models of the mechanisms yielding place cell activity
and its role in locale navigation. In Sect. [3.2] we describe our own model in detail.

3.1 Previous Models

In this section we focus on those models which were tested in navigational tasks
in real environments using mobile robots. Readers interested in theoretical and
simulation models as well as in models of different types of navigation are referred
to reviews of Trullier et al. [I9] and Franz and Mallot [IJ.

Recce and Harris [20] modeled the hippocampus as an auto-associative mem-
ory which stored a scene representation consisting of the bearings and distances
of the surrounding landmarks and of a goal location. The landmark bearings
and distances were extracted from omnidirectional sonar scans. During a first
exploration phase the scenes were stored in the memory and each stored scene
was associated with a place cell. During a second goal navigation phase the cur-
rently perceived scene was compared to the scenes stored in the memory. When
the scenes matched, the stored scene was activated (i.e. the place cell fired)
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together with the goal location information. Once the scene was recalled, the
robot moved directly to the goal. Information about the landmark positions and
orientations were updated using integrated odometer signals, but the place cell
activity depended only on the visual input.

Burgess et al. [211[22] described a robotic implementation of an earlier neuro-
physiological model of the rat hippocampus [23]. Some place cells were shown
to fire at a relatively fixed distance from the walls of a testing environment [24].
This property inspired the place recognition mechanism of the robot of Burgess
et al. which visually estimated distances to the surrounding walls by detecting
the position of a horizontal line at the junction of the walls and the floor in the
input image. During a first exploration phase, the robot rotated on the spot at
all locations of the arena to face all walls and to estimate their distances. The
robot’s orientation with respect to a reference direction was derived from path
integration which was periodically reset by using a dedicated visual marker. A
competitive learning mechanism selected a number of place cells to represent the
specific wall distances for each place. In a second goal search phase, once the goal
was found the robot associated four goal cells with the place cells representing
four locations from which the direction towards the goal was known. During goal
navigation, the goal direction could be computed from the relative activity of all
goal cells using population vector technique [25].

In the model by Gaussier et al. [26,27,28], at each time step during ex-
ploration, a visual processing module extracted landmark information from a
panoramic visual image. For each detected landmark in turn its type (e.g. verti-
cal line in the image) and its compass bearing (their robot had a built-in magnetic
compass) were merged into a single what” (landmark type) and ”where” (land-
mark bearing) matrix. When a place cell was recruited the active units from the
”what-where” matrix were connected to it. The activity of the place cells was
calculated in two steps: first, the initial activation of a place cell was determined
as a product of the recognition level of a given feature and its bearing. Second, a
winner-take-all mechanism reset the activities of all but the winning cell to zero.
A delay in activation of the place cells between successive time steps allowed the
next layer to learn place transitions: an active cell from the previous time step
and an active cell from the current time step were connected to a transition cell
using Hebbian learning rule. This way when a place cell was active (i.e. a place
was recognized), it activated the associated transition cells thus ”predicting” all
possible (i.e. experienced in the past) transitions from that place. A transition
selection mechanism was trained in the goal search phase: after the goal was
found, the transition cells leading to the goal were activated more than others.
This goal-oriented bias in the competition among possible transitions allowed
the agent to find the goal.

The model of Arleo et al. [29,80,[31] is an earlier version of the model pre-
sented in the next section. In this model position and direction information
extracted from the visual input were combined with information extracted from
the self-motion signals and merged into a single space representation which was
then used for goal navigation. The visual processing pathway transformed a
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two-dimensional camera image into a filter-based representation by sampling it
with a set of orientation-sensitive filters. At each time step during an exploration
phase, the agent took four snapshots, one in each cardinal direction. For each ori-
entation, the filter activities were stored in a so called view cell. A downstream
population of visual place cells combined the information from all simultane-
ously active view cells using a Hebbian learning rule. In the parallel self-motion
processing pathway an estimation of position was performed by integrating sig-
nals from odometers. The self-motion position estimation was calibrated using
the visual position estimation. Similarly, the direction estimation was performed
by integrating rotations, but calibrated using a dedicated landmark (a lamp).
The self-motion and visual estimations of position were then combined in ”hip-
pocampal” place cells population using Hebbian learning. The authors proposed
a locale navigation system using reinforcement learning where the population of
the hippocampal place cells served as a state space. Each place cell projected to
four action cells, that coded for a movement in directions north, south, east and
west respectively. The projection weights stored an approximated state-action
value function and were modified using a reward-based learning method during a
goal search phase. During navigation the action cells population vector encoded
the direction of movement to the goal from any location in the environment.

3.2 A Model of Space Representation and Navigation

The computational model of the rat spatial behavior presented in this paper is an
extension of the previous model by Arleo et al. (Sect. B]) and is able to learn a
representation of the environment by exploration. Starting with no prior knowl-
edge, the system grows incrementally based on agent—environment interaction.
Information about locations visited for the first time is stored in a population
of place cells. This information is subsequently used for self-localization and
navigation to desired targets.

In the neural model of place cells, allothetic (visual) information is correlated
with idiothetic information (rotation and displacement signals from the robot’s
odometers) using Hebbian learning. This yields a stable space representation
where ambiguities in the visual input are resolved by the use of the idiothetic
information, and a cumulative error of path integration is accounted for by using
unbiased visual input.

Figure [I] presents a functional diagram of the model. Visual stimuli are en-
coded in the population of View Cells (VCs), which project to the population
of Allothetic Place Cells (APCs) where a vision-based position estimation is ac-
quired and to the population of Allothetic Heading Cells (AHCs) where current
gaze direction is estimated from the visual input. The transformation of the vi-
sual input to the vision-based representation is a part of the allothetic pathway
leading to the population of Hippocampal Place Cells (HPCs). In the second,
idiothetic, pathway, displacement and rotation signals from the odometers are
integrated over time to build an internal estimation of position in the Path Inte-
gration Cells (PIC) and gaze direction in the Heading Integration Cells (HIC).
The path and heading integration systems allow the rat to navigate in darkness



Spatial Representation and Navigation in a Bio-inspired Robot 251

Allothetic Pathway Idiothetic Pathway

local view odometers

Q H;L

| ']

i

Fig. 1. Functional diagram of the model. Dashed lines denote neural transformation of
a sensory input, solid lines denote projections between populations. See explanations
in the text

or in the absence of visual cues. Both allothetic (APC) and idiothetic (PIC) pop-
ulations project onto the HPC population where the final space representation
is constructed in the form of location sensitive cells with overlapping receptive
fields. Once the space representation has been learned, it can be used for nav-
igational tasks. A direction of movement to the goal from any location in the
environment is learned in the Action Cells population using temporal-difference
learning technique.

The model is tested in navigational tasks using a computer simulation as well
as a real Khepera robot which we refer to as 'agent’ in the text below. We now
discuss our model in detail.

Idiothetic Input. The idiothetic input in the model consists of rotation and
displacement signals from the agent’s odometers. In order to track current gaze
direction we employ a population of 360 Heading Integration Cells (HIC), where
each cell is assigned a preferred heading ; € [0°,359°]. Ifgis is the estimate of a
current gaze direction, the activity of cell 4 from the HIC population is given by

T,IEC = exp(—(¥i — 5)2/2012110) ’ (1)

enforcing a Gaussian activity profile around (ﬁ, where oyrc defines the width of
the profile. A more biologically plausible implementation of the neural network
with similar properties can be realized by introducing lateral connections be-
tween the cells where each cell is positively connected to the cells with similar
preferred directions and negatively connected the other cells. The attractor dy-
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namics of such an implementation accounts for several properties of real head
direction cells [32]. Here we employ the simpler algorithmic approach (D) that
preserves network properties relevant for our model. When the agent enters a
new environment arbitrary direction g is taken as a reference direction. When-
ever the agent performs a rotation, the rotational signal from the odometers is
used to shift the activity blob of the HIC population. Here again a simple al-
gorithmic approach is used where the new direction is explicitly calculated by
integrating wheel rotations and a Gaussian profile is enforced around it, although
more biologically plausible solutions exist [33}[34].

Having a current gaze direction encoded by the HIC population, standard
trigonometric formulas can be used to calculate a new position with respect to
the old position in an external Cartesian coordinate frame whenever the agent
performs a linear displacement. We define Path Integration Cells (PIC) popula-
tion as a two—dimensional grid of cells with predefined metric relationships, each
having its preferred position p; = (z;,y;) and activity

ri'¢ = exp(—(pi — p)*/20%1c) (2)

where p = (,7) is the estimate of position based on idiothetic information only.
Origin pp = (0,0) is set at the entry point whenever the agent enters a new
environment. The PIC population exhibits a two-dimensional Gaussian profile
with width opic around the current position estimation.

While the agent moves through an environment the activities of HICs ()
and PICs (2) encode estimates of its position and heading with respect to the
origin and the reference direction based only on the idiothetic input. They enable
the agent to navigate in darkness or return to the nest location in the absence
of visual cues, properties that are well known in animals [35]. The estimation
of direction and position will drift over time due to accumulating errors in the
odometers. Another problem is that the abstract Cartesian frame is mapped onto
the physical space in a way that depends on the entry point. Both problems are
addressed by combining the idiothetic input with a visual (allothetic) input and
merging the two information streams into a single allocentric map.

Allothetic Input. The task of the allothetic pathway is to extract position
and heading information from the external (visual) input. Based on the visually
driven representation the agent should be able to recognize previously visited
locations from a current local viewl]. Such a localization property can be im-
plemented by comparing a current local view to all previously seen local views
and using some similarity measure to recognize visited places (with a natural
assumption that similar local views signal for spatially close locations). This
comparison of the local views should take into account information about cur-
rent heading that can be estimated from the relative angles between the current
and all stored local views where the relative angles can in turn be computed
from the amount of overlap between the local view representations.

! The term "local view” is used to denote information extracted from the visual input
at a given time step.
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Fig. 2. Visual input and heading estimation. a: Two-dimensional panoramic image is
processed by a grid of S X R points with 8 Gabor filters of different orientations at each
point (filters are shown as overlapping circles, different orientations are shown only in
the lower-left circle). Responses of the filters are stored in a View Cell. b: Current
heading (;3 can be estimated from the maximal overlap C; between the current and a
stored local views corresponding to the angular difference Ay, (@)

The raw visual input in the model is a two-dimensional grey-level image, re-
ceived by merging several snapshots captured by the video camera of the robot
into a single panoramic (320° — 340°) picture imitating the rat’s wide view field.
Note that the individual directions and the number of the snapshots are not im-
portant as long as the final image is of the required angular width (the model would
perfectly suit for a single panoramic image as an input). In order to neurally rep-
resent visual input the image is sampled with a uniform rectangular grid of S x R
points (see Fig.[2(a), for the results presented here we used S = 96 columns and
R = 12 rows). At each point of the grid we place a set of 8 two-dimensional Gabor
filters with 8 different orientations and a spatial wavelength matched to the res-
olution of the sampling grid. Gabor filters are sensitive to edge-like structures in
the image and have been largely used to model orientation-sensitive simple cells
in the visual cortex [36]. Responses Fj, of K = S x R x 8 = 9216 visual filters
constitute the local view information L(¢, p) = { Fx(¢, p)}¥ that depends on the
heading direction ¢ and the position p where the local view was taken.

Local views perceived by the agent are stored in the population of View Cells
(VCs). At each time step a new VC i is recruited that stores the amplitudes of
all current filter responses L(¢;,p;). As the agent explores an environment the
population of View Cells grows incrementally memorizing all local views seen so
far. The place is considered to be well memorized if there is sufficient number of
highly active View Cells. The information stored by the VC population can be
used at each time step to estimate current heading and position as follows.

Allothetic Heading FEstimation. In order to estimate current heading based on
the visual input we employ a population of 360 Allothetic Heading Cells (AHC)
with preferred directions uniformly distributed in [0°, 359°]. Suppose that a local
view L;(¢;, p;) taken at position p; in direction ¢; is stored by a View Cell i at
time step t and the agent perceives a new local view ]AL(QZ), P) at a later time step
t', where ¢ and p are unknown (the local view information is time independent).
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This is schematically shown in Fig. P(b), where the arcs illustrate panoramic im-
ages (that elicit filter responses constituting the local views) with arrows showing
corresponding gaze directions. In order to estimate the current heading qg based
on the stored local view L; we first calculate the angular difference Ay, (mea-
sured in columns of the filter grid) between L and L; that maximizes the sum of
products C; of corresponding filter values (i.e. gives maximum of the correlation
function)

Ag, = maxCi(4) | 3)

Zfz Fls+4y) . (4)

Here f;(s) and f(s) are the sets of all filter responses in vertical column s of
the stored L; and current L local views respectively, s runs over columns of the
filter grid s € [0,.5 — 1].

The estimation of the current heading é performed using information stored
by a single View Cell i is now given by

¢ =¢i+0s , where (5)

6¢i = A¢i ’ V/S (6)

is the angular difference measured in degrees corresponding to the angular dif-
ference measured in filter columns Ag,, V' is the agent’s view field in degrees.

Let us transform the algorithmic procedure ([B)-(E) into a neuronal imple-
mentation. C;(Ay) is calculated as a sum of scalar products and can hence be
regarded as the output of a linear neuron with synaptic weights given by the ele-
ments of f; applied to a shifted version of the input }' . We now assume that this
neuron is connected to an allothetic head direction cell with preferred direction
Yj = ¢; + 64 and the firing rate

g = Ci(Ay) (7)

taking into account (@). The maximally active AHC would then code for the
estimation (;AS of the current heading based on the information stored in VC 1.

Since we have a population of View Cells (incrementally growing as the en-
vironment exploration proceeds) we can combine the estimates of all View Cells
in order to get a more reliable estimate. Taking into account the whole VC
population the activity of a single AHC will be

AHC Z C A¢> , (8)

ieVC

where for each AHC we sum correlations C;(Ay) with Ay chosen such that
¢i + 04 = 1j. The activations (8) result in the activity profile in the AHC
population. The decoding of the estimated value is done by taking a preferred
direction of the maximally active cell.
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Allothetic Position Estimation. As mentioned before, the idea behind the allo-
thetic position estimation is that similar local views should signal for spatially
close locations. A natural way to compare the local views is to calculate their
difference

L(¢i,pi, 6, D) = |Li(¢i pi) — I:(QZ%IA?)’ =3 ’fi(s) — f(s) L (9)

where f;(s) and f(s) are defined as in (@).

While exploring an environment the agent makes random movements and
turns in the azimuthal plane, hence stored local views correspond to different al-
locentric directions. For the difference (@) to be small for spatially close locations
the local views must be aligned before measuring the difference. It means that
(@) should be changed to take into account the angular difference d4, = qAS — i

where é is provided by the AHC population:

In (I0) Ay, is the angular difference 5@- measured in columns of the filter grid
(i.e. a whole number closest to dg, - S/V).
We set the activity of a VC to be a similarity measure between the local

views: X
2 A
ryc :eXp <_ (¢’le)¢,p)> , (11)

QUVCNQ

where Ng is the size of the overlap between the local views measured in filter
columns and ovyc is the sensitivity of the View Cell (the bigger ovyc the larger
is the receptive field of the cell). Each VC ”votes” with its activity for the
estimation of the current position. The activity is highest when a current local
view is identical to the local view stored by the VC, meaning by our assumption
that p ~ p;.

Each VC estimates current position based only on a single local view. In
order to combine information from several local views, all simultaneously active
VCs are connected to an Allothetic Place Cell (APC). Unsupervised Hebbian
learning is applied to the connection weights between VC and APC populations.
Specifically, connection weights from VC j to APC i are updated according to

sz] =" TAPC( ]\‘/C - wij) P (12)

where 7 is a learning rate. Activity of an APC i is calculated as a weighted
average of the activity of its afferent signals.

VCipi
JAPC _ 2’y Wi

’ > Wij
The APC population grows incrementally at each time step. Hebbian learning

in the synapses between APCs and VCs extracts correlations between the View

Cells so as to achieve a more reliable position estimate in the APC population.

(13)
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Combined Place Code. The two different representations of space driven by
visual and proprioceptive inputs are located in the APC and PIC populations
respectively. At each time step the activity of PICs (@) encode current position
estimation based on the odometer signals, whereas the activity of APCs (I3)
encode the position estimation based on local view information.

Since the position information from the two sources represent the same phys-
ical position we can construct a more reliable combined representation by using
Hebbian learning.

At each time step a new Hippocampal Place Cell (HPC) is recruited and
connected to all simultaneously active APCs and PICs. These connections are
modified by Hebbian learning rule analogous to (IZ). The activity of an HPC
cells is a weighed average of its APC and PIC inputs analogous to (I3)).

For visualization purposes the position represented by the ensemble of HPCs
can be interpreted by population vector decoding [37]:

pHPC HPC
i)HPC = s TH{D)]C 5 (14)
J'i
where ijPC is the center of the place field of an HPC j.
Such a combined activity at the level of HPC population allows the system
to rely on the visual information during the self-localization process at the same
time resolving consistency problems inherent in a purely idiothetic system.

Goal Navigation Using Reinforcement Learning. In order to use the po-
sition estimation encoded by the HPC population for navigation, we employ
a Q-learning algorithm in continuous state and action space [38][39,40,[3]. Val-
ues of the HPC population vector (I4]) represent a continuous state space. The
HPC population projects to the population of N4 Action Cells (AC) that code
for the agent’s motor commands. Each AC i represents a particular direction
; € [0°,359°] in an allocentric coordinate frame. The continuous angle §4€
encoded by the AC population vector

(15)

PAC _ octan ,TAC - sin(27i/NAC)
,7AC - cos(2mi /NAC)

determines the direction of the next movement in the allocentric frame of ref-
erence. The activity rA°¢ = Q(p"FC, a;) = > wiriPC of an Action Cell i

represents a state-action value Q(ﬁHPC, a;) of performing action a; (i.e. move-

ment in direction 6;) if the current state is defined by i)HPC. The state-action
value is parameterized by the weights wj; of the connections between HPCs and
ACs.

The state-action value function in the connection values wy; s learned ac-
cording to the Q-learning algorithm using the following procedure [38]:

1. At each time step t the state-action values are computed for each action
QPMC(t), ai) = ().
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2. Action a = a* (i.e. movement in the direction #AC defined by ([H)) is chosen
with probability 1—e (exploitation) or a random action a = a” (i.e. movement
in a random direction) is chosen with probability e (exploration).

3. A Gaussian profile around the chosen action a is enforced in the action cells
population activity resulting in 7A€ = exp(—(0 — ;) /203 ), where 6 and 6;
are the directions of movement coded by the actions a and a; respectively.
This step is necessary for generalization purposes and can also be performed
by adding lateral connectivity between the action cells [38].

4. The eligibility trace is updated according to
eij(t) = a-ej(t —1) +72(t) - 5 C(t) with « € [0,1] being the decay rate of
the eligibility trace.

5. Action a is executed (along with time step update t =t + 1).

6. Reward prediction error is calculated as
3(t) = R(t) +7v- QD" (1), a* (1) — QB (t = 1),a(t = 1)) ,
where R(t) is a reward received at step t.

7. Connection weights between HPC and AC populations are updated accord-
ing to Aw;(t) =n-6(t) - e;;(t — 1) with 5 € [0, 1] being the learning rate.

Such an algorithm enables fast learning of the optimal movements from any
state, in other words given the location encoded by the HPC population it learns
the direction of movement towards the goal from that location. The generaliza-
tion ability of the algorithm permits calculation of the optimal movement from
a location even if that location was not visited during learning. Due to the usage
of population vectors the system has continuous state and action spaces allowing
the model to use continua of possible locations and movement directions using
a finite number of place or action cells.

4 Experimental Results

In this section we are interested in the abilities of the model to (i) build a
representation of a novel environment and (%) use the representation to learn and
subsequently find a goal location. The rationale behind this distinction relates
to the so called latent learning (i.e. ability of animals to establish a spatial
representation even in the absence of explicit rewards [41]). It is shown that
having a target-independent space representation (like the HPC place fields)
enables the agent to learn target—oriented navigation very quickly.

For the experiments discussed in the next sections we used a simulated as
well as a real Kephera robots. In the simulated version the odometer signals
and visual input are generated by a computer. The simulated odometers error
is taken to be 10% of the distance moved (or angle rotated) at each time step.
Simulated visual input is generated by a panoramic camera placed into a virtual
environment.
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4.1 Development and Accuracy of the Place Field Representation

To test the ability of the model to build a representation of space we place the
robot in a novel environment (square box 100 cm.x100 cm.) and let it move in
random directions incrementally building a spatial map.

Figure [Bl(a) shows an example of the robot’s trajectory at the beginning of
the exploration (after 44 time steps). During this period 44 HPCs were recruited
as shown in Fig. Bib). The cells are shown in a topological arrangement for
visualization purposes only (the cells that code for close positions are not neces-
sarily neighbors in their physical storage). After the environment is sufficiently
explored (e.g. as in Fig.[3(d) after 1000 time steps), the HPC population encodes
estimation of a real robot’s position (Fig. Bl(c)).

Fig. 3. Exploration of the environment and development of place cells. The grey square
is the test environment. a: Exploratory trajectory of the robot after 44 time steps. Light
grey circle with three dots is the robot, black line is its trajectory. The white line shows
its gaze direction. b: HPCs recruited during 44 steps of exploration shown in (a). Small
circles are the place cells (the darker the cell the higher its activity). c: The robot is
located in the SW quadrant of the square arena heading west, white arc shows its view
field (340°). d: Population activity of the HPC population after exploration while the
robot’s real location is shown in (c¢). The white cross in (b) and (d) denotes the position
of the HPC population vector ([I4)
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Fig.4. a,b: Position estimation error in a single trial in X (a) and Y (b) directions
with (light conditions) and without (dark conditions) taking into account the visual
input. c,d: Position estimation error SD over 50 trials in X (c) and Y (d) directions in
the light and dark conditions

To investigate self-localization accuracy in a familiar environment we let the
robot run for 140 steps in the previously explored environment and note the
error of position estimation (i.e. difference between the real position and a value
of the HPC population vector ([4])) at each time step in the directions defined
by the walls of the box.

Figures B(a),(b) show the error in vertical (Y) and horizontal (X) directions
versus time steps ('light’ conditions, solid line) in a single trial. For comparison
we also plot the position estimation error in the same trials computed only by
integrating the idiothetic input, i.e. without taking into account visual input
(’dark’ conditions, line with circles). A purely idiothetic estimate is affected by
a cumulative drift over time. Taking into account visual information keeps the
position error bounded.

Figure [(c),(d) show the standard deviation (SD) of the position estimation
error in light and dark conditions over 50 trials in X and Y directions (the mean
error over 50 trials is approximately zero for both conditions). The error SD in
light conditions is about 12 cm (that corresponds to 12% of the length of the
wall).
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(a) (b) (c)

Fig. 5. a. Receptive field of a typical APC. b. Receptive field of a typical HPC. c.
Receptive field of the same cell as in (b) but in dark conditions

In order to inspect the receptive fields of the place cells we let the robot
systematically visit 100 locations distributed uniformly over the box area and
noted the activity of a cell at each step. Contour graphs in Fig. Bla),(b) show
the activity maps for an APC and a HPC respectively. APCs tend to have large
receptive fields, whereas HPC receptive fields are more compact. Each HPC
combines simultaneously active PICs and APCs (see Sect. [I]) allowing it to code
for place even in the absence of visual stimulation, e.g. in the dark (Fig. Bl(c)).
This is consistent with experimental data where they found that the place fields
of hippocampal place are still present in the absence of visual input [42].

4.2  Goal Directed Navigation

A standard experimental paradigm for navigational tasks that require internal
representation of space is the hidden platform water maze [17]. In this task the
robot has to learn how to reach a hidden goal location from any position in the
environment.

The task consists of several trials. In the beginning of each trial the robot
is placed at a random location in the test environment (already familiar to the
robot) and is allowed to find a goal location. The position of the robot at each
time step is encoded by the HPC population. During movements the connection
weights between HPC and AC populations are changed according to the algo-
rithm outlined in Sect. [[l The robot is positively rewarded each time it reaches
the goal and negatively rewarded for a wall hit. The measure of performance in
each trial is the number of time steps required to reach the goal (that corresponds
to the amount of time required for a rat to reach the hidden platform).

After a number of trials the AC population vector (10 encodes learned di-
rection of movement to the goal from any location pIFC A navigation map after
20 trials is shown in Fig. [6(a). The vector field representation of Fig. [6(a) was
obtained by rastering uniformly over the whole environment: the ensemble re-
sponses of the action cells were recorded at 100 locations distributed over 10x10
grid of points. At each point (black dots in Fig.[6l(a)) the population vector (IH)
was calculated and is shown as a black line where the orientation of the line
corresponds to ¢*C and the length corresponds to the action value Q(f)HPC, a*).
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Fig. 6. a: Navigation map learned after 20 trials, dark grey circle denotes the goal lo-
cation, black points denote sample locations, lines denote a learned direction of move-
ment. b: Time to find a goal versus the number of trials

As the number of learning trials increase, the number of time steps to reach
the goal decreases (Fig. B(b)) in accordance with the experimental data with
real animals [43].

5 Conclusion

The work presents a bio-inspired model of a representation—based navigation
which incrementally builds a space representation from interactions with the
environment and subsequently uses it to find hidden goal locations.

This model is different from the models mentioned in Sect. Bl in several
important aspects. First, it uses realistic two—dimensional visual input which
is neurally represented as a set of responses of orientation—sensitive filter dis-
tributed uniformly over the artificial retina (the visual system is similar to the
one used by Arleo et al. [31I], but in contrast it is not foveal in accordance with
the data about the rat’s visual system [44]). Second, the direction information
is available in the model from the combination of visual and self-motion input,
no specific compass or dedicated orientational landmark are used. Third, as in
the model by Arleo et al. the integration of the idiothetic information (i.e. path
integration) is an integrative part of the system that permits navigation in the
dark and supports place and head direction cells firing in the absence of visual
input.

The model captures some aspects of related biological systems on both be-
havioral (goal navigation) and neuronal (place cells) levels. In experimental neu-
roscience the issue of relating neuro-physiological properties of neurons to behav-
ior is an important task. It is one of the advantages of modeling that potential
connections between neuronal activity and behavior can be explored systemati-
cally. The fact that neuro-mimetic robots are simpler and more experimentally
transparent than biological organisms makes them a useful tool to check new
hypotheses and make predictions concerning the underlying mechanisms of spa-
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tial behavior in animals. On the other hand, a bio-inspired approach in robotics
may help to discover new ways of building powerful and adaptive robots.
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