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Fédérale de Lausanne (EPFL), Switzerland

Abstract

Modern psychological theories of spatial cognition postulate the existence
of a ‘geometric module’ for reorientation. This concept is derived from ex-
perimental data showing that in rectangular arenas with distinct landmarks
in the corners, disoriented rats often make diagonal errors, suggesting their
preference for the geometric (arena shape) over the non-geometric (land-
marks) cues. Moreover, experimentally observed sensitivity of hippocampal
cell firing to the changes in the environment layout was taken in support of
the geometric module hypothesis. Using a computational model of rat nav-
igation, we propose and test the alternative hypothesis that the influence of
spatial geometry on both behavioral and neuronal levels can be explained
by the properties of visual features that constitute local views of the envi-
ronment. Our modeling results suggest that the pattern of diagonal errors
observed in the reorientation task can be understood by the analysis of sen-
sory information processing that underlies the navigation strategy employed
to solve the task. In particular, two navigation strategies are considered: (i)
a place-based ‘locale’ strategy that relies on a model of grid and place cells,
and (ii) a stimulus-response ‘taxon’ strategy that involves direct association
of local views with action choices. We show that the application of the two
strategies in the reorientation task result in different patterns of diagonal
errors, consistently with behavioral data. These results argue against the
geometric module hypothesis by providing a simpler and biologically more
plausible explanation for the related experimental data. Moreover, the same
model can also describe behavioral results in watermaze tasks with fixed or
variable starting conditions.
Keywords: geometric module, rat behavior, view matching, navigational
strategies, computational model, place cells, grid cells, watermaze.
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Throughout the history of research on animal learning there have been conflicting
views concerning the fundamental issue of what animals learn during training in a spatial
task. Cognitive theorists such as Tolman proposed that animals acquire knowledge of the
environment layout, or a cognitive map (Tolman, 1948), whereas other theorists proposed
that animal learning consists of formation of stimulus-response (S-R) habits (Hull, 1943).
Recent behavioral and lesion data suggest that animals are able to use both the map-based
and S-R navigational strategies when solving spatial tasks; these strategies are mediated
by distinct memory systems (O’Keefe & Nadel, 1978; Packard & McGaugh, 1992, 1996;
White & McDonald, 2002), and hence may be learned in parallel and compete for control
of behavior (Devan & White, 1999; Packard & McGaugh, 1996; White & McDonald, 2002).

Further evidence suggested that external sensory cues are used differently depending
on the current strategy. The map-based, or locale, strategies, seem to favor distal (e.g
landmarks attached to a maze walls) over proximal (e.g. intramaze objects) cues (Biegler
& Morris, 1993; Cressant, Muller, & Poucet, 1997; Poucet, Lenck-Santini, & Save, 2003).
Moreover, configurations of distal cues are preferred over individual landmarks (Poucet et
al., 2003; Suzuki, Augerinos, & Black, 1980). In contrast, the S-R (or taxon) strategies
preferentially use proximal cues, when they are available, as beacons that signal the goal
location (Biegler & Morris, 1993). In the absence of proximal cues, they fall back to distal-
cue configurations (Eichenbaum, Stewart, & Morris, 1990).

A particularly striking evidence for the control of behavior by configural cues has been
observed during reorientation experiments in rectangular arenas (Cheng, 1986; Hermer &
Spelke, 1996; Margules & Gallistel, 1988). In a typical experiment a food-deprived animal
is shown the location of a food source in a rectangular arena with distinct landmarks in
the corners (Cheng, 1986). The animal is subsequently disoriented and is allowed to re-
locate the food source. Under these conditions the animals exhibit systematic rotational
errors, i.e. they often go to the location that is diagonally opposite to the correct location.
Since the correct and the diagonally opposite locations are indistinguishable with respect
to the rectangular shape of the arena, these data suggest that the geometric layout of
the arena, but not the identities of the corner landmarks, have been used by the animals
during goal search. Preference for the geometric cues in this and similar experiments gave
rise to the idea of a ‘geometric module’ (Cheng, 1986; Gallistel, 1990) which is considered
by many cognitive psychologists as a separate subsystem of the (vertebrate) animal brain,
responsible for reorientation in a familiar environment (Cheng & Newcombe, 2005; Wang
& Spelke, 2002).

In addition to the behavioral and lesion data, neurophysiological experiments provide
support for the separation of navigational strategies and for the importance of configural
distal cues for navigation. Activity of place cells in the hippocampus of the rat is highly
correlated with the location of the rat in the environment (Muller, Kubie, & Ranck, 1987;
O’Keefe & Dostrovsky, 1971). The rat’s position can be decoded with good accuracy from
the activity of a hundred of simultaneously recorded place cells (Wilson & McNaughton,
1993), suggesting that these cells store a representation of the environment, in agreement
with the cognitive map concept underlying locale strategies. Although the precise mecha-
nism by which place cells acquire spatial selectivity is not known, their tight anatomical and
functional relations with the upstream population of grid cells provide an insight into how

TO APPEAR IN PSYCHOLOGICAL REVIEW VOL. 116 ( 2009)



Sheynikhovich, Chavarriaga, Strösslin, Arleo and Gerstner. 3

the spatially selective network may be organized (McNaughton, Battaglia, Jensen, Moser,
& Moser, 2006; O’Keefe & Burgess, 2005; Solstad, Moser, & Einevoll, 2006). Grid cells have
been discovered in the dorsomedial entorhinal cortex one synapse upstream from the hip-
pocampal area CA1, a principal area containing place cells (Fyhn, Molden, Witter, Moser,
& Moser, 2004). Grid cells are also spatially selective, but their firing fields are organized in
a periodic triangular structure (a grid) covering the whole recording space (Hafting, Fyhn,
Molden, Moser, & Moser, 2005). Different cells have different spatial frequencies of their
firing grids, so that a simple summation of their outputs by the downstream population
can lead to a single-peaked activity akin to the Gaussian-like activity profile of a place
cell (Samsonovich & McNaughton, 1997). A one-synapse feed-forward network from grid
cells to place cells is suitable to perform such a summation operation (O’Keefe & Burgess,
2005; Solstad et al., 2006). This hypothesis is directly supported by the evidence that place
cells in CA1 exhibit location sensitive activity even without input from other areas, such
as CA3 (Brun et al., 2002). Due to its remarkable layered organization and periodicity of
firing fields, the grid cell network has been functionally related to path integration (Fiete,
Burak, & Brookings, 2008; Hafting et al., 2005; O’Keefe & Burgess, 2005), i.e. the ability
of an animal to integrate self-motion input (such as speed and direction of movement) over
time (Etienne & Jeffery, 2004). Since any efficient mapping system has to combine internal
(self-motion) with external (e.g. visual) information during the process of map-learning,
the combined network of grid cells and place cells may be considered as an implementation
of such a mapping system (McNaughton et al., 2006; O’Keefe & Burgess, 2005)

In agreement with the data suggesting the importance of distal cues for locale navi-
gation, place cells have been shown to rely on distal but not proximal cues. Rotation of a
single polarizing cue card attached to the wall of a maze, or of a set of objects located near
the wall of the maze, is followed by the corresponding rotation of place fields (Muller & Ku-
bie, 1987; Cressant, Muller, & Poucet, 1999). In contrast, rotation of the same objects but
located near the center of the maze fail to exert such a control (Cressant et al., 1997). Sig-
nificantly, grid cells have also been shown to rotate their firing fields following the rotation
of a distal cue (Hafting et al., 2005). The importance of configural cues for place cell firing
follows from the experiments where place cells were recorded while the geometric layout
of the environment changed (Gothard, Skaggs, & McNaughton, 1996; O’Keefe & Burgess,
1996). In these conditions, place cells either double (during environment stretching) or lose
(during environment shrinking) their place fields. Moreover, grid cells rescale their firing
fields in response to similar manipulations (Barry, Hayman, Burgess, & Jeffery, 2007).

A challenge to our understanding of mechanisms of spatial navigation is to explain
the behavioral data using available knowledge on anatomy and neurophysiology of neuronal
networks mediating spatial memory and goal learning. Here we address this challenge by
proposing a computational neural model of navigation which provides a unifying point of
view on the behavioral data described above and links these data to underlying neuronal
properties. The model implements locale and taxon goal-navigation strategies and focuses
on the influence of configurations of distal cues, represented by visual snapshots of the
environment. The representation of the environment employed by the locale strategy is
stored in a network of modeled grid and place cells, which link self-motion information with
visual input. Such a combination allows for a direct comparison between the properties of
modeled and real cells during environment manipulations, as well as between the model and
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animal behavior in navigational tasks where the location of a hidden target can be learned
by different strategies. Moreover, reorientation behavior in rectangular arenas can also be
analyzed using the same model, suggesting a set of experimental predictions concerning cell
activity during reorientation behavior.

One of the central properties of the proposed model, namely the use of visual snap-
shots as a principal source of external input, is closely related to the issue of view-based
matching approach to model navigation (Collett & Collett, 2002). Such an approach has
a long history in the study of insect navigation (see, e.g. Cartwright and Collett (1982,
1983)), but recently attracted attention in relation to the study of human (Epstein, Gra-
ham, & Downing, 2003; Gaunet, Vidal, Kemeny, & Berthoz, 2001) and rat (Cheung, Stürzl,
Zeil, & Cheng, 2008; Stürzl, Cheung, Cheng, & Zeil, 2008) navigation as well. In addition
to the standard approach in which a similarity between snapshots is used directly to drive
(taxon) behavior (Cheung et al., 2008; Collett & Collett, 2002), our model suggests that
snapshots can also be used to build an allocentric representation of the environment. As we
show below, the properties of spatial representation built in this way may directly explain
a number of neural (e.g. deformation of place fields in manipulated environments) and
behavioral (e.g. rotational errors during reorientation) phenomena, that were previously
explained by assuming the existence of an additional process (like, for example, the pro-
cess of extracting distances to walls (Barry et al., 2006), or the process of extracting the
environmental shape information from sensory input (Cheng, 1986)).

The Model

In our model the simulated rat moves through a virtual arena surrounded by walls.
The size of the arena and visual features on the walls are chosen depending on the ex-
perimental paradigm. At each time step, the visual input is given by a snapshot of the
environment processed by a large set of orientation-sensitive visual filters, while the self-
motion input is represented by the speed vector corresponding to the last movement. The
motor actions are generated in the model by two separate pathways (Figure 1). The first,
taxon navigation pathway, associates visual input directly with motor actions and rep-
resents anatomical connections between the cortex and the dorsal striatum of the basal
ganglia (caudate-putamen in the rat). The second, locale navigation pathway, generates
actions based on a representation of space learned in a simplified model of place cells in the
CA1 area of the hippocampus. The activity of model place cells encodes the location of the
simulated animal and is further associated with motor actions, presumably encoded by the
nucleus accumbens (NA) of the ventral striatum. The place cells receive feed-forward input
from a population of simulated grid cells, similarly to CA1 cells that receive direct input
from grid cells in layer II of the dorsomedial entorhinal cortex (dMEC) (Brun et al., 2002;
Fyhn et al., 2004). The modeled grid cells perform integration of self-motion cues over time
(i.e. path integration) and are influenced by visual input (Hafting et al., 2005). Further
details of the model implementation are given below and fully elaborated in the Appendix.

Visual Input

Visual snapshots are generated by a simple computer graphics algorithm (ray casting,
Foley, van Dam, Feiner, and Hughes (1995)) depending on the position and orientation of
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Figure 1. Model overview. Visual input is processed by a set of orientation-sensitive Gabor filters
that project to the caudate-putamen (CP) of the dorsal striatum (blue arrows, taxon navigation
pathway) and also to the hypothetical view cells (red arrows, locale navigation pathway). Grid
cells (GC) in the dorsomedial entorhinal cortex (dMEC) receive self-motion input and visual input,
preprocessed by the population of view cells (VC). Grid cells connect to place cells (PC) in the
hippocampal area CA1. The place cells project to the nucleus accumbens (NA) of the ventral
striatum. The dorsal and ventral parts of the striatum are modeled by two populations of action
cells (AC). Cells in the CP encode a taxon strategy, while those in the NA encode a locale strategy.

the simulated rat in the virtual environment (all environments used in our simulations
are shown in Figure 2). Experimental evidence suggests that in the rat (i) the variation
in ganglion cell density is relatively small across the retina and the receptive field size of
the cells is approximately constant (Kolb & Tees, 1990); (ii) the vast majority of cells
(∼90%) in the primary visual cortex are orientation sensitive and the size of the center
of their receptive field (e.g. of the ON center) is 3-13◦ in diameter (Girman, Sauvé, &
Lund, 1999). As a simplification, we model the output of the primary visual processing
system as responses of a set of overlapping orientation-sensitive complex Gabor filters of
width σg = 1.8◦ (spatial wavelength 2σg) distributed uniformly across the view field (300◦)
using a rectangular sampling grid of 96x12 locations and 8 orientations at each location.
Examples of (simplified) filter representations of two snapshots from virtual environments
N-I and B-II are shown in Figure 3B.
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Figure 2. Testing environments used in computer simulations. In each row the right part of the
figure shows an example snapshot of the room and the left part of the figure shows the top view
of the virtual room. The black dot and the arrow show the position and direction at which the
snapshot was taken. The dotted line in the top view of the room N-I marks the area accessible to
the model rat in this environment. The dashed line in rooms N-IIa-e and N-IIIa-e marks a linear
trajectory of the model rat. The circle in the top view of room B-I marks the border of the simulated
watermaze. Environment B-II is used in the simulations of the experiment of Cheng (1986).
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Snapshots (or their filter representations) represent spatial information in the egocen-
tric (i.e. view-point dependent) frame of reference. As such, they can be used to generate
egocentric goal-oriented actions, such as approaching a visible target. A simple example of
such behavior would be to move forward keeping the landmark with shape ‘i’ (Figure 3A,
env. B-II) in the center of the view field (assuming that the reward location is in front of
that landmark). Note that in this case no knowledge about the current head direction or
position in the room is required to reach the goal. In our model, navigation in an egocentric
reference frame is mediated by the taxon pathway (see below).

Visual snapshots in the model are also used to support behavior organized in an
allocentric reference frame (i.e. fixed with respect to the environment), mediated by the
locale navigation pathway. During exploration of a novel environment, snapshots of unfa-
miliar views are stored in hypothesized view cells. The activity of a view cell i at time t
depends on the similarity between the momentary pattern of filter activities at time t and
the pattern stored in the cell i. The activity is maximal if the current view matches the
stored view. Note that views taken from the same location but with different directions of
gaze (i.e., different head directions) look very different. Therefore, in order to measure the
similarity between views, we apply the following three-step procedure: First, we estimate
the momentary head direction based on information currently available in the population
of view cells (see Appendix, Equations A10 and A11); second, we rotate the representation
of the current view by the difference in head direction between the current and the stored
view; third, we evaluate the difference between the filter activities of the rotated and the
stored view (Equation A12). Under the assumption that the current head direction was
estimated correctly, view cells code for the location in the environment in allocentric coor-
dinates (Figure 3C). Nevertheless, the egocentric aspect of views shows up in the fact that
the activity of the view cells is maximal, if the current gaze direction coincides with the one
used during initial exploration. View cells in our model represent memory of local views
which seem to be stored (in humans) outside of the hippocampus (Gillner & Mallot, 1998;
Spiers, Burgess, Hartley, Vargha-Khadem, & O’Keefe, 2001).

Goal-Oriented Behavior

Motor actions are encoded in the model by two hypothesized populations of action
cells that represent motor-related output of caudate-putamen (CP) or nucleus accumbens
(NA), respectively. The caudate-putamen, in particular its lateral part (Devan & White,
1999), is thought to be involved in the development of stimulus-response behavior, in which
a set of stimuli is repeatedly associated with a rewarded motor response (Packard & Mc-
Gaugh, 1992, 1996; White & McDonald, 2002). The nucleus accumbens of the ventral stria-
tum receives direct projection from the CA1 area of the hippocampus (Kelley & Domesick,
1982) and has been hypothesized to associate location information with reward and emo-
tional information to produce goal-directed motor behavior (Brown & Sharp, 1995; Redish,
1999). Lesions of the CP and NA differentially impair the animal’s ability to learn S-R
or spatial tasks, respectively (Annett, McGregor, & Robbins, 1989; Packard & McGaugh,
1992; Sutherland & Rodriguez, 1990).

In agreement with these data, action cells in our model of CP receive direct feed-
forward input from the visual filters, while action cells in the modeled NA receive input from
place cells (see Figure 1). In each population, there are many action cells and the activity
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Figure 3. Processing of visual input in simulated environments N-I (left column) and B-II (right
column). A. Example snapshots with 300◦ horizontal view field. B. Responses of visual filters
applied to the input snapshots shown in A. Filter responses are drawn as black lines centered at
different positions in the filter grid. The length of a line is proportional to the mean amplitude
of 8 Gabor filters with different orientations centered at the point (zero amplitude is shown as
a black dot). The orientation of the line is determined by the mean orientation of the filters,
weighed by the corresponding amplitudes. Mean values are shown for clarity, all filter amplitudes
are used in the model without averaging. Inset shows an example of a Gabor filter sensitive to a
vertical edge in its receptive field (not to scale) C. Firing maps show the receptive fields of view
cells that store snapshots shown in A, calculated with exact allocentric head direction and averaged
over all orientations. Arrows show the position and orientation of the simulated rat at which the
corresponding snapshots were taken. Polar plots show firing rate of the view cells as a function of
head direction. The activity is maximal for Φ = 47◦ (N-I) or Φ = 11◦ (B-II) which corresponds to
the head direction of the stored view.
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of each action cell encodes a different direction of movement. The preferred directions of
the action cells in a population span 360◦, such that the population activity can be treated
as a distributed code for the movement direction. An important difference between the two
action cell populations is that the activity of the action cells in CP is considered to encode
the egocentric rotation angle, while the activity of the cells in NA is treated as a code for
the allocentric direction of movement.

In a typical scenario involving the taxon strategy, the simulated rat is placed in an
environment and receives visual input in the form of a set of visual filter activities, corre-
sponding to the currently perceived snapshot. The visual input results in an activation of
action cells in the CP, which is interpreted by the simulated rat as a motor command to turn
by the resulting angle. As a simplification, we do not model the movement of the rat along
the resulting direction, but simply assume that the rat would move straight until it hits an
obstacle. If the chosen direction is correct the rat would reach the goal (e.g. the hidden
platform in a watermaze) and receive a reward, otherwise it will hit a wall (no reward).

In a typical locale strategy scenario, the rat is placed in an environment and an
estimation of the current allocentric location and head direction is given by the activity
of place cells (described below). The place cell activity results in an activation of motor
cells in the NA, interpreted by the rat as a motor command of moving in an allocentric
direction encoded by the action-cell activity. After the movement is performed (the extent
of the movement is defined as the constant speed of the rat multiplied by the size of the
time step, see Table A1), the new location will correspond to a different pattern of place-cell
activity, resulting in the next movement and so on until the goal is reached (or the trial
time is over). Upon reaching the goal a reward is given.

The trajectory of the rat in a particular trial, and hence the success or failure in
reaching the goal in that trial, is fully determined by the synaptic strengths (connection
weight values in the model) between the visual filters and action cells in the CP (taxon
strategy), and between the place cells and action cells in the NA (locale strategy). Learning
consists in adjusting the weight values to maximize performance. The theoretical framework
of reinforcement learning (Sutton & Barto, 1998) suggests how the weight values may be
learned by an online reward-based algorithm which minimizes the difference between the
predicted and received reward (see Appendix). Such a reward prediction error is thought
to be encoded in the activity of the dopaminergic neurons in the substantia nigra pars
compacta (SNc) and ventral tegmental area (VTA) of the basal ganglia (Schultz, Dayan,
& Montague, 1997; Schultz, 1998). Experimental evidence suggests that dopaminergic
neurons in the SNc project to the CP and lesions of SNc specifically impair stimulus-
response behavior (Da Cunha et al., 2003, 2006) and, moreover, dopamine input seems to
be required for plasticity to take place in the cortico-striatal synapses (Pawlak & Kerr,
2008). The NA receives dopaminergic input from the VTA (Sesack & Pickel, 1990) and
lesions of NA produce deficits in the hidden, but not visible, version of the watermaze
task (in naive rats, Annett et al. (1989)). Here, we do not model explicitly SNc and VTA
but simply assume that the reward prediction error signal (in the form of the δ variable
in Equation A4) arrives at the synapses between the visual filters and CP action cells (or
between the place cells and NA action cells) after an action has been performed.
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Spatial Representation

The evidence for the involvement of the hippocampus in navigation (Morris, Garrud,
Rawlins, & O’Keefe, 1982; O’Keefe & Nadel, 1978) is complemented by behavioral data
suggesting its role in latent learning (O’Keefe & Nadel, 1978), path integration (Whishaw &
Maaswinkel, 1997) and development of stimulus-stimulus associations (White & McDonald,
2002). On the neural level these data have been related to the properties of place cells in
the areas CA3-CA1 of the hippocampus, since their firing fields develop during unrewarded
exploration (Hill, 1978; Wilson & McNaughton, 1993), persist in darkness (Quirk, Muller,
& Kubie, 1990) and depend on multiple sensory stimuli (Gothard et al., 1996; O’Keefe &
Burgess, 1996).

However, dMEC grid cells, directly upstream from the CA1, were shown to possess
similar properties. Namely, firing fields of the grid cells were shown to develop rapidly during
exploration, persist in darkness and rotate their firing fields following rotation of visual cues
(Fyhn et al., 2004; Hafting et al., 2005). Moreover, direct ‘feed-forward’ projections from
the dMEC to CA1, bypassing dentate gyrus and CA3, are sufficient to produce place fields
(Brun et al., 2002). These data suggest that place cells in CA1 may inherit their spatially
correlated firing from the grid cells (O’Keefe & Burgess, 2005; Solstad et al., 2006).

In our model, several grid-cell populations encode the position of the simulated rat
in the environment, while place cells represent simple feed-forward readout of the grid-cell
activity (see Figure 1). More specifically, recurrent connectivity in each grid-cell population
results in localized ‘activity packets’ which change their positions according to internally
generated speed and direction information. The hardwired pattern of connectivity is chosen
such that firing fields of the cells in each population are periodic, and the translation of
the speed information into the movement of activity packets is chosen to produce triangular
grids of experimentally observed spacing, orientation and field size (Figure 4D,E). Place cells
are ‘recruited’ during exploration by rapid Hebbian learning, i.e. a new cell is connected to
all strongly active grid cells and the connection weights are initialized by the presynaptic
activities. Simple summation of the activities of presynaptic grid cells with different spatial
frequencies of their grids results in a Gaussian-like receptive field of a single place cell
(Figure 4B) (McNaughton et al., 2006; O’Keefe & Burgess, 2005; Solstad et al., 2006). This
is consistent with the evidence showing that hippocampal neurons perform linear summation
of their synaptic inputs (Cash & Yuste, 1999; Gasparini & Magee, 2006).

Grid cells in the model are influenced by visual input, that is preprocessed and stored
in the view cells mentioned above. In visually non-ambiguous environments, spatially close
locations share similar visual features, and therefore a subset of simultaneously active view
cells represents a particular location in the environment. This allocentric position code is
used in the model to correct a mismatch between the path integration and visual input,
resulting from a cumulative error in the path integrator or from changes in visual envi-
ronment. The correction mechanism is implemented in the form of connections between
the view cells and grid cells. The connection weight between a grid cell and a view cell
is set according to the Hebbian rule, i.e. it is high if the cells are simultaneously active
above certain threshold and low otherwise. Once the weights are set, an activity profile in
the view cell population will induce an allocentric location signal in each of the grid cell
populations, resulting in a shift of the grid-cell activity packets toward the visual estimate
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(see Appendix, Equations A13, A14 for details).

Visual input plays an important role upon the entry to a familiar environment. More
precisely, when the simulated rat is placed in a familiar environment, the positions of the
activity packets in the grid-cell populations are set according to the visual input. Such an
initialization of the path integration network by the visual input represents a ‘recall’ of the
familiar environment by the simulated rat (Samsonovich & McNaughton, 1997).

Results

The following three sections describe the model behavior in different experimental
paradigms. The first set of simulations describes properties of model neurons along the
locale navigation pathway, focusing on the changes in their activity following changes in
the geometric layout of the experimental arena. The second set of simulations addresses
the ability of the model to perform goal search in watermaze-like simulated environments.
The last set of simulations investigates how the geometric layout of the environment can
influence goal-oriented behavior, and relates our results to the concept of the geometric
module introduced in the beginning of the paper. The results of the three sets of simulations
taken together suggest that a model without a geometric module is able to account for the
influence of the environment shape on grid cells, place cells and behavior.

Simulation 1. Deformation of Place Fields and Rescaling of Grid-Cell Firing Patterns

The hypothesis of place field formation by direct summation of presynaptic activity of
grid cells is attractive because of its simplicity (McNaughton et al., 2006; O’Keefe & Burgess,
2005; Solstad et al., 2006). However, it is not clear whether this hypothesis can explain the
dependence of the place field shape on the geometry of the environment (Gothard et al.,
1996; O’Keefe & Burgess, 1996). It is equally unclear how the rescaling of the grid cell firing
patterns in response to environment changes (Barry et al., 2007) can be put in agreement
with the deformation of hippocampal place fields.

Place field formation by summation of grid-cell activities predicts a co-modulation of
place and grid cells in response to environmental changes. Animals can sense these changes
via visual input, which can in turn influence place cells and grid cells. Since place cells
and grid cells are driven not only by vision but also by path integration, the interaction
between these two types of sensory input is likely to play a role in the induction of changes
in the cell activity in response to environmental changes (Byrne, Becker, & Burgess, 2007;
Samsonovich & McNaughton, 1997). Hence, we first illustrate the interaction between visual
input and path integration in our model in a fixed familiar environment, and then turn to
the analysis of the activity of place and grid cells in stretched and shrunk environments.

Methods.

In this simulation, five different computer experiments were conducted. In Exper-
iment 1 the activities of place and grid cells were analyzed, while the simulated rat was
moving in quasi-random directions within a square experimental arena of 1×1 m located
in the middle of a large room with multiple visual features (environment N-I, Figure 2 and
Figure 3). Before the analysis of place fields was performed, exploration was simulated
by allowing the simulated rat to visit uniformly distributed locations and orientations in
the environment for 3000 time steps, which correspond to about 6 minutes of exploration.

TO APPEAR IN PSYCHOLOGICAL REVIEW VOL. 116 ( 2009)



Sheynikhovich, Chavarriaga, Strösslin, Arleo and Gerstner. 12

At each time step a newly recruited view cell memorized a corresponding snapshot of the
environment. Similarly, a newly created place cell memorized the active subset of grid cell
population (see Appendix for details). After all 3000 locations were visited, the weights
between view cells and grid cells were set according to the cross-correlation rule (Equa-
tion A13) capturing the essence of Hebbian learning: cells that are active together became
connected with stronger weights (Kali & Dayan, 2000; Samsonovich & McNaughton, 1997).
In order to test whether the model can reproduce the rotation of the firing fields in response
to the rotation of visual cues (Hafting et al., 2005; Muller & Kubie, 1987), the cue-rotation
was simulated by interrupting the simulation, rotating all the visual cues by 90◦ clockwise
and restarting the simulation from a different location.

In Experiments 2-5 with shrinking and stretching environments two series of rect-
angular rooms were used (N-II and N-III, Figure 2). In each series the first room (N-IIa
and N-IIIa) is referred to as ‘original’ environment and the other rooms as shrunk (N-II)
or stretched (N-III) versions of the original room. All rooms had the same width (0.86 m)
and their lengths were 1.72 m, 1.42 m, 1.12 m, 0.82 m and 0.52 m for the N-II series and
0.52 m, 0.66 m, 0.82 m, 0.96 m and 1.12 m for the N-III series. The lengths were chosen
to approximate the real experimental conditions (Gothard et al., 1996; O’Keefe & Burgess,
1996). Each room had gray walls 0.6 m high and a white floor and ceiling (Figure 2).

In Experiment 2, a set of shrinking rectangular environments (N-II) was used, and
the simulated rat was running back and forth along a line parallel to the northern wall of
the enclosure, simulating movement along a linear track. During the exploration phase, the
simulated rat explored the linear track in the original environment (N-IIa) similarly to the
exploration phase of Experiment 1, except that the head direction was either 0◦ or 180◦

according to the direction of movement. In the testing phase, the simulated rat was exposed
to each of the shrinking environments (N-IIb – N-IIe) in turn; place-cell activities were
analyzed while the simulated rat was moving along the track in these novel environments.
Exploration and testing phases in Experiment 3 were identical to those in Experiment 2
except that this time, the series N-III of stretching environments was used.

In Experiment 4, the series of shrinking environments N-II was used; exploration
phase was similar to that in Experiment 2, but now the simulated rat was allowed to move
in two dimensions. During the testing phase, it moved in a zigzag fashion through the testing
boxes such that directional dependence of the two-dimensional place fields could be assessed.
Exploration and testing phases in the last experiment (Experiment 5) were identical to those
in Experiment 4 except that this time the series N-III of stretching environments was used.

In the model, learning of a new environment assumes that grid cell firing patterns
are fixed with respect to the environment during an initial exploration (the assumption is
used to calculate connection weight values between view cells and grid cells, Equation A13).
This assumption is supported by the recording data of Hafting et al. (2005) showing that
entorhinal grid cells exhibit stable firing patterns from the outset of exploration in complete
darkness for as long as 20 min. Such a remarkable stability of firing suggests that even in the
absence of visual input, firing grids of entorhinal cells are fixed to the environment, possibly
by using other sources of external input (Maaswinkel & Whishaw, 1999; Save, Nerad, &
Poucet, 2000) in combination with a particular exploration strategy (Whishaw, Hines, &
Wallace, 2001). It was shown previously that suitable exploration strategies involving return
to previously visited places lead to a stable learning of the connections from view to place
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cells even in the presence of a noisy path integrator (Arleo & Gerstner, 2000). Since for
the purpose of the present paper we were not interested in exploration strategies per se, we
simply fix the firing grid to the environment by setting noise in the path integrator to zero
during exploration. During testing, we simulate the cumulative error by setting the error
in the path integrator to 10% of the displacement and rotation from the previous step.

In order to analyze changes in population activity of place cells induced by the en-
vironment deformation, we compared the population firing in deformed environments to
that in the original environment in Experiments 2 and 3. A coefficient of cross-correlation
between the population firing patterns (or population vectors) in the deformed and original
environments served as a measure of similarity (Gothard et al., 1996). If rpc

i (x) denotes
the firing rate of place cell i at location x in a deformed environment and rpc

i (y) denotes
the firing rate of the same cell at location y in the original environment, the coefficient of
cross-correlation between the population vectors is given by:

cxy =

∑

i r
pc
i (x)rpc

i (y)
√

∑

k (rpc
k (x))2

√

∑

l (r
pc
l (y))2

,

where the denominator ensures that the coefficient of cross-correlation of two identical
population vectors cxx = 1. Each element of the cross-correlation matrix ||cxy|| shows how
similar population vectors are in a deformed and the original environments at locations x
and y, respectively.

Results and Discussion.
Our simulations show that grid cells and place cells in the model exhibit firing patterns

similar to those recorded in real neurons. After learning, these firing patterns are stable
in time despite the fact that the modeled path integration is subject to cumulative errors.
This stability is due to the associative connections between visual snapshots (stored in the
view cells) and grid cells, learned during exploration. These associative connections can also
explain the deformation of place fields and rescaling of grid-cell firing patterns in stretching
or shrinking rectangular environments.

During the testing phase of the Experiment 1 (square room), the cumulative error in
the path integrator was corrected by visual input (represented by visual snapshots of the
environment), both in the population of grid cells (Figure 4A,D,E) and the population of
place cells (Figure 4A,B). Rotation of visual cues was followed by the rotation of the firing
pattern of grid cells (Figure 4F), and place cells (Figure 4C) in areement with experimental
data (Hafting et al., 2005; Muller & Kubie, 1987)). In the model, the rotation of place
fields is a direct consequence of the initialization of the position of grid cell ‘activity packet’
according to the visual input from view cells.

In shrinking and stretching environments (Experiments 2-5), place cells that had
fields near walls in the original environment kept their fields near the walls in the novel
environments, for both one-dimensional and two-dimensional movement regimes (e.g. cells
1 and 4, Figure 5A and cell 1, Figure 5B ). In contrast, cells with peak firing near the middle
lost their fields in the shrunk environments (cells 2 and 3, env. N-IId, N-IIe, Figure 5A),
whereas their fields became doubly-peaked in the stretched environment (cell 2, env. N-IIIe,
Figure 5B), similarly to biological CA1 cells (Gothard et al., 1996; O’Keefe & Burgess, 1996;
Redish, Rosenzweig, Bohanick, McNaughton, & Barnes, 2000).
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Figure 4. Firing fields of modeled grid cells and place cells. A. Trajectory of the modeled rat during
testing phase in a square simulated environment with superimposed locations where the firing rate
of one modeled place cell (green) and one modeled grid cell (violet) were higher than 0.7 of their
maxima over the whole environment. B,C. Color coded rate maps of the place cell shown in A
during testing in the normal condition (B) and when all visual cues were rotated 90◦ clockwise (C,
the black bar denotes cues on the northern wall in the non-rotated environment). D,E. Rate maps
of two cells from grid-cell populations with indices n = 2 (D, grid orientation 3◦, the same cell as
shown in A) and n = 4 (E, grid orientation 9◦) during testing. F. Rate map of the cell shown in E
with all cues rotated 90◦ clockwise.

To check that the same effects can be observed on the level of the whole place cell
population, we compared the population activity in the deformed environments with that
in the original environment (for one-dimensional movement, Experiments 2 and 3). The
similarity of the population firing, expressed as the cross-correlation between the firing rates
at each position in the original environment and those at each position in the deformed
environment (see Methods in this section), is illustrated in Figure 6. The disappearance of
place fields in shrunk environments corresponds on the cross-correlation plots to the zero
correlation between the population firing rates near the middle of the original environment
(Figure 6A, N-IId,e). The doubling of the place fields in strongly stretched environments
can be seen by observing that when the simulated rat moves from left to right (Figure 6B,
N-IIId,e, top), the high correlation band crosses the middle (dotted) line earlier than the
rat reaches the middle of the stretched environment, and the same happens when the
simulated rat moves in the opposite direction (Figure 6B, N-IIId,e, bottom). Therefore,
the resulting place field, averaged over the two directions of movement, consists of two
components, the activation of which will depend on the movement direction of the simulated
rat (Samsonovich & McNaughton, 1997).
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Figure 5. Place fields in shrinking and stretching environments. A. Place fields (firing rate as a
function of the simulated rat position on the track) of four modeled CA1 cells in the original (N-IIa;
top row) and shrunk (from top to bottom: N-IIb, N-IIc, N-IId, N-IIe) environments during the
rightward movement. B. Two-dimensional place fields of two different place cells for the original (N-
IIIa) and stretched (N-IIIe) versions of the box for leftward movement (right), rightward movement
(2nd right), and averaged across the two directions (2nd left). The direction of movement is shown
by the black arrow on top of the plots.
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Figure 6. Similarity of population firing patterns in the original and deformed environments. Each
plot shows cross-correlation cxy between firing rate vectors of the place cell population (yellow - high
correlation, green - low correlation, see Methods of Simulation 1) that correspond to position y of
the simulated animal in the original environment (vertical axis) and its position x in the deformed
environment (horizontal axis). The red lines correspond to the locations of the cross-correlation
maxima if the population firing were determined only by path integration. The black dotted line
corresponds to the middle of the original environment. In all plots, a cell that in the original
environment has its place field near the middle, in the deformed environment will have its place field
shifted to the position corresponding to the crossing between the middle line and the high correlation
band. A. Cross-correlation matrices for the original (N-IIa) and 4 shrunk (N-IIb-e) environments for
two directions of movement (shown by the black arrow on top of the plots). Cells near the middle
of the original environment lose their place fields when the deformation is strong, as shown by the
zero correlation of firing rates near the middle line for environments N-IId,e. B. Cross-correlation
matrices for the original (N-IIIa) and 4 stretched (N-IIIb-e) environments. Cells near the middle
of the original environment double their place fields when the deformation is strong (environments
N-IIId,e). During rat movement from left to right, cells in the middle fire closer to the left wall in
the stretched track (small arrow in the top panel, env. N-IIIe), whereas they fire closer to the right
wall during movement from right to left (small arrow in the bottom panel, env. N-IIIe)
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Stability of place fields near walls is explained in our model by similarity of visual
(snapshot) information in the original and deformed environments, when the simulated rat
is close to the walls. In this case, the visual input is strong enough to control the position
of the place fields. However, when the rat is moving at a long distance from the walls, both
path integration and visual input contribute to place cell firing. Path integration in the
model works by shifting the activity packet in a grid cell layer from one group of cells to
the next. In the case of deformed environments, visual input either speeds up (in shrunk
environments) or slows down (in stretched environments) the movement of the activity
packets. Speeding up of the activity packets results in narrow place fields, while slowing
them down widens the fields. Very strong deformation results in disappearance or doubling
of place fields (Samsonovich & McNaughton, 1997). Strong shrinking causes the activity
packets to lose their coherence with downstream place cells due to periodicity in their firing
locations, making the place fields disappear. Strong stretching of the environment causes
asymmetry of stretched place fields: when moving from left to right, left part of the field
is more active; whereas during the leftward movement the right part of the field is more
active (O’Keefe & Burgess, 1996).

Next, we looked at the grid cell activity during two-dimensional movement in the de-
formed environments (Experiments 4 and 5). For small amount of shrinking or stretching,
we observed rescaling of the firing grids (environments N-IIb and N-IIIb Figure 7) in agree-
ment with the data from Barry et al. (2007). However, a stronger deformation resulted in
disappearance (shrinking, N-IIc-e, Figure 7A) or doubling (stretching, N-IIId-e, Figure 7B
) of firing fields near the middle of the environment. Moreover, for some amounts of stretch-
ing the double fields became asymmetric, similarly to the firing fields of downstream place
cells (Figure 7B, insets for cells 4 and 5, env. N-IIIc). In contrast to the place fields, the
asymmetry in the grid cell firing disappeared for even stronger deformation (inset for cell 5,
env. N-IIId in the same figure). The latter effect is due to the periodicity of the firing fields:
when the spatial frequency of the double fields becomes equal to the spatial frequency of
the grid, the double field loses its directional dependence. The disappearance and doubling
of grid-cell firing fields was not reported by Barry et al. (2007), possibly due to the fact
that they analyzed only one shrunk (amount of shrinking was 0.70 relative to the baseline)
and one stretched (amount of stretching was 1.43 relative to baseline) environment. In our
model, the disappearance and doubling effects on the level of grid cells were observed for
stronger shrinking (i.e. for environments shrunk to less than 65% of the size of the original
environment) and stronger stretching (i.e. stretched to more than 157% of the original size),
see Figure 7.

Thus, experimental data on place-field deformation in shrunk or stretched environ-
ments can be explained by visual feature processing, from visual input to grid cells and
from grid cells to place cells, without recognition of walls or explicit calculation of distances
to walls. In this case the apparent influence of the geometric layout on place and grid cell
activity (which is sometimes taken as an evidence for the importance of the shape of sur-
rounding space for spatial processing, in relation to the problem of the geometric module,
see Wang and Spelke (2003)), is accounted for by the mismatch correction between visual
and self-motion cues. Such a mismatch correction mechanism per se is independent from any
geometry-related information (as in, e.g., Experiment 1 of the present set of simulations)
but is expressed in the Experiments 2-5 in a way that might be interpreted as influence of
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Figure 7. Rescaling of the firing pattern of a modeled grid cell in response to environment defor-
mation. A: firing fields of three grid cells from populations n = 2, 4, 6 (from top to bottom, the
grid orientations are 3◦,9◦ and 15◦, respectively) in the training environment N-IIa and 4 shrunk
environments (N-IIb-e, amount of shrinking relative to the training environment 0.83, 0.65, 0.48 and
0.30, respectively). B. Firing fields of three different grid cells from populations n = 1, 2, 4 (from top
to bottom, the grid orientations are 0◦,3◦ and 9◦, respectively) in the training environment N-IIIa
and 4 stretched environments (N-IIIb-e, amount of stretching relative to the training environment
is 1.27, 1.57, 1.81 and 2.15, respectively). Insets for cells 4 and 5: firing fields of the same cells for
different movement directions. Rescaling is observed for smaller amount of deformation (shrinking:
N-IIb, stretching: N-IIIb). Stronger deformation results in disappearance of firing fields near the
middle of the environment (shrinking: N-IIc-e) or doubling of the fields near the middle (stretching:
N-IIId,e). For an intermediate amount of stretching the double fields exhibit a dependence on the
direction of movement (cells 4, 5, N-IIIc), however the directional dependence disappears for even
stronger stretching (cell 4, N-IIId).
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geometry. On the level of grid cells our model predicts that (i) grid cell rescaling should
be observed even in the absence of functional connections between grid cells and place cells
and (ii) switching visual input off during a recording session in a deformed environment
should eliminate the rescaling effect.

We note here that our explanation of the place-field shape deformation and grid
rescaling depends heavily on the presence of external sensory cues that make the information
about layout changes available to the rat. Therefore, in the case when external sensory cues
are removed, the model predicts that path integration will take control over place fields for
a longer time, compared to the case when external cues are present. This explanation is
consistent with the data of Gothard, Hoffman, Battaglia, and McNaughton (2001) showing
that in a shrinking linear track, place fields are aligned with the (movable) starting position
longer in the dark than in the light.

Simulation 2: Hidden Goal Navigation in the Water Maze

In this set of simulations we examined learning of goal-oriented strategies in the
model. For this purpose, we simulated two watermaze tasks in which rats had to learn
the location of a hidden goal. The Morris watermaze task with variable starting locations
(see Figure 8A) has been shown to depend critically on the hippocampus (Morris et al.,
1982) and is generally considered as a standard test of spatial memory (McDonald, Hong,
& Devan, 2004). Animals trained in this task can immediately generalize to novel starting
locations (Morris, 1981), suggesting that they acquired a representation of spatial layout of
the surrounding environment. However, when started from the constant starting location
(see Figure 8B) in each trial, animals with hippocampal lesions were almost as successful
as normal rats (Eichenbaum et al., 1990), suggesting that a different memory system was
used in this case, which might store the stimulus-response association between the extra-
maze cues visible from the start and the heading towards the hidden platform (Da Cunha
et al., 2006). Further experiments have shown the dependence of such a stimulus-response
behavior on brain areas along the taxon pathway, i.e. CP (Packard & McGaugh, 1992,
1996; White & McDonald, 2002) and substantia nigra (SNc) (Da Cunha et al., 2003, 2006).
In contrast to the hippocampus-dependent locale strategy, taxon strategies produce stereo-
typed trajectories, as demonstrated by the inability of fornix-lesioned rats to find the hidden
platform from a novel starting position (Eichenbaum et al., 1990).

Methods.

Both the variable-start and constant-start tasks were simulated in a square room of
2 m × 2 m with high walls and multiple visual cues. The experimental arena, located in
the center of the room, was surrounded by a gray circular wall 1.2 m in diameter and 0.2 m
high so as to simulate the wall of the watermaze (environment B-I, Figure 2). An invisible
target area 6 cm in diameter located in the southwest quadrant of the simulated watermaze
served as a hidden goal.

Before training (i.e. during the exploration phase), the simulated rat explored the
watermaze without the platform in order to learn place fields, similarly to the previous
simulation. After exploration, the simulated rat could use either taxon or locale navigational
strategy to learn the goal location. Ten different rats were simulated and results were
averaged across the 10 simulated animals.
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Figure 8. Experimental setup for two water maze tasks. The large circle represents top view of
the circular water maze. The black dots mark the starting positions in the maze (denoted N, E, S
and W). The small dotted circle marks the area of the hidden platform in the simulated maze. A.
Variable-start condition (Morris, 1981). B. Constant-start condition (Eichenbaum et al., 1990).

In our model, learning of the two strategies occurs in the synapses between the visual
filters and action cells in CP (for the taxon navigation), and between place cells in the
hippocampus and action cells in NA (for the locale navigation). Similarly to the dorsal-
striatum- and hippocampus-dependent pathways in the rat (Devan & White, 1999; Packard
& McGaugh, 1996; White & McDonald, 2002), the locale and taxon pathways in the model
are independent and therefore they can learn in parallel and compete for control of behavior.
A simplified model of competition was adopted in the simulations: in each trial the simulated
rat used two strategies to reach the hidden platform in two separate runs. A strategy was
considered either successful (coded by 1) or not successful (coded by 0), depending on a
performance criterion (see Figure 9A,C). The winning strategy for each trial was determined
by a running average, based on the number of successes in the 10 preceding trials. Such a
simple competition scheme allows for a separate analysis of ‘intact’ vs ‘lesioned’ simulated
rats. An intact animal is assumed to always choose the winning strategy, while a lesioned
animal can only use a strategy that is not affected by the lesion.

In Experiment 1, simulated rats were tested in the variable-start condition. During
training, the simulated animals learned to go to the invisible platform. A training trial
started by placing the simulated rat in one of the four starting positions (Figure 8A),
chosen at random in the beginning of the trial. The initial orientation of the simulated rat
was randomly chosen between 0◦ and 360◦. If the goal was hit (during the locale strategy
run) or the head direction after rotation was straight to the platform (for the taxon strategy
run), the simulated rat received positive reward (R = 1). Wall hits during locale strategy
runs were negatively rewarded (R = −0.5)

In Experiment 2, the rats were tested in the constant-start condition. The training
was identical to that in Experiment 1, except that the same position S was used in each
trial (Figure 8B). After training was completed, the rats were tested from novel starting
positions. All weights in the model were kept fixed, and the simulated rats were given 100
testing trials from each of the positions W and E, not used during training.
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Results and Discussion.

In order to explore goal-oriented behavior of the model, we simulated Morris water
maze task with variable-start and constant-start conditions. In both conditions, the simu-
lated rat was able to learn the task. We analyzed the role of the locale and taxon strategies
for both conditions.

Simulation results show that in the variable-start condition the locale strategy was the
winner across all training trials and quickly reached a high average success rate (Figure 9D,
left). In contrast, the success rate of the taxon strategy did not increase significantly
during training, suggesting that the taxon strategy was not able to learn this task (see
also Figure 9C, left). Thus, the model is consistent with the experimental data showing
that intact animals rely strongly on the locale strategy in this task, and that lesions of
the hippocampus (or NA) disrupt learning, whereas lesions along the taxon pathway (i.e.
SNc or CP) do not produce any impairment (Da Cunha et al., 2006; Morris et al., 1982).
Moreover, an analysis of the escape latency (Figure 9A, left) revealed that when using
locale strategy, the simulated rat learned rapidly during the first 4-5 trials and achieved,
after approximately 15 trials, an asymptotic performance (Morris, 1981).

In the constant-start condition, both strategies were able to learn the location of the
hidden platform (Figure 9D, right). These results are consistent with the evidence that the
task can be solved by intact animals as well as animals with lesioned fornix (i.e. the axon
bundle that connects hippocampus to NA) (Eichenbaum et al., 1990). An analysis of the
escape latency and heading distributions support further these results (Figure 9A,C right).
In addition, learning of the taxon strategy is slower at the beginning of training, while its
performance is superior than that of the locale strategy after prolonged training, suggesting
that for an intact animal the preference for the taxon strategy increases with experience
(Packard & McGaugh, 1996).

To examine the ability to generalize to novel starting locations, the simulated rat
was tested from two novel starting positions (W and E) after the training in the constant-
start condition (S). When the simulated rat was using the locale strategy, it generalized
immediately to the novel starting locations, as shown by the comparison of the average
escape latencies from the novel and familiar locations (Figure 10A,B). The reason for the
good generalization ability in the case of the locale strategy is that during training the
simulated rat had a possibility to learn the direction of swimming to the platform from
most of the locations in the maze, despite the fact that it started always from the same
location (as illustrated by the action map acquired by the simulated rat during constant
start condition, Figure 9B, right). In contrast, the taxon strategy was disrupted by novel
visual cues, such that in all trials the direction to the platform was estimated incorrectly
(Figure 10A,C).

Together, these results demonstrate that configurations of distal cues, encoded in vi-
sual snapshots, can be successfully used to learn to approach a hidden platform from variable
starting locations using a hippocampal position code (Morris, 1981), as well as learn the
direction to the platform in the constant-start condition using direct sensory-motor associa-
tions (Eichenbaum et al., 1990). The two simulated memory systems function independently
and mediate the ‘allocentric’ (locale) and ‘egocentric’ (taxon) navigation strategies. In the
variable-start condition, the form of spatial memory acquired during learning is flexible in
generating novel paths, while in the constant-start condition the memory is limited to a
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Figure 9. Simulation results of the variable-start (left column) and constant-start (right column)
watermaze tasks. A. Evolution of the escape latency for the locale strategy. Trials where the escape
latency was below a threshold (dashed line) were considered successful for the locale strategy. The
threshold was chosen as µstab + σstab, where µstab and σstab are the average values of the escape
latency and its standard deviation when the performance stabilized (in the present simulations after
20 trials). B. Action maps acquired by the locale strategy during training. The arrows show learned
directions to the platform (open circle) from the sample locations. The black dots mark starting
positions of the simulated rat. C. Distributions of heading errors during 200 training trials for the
taxon strategy. Zero error corresponds to the case when the simulated rat heads directly towards
the center of the platform. Trials where the direction estimation error was within 10◦ (dashed lines)
were considered successful for the taxon strategy. D. The curves show for each trial the average
number of successes across 10 preceding trials for the locale (red) and taxon (blue) strategies. The
colored bar at the top of the plot shows the winning strategy. In the variable-start condition, the
locale strategy is winning (left). In the constant-start condition, both strategies have similar success
rates, but eventually the taxon strategy takes over (right).
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Figure 10. Novel-start tests. A. Success rates for the locale (red) and taxon (blue) strategies in 200
testing trials from starting positions W and E. The taxon strategy fails, leaving the locale strategy
as a clear winner. B. Mean escape latency ±SE from the novel starting positions for the locale
strategy (white), in comparison to the latency of the first training trial (random search, black) and
the asymptotic latency (gray) for the variable-start task. C. Distributions of estimated directions
to the platform for the taxon strategy, measured during 200 trials from the novel starting positions
W (left) and E (right). Zero is aligned with the direction to the platform. Bin size is 1◦.

fixed set of stimulus-response associations and thus produces stereotyped behavior (O’Keefe
& Nadel, 1978).

Simulation 3: Reorientation in Rectangular Environments

According to the geometric module hypothesis (Cheng, 1986; Hermer & Spelke, 1996;
Wang & Spelke, 2002), an animal reorients itself upon the entry into a familiar environment
using solely the geometric shape of the environment, but not other, non-geometric, features,
such as textures, colors, odors or visual landmarks. Since the shape information must be
somehow extracted from the sensory input, the conceptual brain module (Fodor, 1983) that
extracts it, must discard the non-geometric information present in the sensory input, or,
equivalently, be impenetrable to it (Gallistel, 1990).

This hypothesis is based on two main experimental results originally described by
Cheng (1986) for rats and later reproduced with other species (see Cheng and Newcombe
(2005) for review). The first one is derived from a working memory task and consists
in the observation (Cheng, 1986) that rats often make rotational errors when they try to
relocate a previously found food in a rectangular arena with distinct landmarks in the
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corners (Figure 11A). More precisely, in this experiment rats searched for food near the
correct location in 46% of trials, and near its diagonally opposite location in 28% of trials
(they searched far from both locations during the remaining 26% of trials, Figure 11C). The
pattern of errors did not change even after extensive training. This result was interpreted
as a preference for the room geometry information over the landmark information during
reorientation. The second result is that in the same environment, but in a different task
(reference memory task, Figure 11B) the rats could use landmarks to identify goal location.
When rats were trained to go always to the same corner from the center of the box, the
percentage of rotational errors decreased gradually to ≈ 22% compared to ≈ 76% of correct
trials (Cheng, 1986). This and similar results are usually interpreted as an evidence that
although the non-geometric cues can be used after specialized training, they are not used
during reorientation, supporting the impenetrability argument (Cheng, 1986; Hermer &
Spelke, 1996; Wang & Spelke, 2002).

Results of the simulations performed in the previous section suggest a different in-
terpretation of these data. Since in the first task of the experiment of Cheng (Figure 11A)
different starting positions were used in each trial, the only successful strategy is the locale
strategy. The taxon strategy can not be applied in this case, due to the lack of stable
sensory-response associations linked with reward. Hence, the rotational errors, and their
stability over time, might have been caused specifically by the application of the locale strat-
egy. However, since the second task (Figure 11B) permits a stable association of cues and
reward, the rats could use a taxon strategy in this task, which might explain the observed
decrease in the number of rotational errors. Why are rotational errors more prominent in
the locale strategy than in the taxon strategy?

A crucial difference between the two strategies is that the locale strategy encodes ac-
tions in an allocentric frame of reference (i.e. a coordinate system that is fixed with respect
to external cues), while the taxon strategy in an egocentric one (i.e. with respect to the
current view). Since all actions performed by the organism are inherently egocentric, the
locale strategy requires a coordinate transformation, and in order to perform this transfor-
mation, current allocentric position and head direction need to be estimated. In contrast,
for taxon strategies such a coordinate transformation is not needed, since all actions are
performed with respect to the currently visible cues.

In our model, the allocentric position and head direction are determined during a
reorientation phase by matching the currently perceived snapshot (represented by the re-
sponses of the orientation-sensitive visual filters to the input image) with snapshots stored
in memory during exploration (see Equations A10–A14). In a rectangular environment with
symmetrically arranged landmarks, as well as in the environments where one of the walls
has a different color (Cheng, 1986; Hermer & Spelke, 1996), the snapshots taken in opposite
directions from rotationally opposite locations are highly similar (in terms of the difference
between their filter representations). Hence, the rotational errors can be caused by the
ambiguity of visual cues in the process of snapshot matching. The following set of simula-
tions was designed to check whether the key experimental results from Cheng (1986) can
be reproduced by our model, i.e. without an explicit geometry-related processing module.

Methods.

The simulations were conducted in a virtual environment, designed in analogy to the
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setup used in the experiment of Cheng (1986), and consisted of a rectangular arena with
gray walls and distinct landmarks in the four corners. The arena size was 1.2 m × 0.6 m
with walls 0.6 m high (environment B-II, Figure 2 and Figure 3).

Similarly to the watermaze experiment described above, 10 animals were simulated
and two experimental conditions were used: variable-start and constant-start. The two con-
ditions corresponded to the working memory and reference memory experiments of Cheng
(1986), respectively.

Experiment 1 aimed to show that the reorientation procedure, required by the lo-
cale strategy in the variable-start condition, is subject to rotational errors caused by the
ambiguity in the visual input during snapshot matching. After the standard exploration
phase (i.e, for 3000 time steps), 1000 reorientation trials were performed. In each trial,
the simulated rat was placed at one of five starting positions as denoted in Figure 11A.
Initial orientation was randomly chosen between 0◦ and 360◦. Once placed at the starting
location, the simulated rat performed a reorientation procedure, i.e. the current allocentric
heading was estimated from the set of local views stored during the exploration phase and
the path-integration network was reset accordingly (Equations A10–A14). The outcome
of a reorientation trial was considered as correct when the absolute value of the difference
between the estimated and a real allocentric headings was less then 20◦, as a rotational error
when the difference was greater then 160◦, and a miss, otherwise. The same procedure as
above was repeated in the cue-rich environment N-I and the symmetric environment N-IIIa
(with quasi-random starting positions) in order to estimate the dependence of the number
of rotational errors from the number of polarizing visual cues.

To measure spatial receptive fields of view cells (for one simulated animal), we placed
the simulated animal at a set of locations distributed over a regular grid in each of the
simulated environments (B-II, N-I and N-IIIa). At each point of the grid the simulated
animal was oriented at 8 different orientations. For each position and orientation, the
reorientation procedure was performed as described above and the activities of all view
cells were calculated with the estimated allocentric heading.

Experiment 2 was designed analogous to the reference memory task of Cheng (1986)
with fixed starting condition. Our simulations tested the suggestion that switching to taxon
strategy can decrease the number of rotational errors, when the simulated rat starts always
from the same position in the box. In this experiment the simulated rats were trained to turn
towards the same landmark from the same starting position (the center of the box) across
all training trials. The initial orientation of the simulated rat was randomly chosen between
0◦ and 360◦ at the start of the trial. This phase was performed identically to the taxon
training in Simulation 2. The reward was given when the heading of the simulated rat after
the end of the trial was not more than ±10◦ off from the direction towards the landmark
in the north-west corner (i.e. the simulated rat performed a ‘correct’ turn). Otherwise,
no reward was given. If the resulting heading was within ±10◦ of the direction to the
rotationally opposite corner, it was considered a ‘rotational error’. The ratio between the
number of correct turns and that of rotational errors was calculated for each trial, averaged
over animals and smoothed with 100-trial-kernel.

Results and Discussion.

We simulated the working memory experiment of Cheng (1986) that led to the hy-
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pothesis of the geometric module. The results of simulations show that reorientation errors
in the model correspond well to the rotational errors observed by Cheng (1986) (Figure 11C).
We found that reorientation was correct in 45% of trials and resulted in a rotational error
in 27% of trials (in the remaining 28% of trials the estimated heading was neither correct
nor rotationally opposite).

We next asked the question how our model would perform in the environments that
have either more or fewer polarizing cues than the environment used in the experiment of
Cheng (1986). We found that the simulated rats made no orientation errors in the cue-rich
environment N-I, since snapshots taken in different directions can be distinguished well by
the visual system (Figure 11C). In contrast, the heading was estimated correctly as often
as a rotational error was made in a perfectly symmetric rectangular environment N-IIIa.

The crucial role of the view-based heading estimation for the simulation results are
illustrated in Figure 12. Estimation of heading in the simulated environment of Cheng
(1986) and in the symmetric environment is subject to rotational errors, as seen from
the doubly-peaked histograms (Figure 12A, B-II and N-IIIa). The rotational errors in
environments B-II and N-IIIa are caused by the similarity of visual snapshots taken from
rotationally opposite locations, and are hence due to the (nearly) symmetric layout of the
environment. In the cue-rich environment, however, where such a symmetry does not exist,
no rotational errors were observed (Figure 12A, N-I).

Rotational errors made during heading estimation lead to rotational errors during
self-localization. In the model, this is illustrated by the doubly-peaked spatial receptive
fields of view cells in the environment B-II and in the symmetric environment (Figure 12B,
B-II and N-IIIa, respectively). The part of the receptive field in the location rotationally
opposite to the correct one (marked by the arrows in Figure 12B), is caused by the rotational
errors in heading estimation. Note that the receptive fields are single-peaked if the heading
is always estimated correctly (see Figure 3C). We emphasize that the activity in the view
cell population is always single peaked and corresponds to either the correct or rotationally
opposite position, depending on the heading error (Figure 12C,D). The population activity
can be interpreted as the internal estimation of the current position by the animal, and
suggests that when the rotational error is committed, the animal ‘thinks’ that it is at the
position which is rotationally opposite to the correct one. On the basis of these results
we propose that the error in heading estimation ultimately causes the animal to search for
a goal in a place which is diagonally opposite to the actual food location (Cheng, 1986;
Margules & Gallistel, 1988; Pearce, Good, Jones, & McGregor, 2004).

Although all three environments considered in our simulations were rectangular, the
percentage of rotational errors with respect to the total number of errors changed from
0 (environment N-I) to ≈50% (environment B-II) to ≈70% (environment N-IIIa). Such
a gradual increase in the number of orientation errors upon a reduction of the number
of polarizing visual cues indeed suggest that rotational errors are caused in the model by
structure of visual features rather than by the arena geometry.

According to our hypothesis, a decrease in the number of rotational errors in the
experiment with fixed start (Figure 11B) can be explained by the application of a taxon
strategy. This suggestion is supported by the simulation results (Figure 11D). In the be-
ginning of training in the constant-start condition, the percentage of rotational errors was
as high as the number of correct turns, but gradually decreased with learning until about
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Figure 11. Experimental setup and simulation results for the experiments of Cheng (1986). A.
Working memory task. The large rectangle is the environment, corners contain distinct landmarks.
The small crosses mark starting positions. In the first part of a trial rats searched for food hidden
at the location marked by the solid circle (the solid arrow shows the direction to the food source
from one of the staring locations, that may have been learned by the simulated rat during the
learning phase). Once the food was found and partially eaten, the rat was removed, disoriented
and placed at a different starting position (e.g. near the northern wall) from which it had to find
the remaining food. The rats in this experiment often made rotational errors, i.e. from the new
starting location they went towards the place that was rotationally opposite to the place where the
food was hidden. The dotted circle marks the location rotationally opposite to the correct food
location, and the dashed arrow shows a direction of movement corresponding to the rotational error
from the new starting position. Different food locations and starting positions were used in different
trials. B. Reference memory task. The experimental protocol is the same as in A except that the
starting position (cross) and food location (circle) remain constant from trial to trial. C. Bars show
percentage of correct choices, rotational errors and misses for real (black, data from Cheng (1986))
and simulated (dark gray, env. B-II) rats in the experiment described in A. Animal data combine
the rat choices in two versions of the working memory task (Cheng, 1986). Results of the same
task performed by the simulated rats in the cue-rich (N-I) and symmetric (N-IIIa) environments are
shown in light gray and white, respectively. D. Smoothed ratio of the number of ‘rotational errors’
and that of ‘correct trials’ during the simulation of the reference memory task described in B, as a
function of the number of trials (see Methods of Simulation 3). The dotted and dashed lines show
the asymptotic ratios for the real rats in the working memory and reference memory experiments,
respectively (Cheng, 1986).
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Figure 12. Allocentric coding in the view-cell population. A. Absolute values of the error in heading
estimation in the simulated environment of Cheng (1986) (B-II, left), the cue-rich environment N-
I (middle) and the symmetric environment N-IIIa (right) for one simulated animal. Bin size 2◦.
B. Receptive fields of example view cells in the three environments, calculated using a view-based
estimation of the allocentric heading (see Methods of Simulation 3). Arrows show the position and
orientation of the simulated rat at which the corresponding snapshots were taken. Note that the
receptive fields of view cells are double-peaked in the environment B-III (left) and N-IIIa (right), but
single-peaked in the cue-rich environment N-I (middle). The cells in B-II and N-I are the same as
those shown in Figure 3B and Figure 3A, respectively. C,D. Activity in the population of view cells
when the simulated rat is located at the position and orientation that corresponds to the preferred
position and orientation of the cells shown in B. Each dot represents a view cell. The position of
the dot represents the location from which the snapshot was taken when the view cell was learned.
The elevation of the dot from the horizontal plane and its color correspond to the activity of the
cell (colors from blue to red code for activity levels from low to high). C. Population activity when
the allocentric heading is estimated correctly. D. Population activity when the heading is estimated
with 180◦ error.
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30%, reproducing qualitatively the results of Cheng (1986).
These results clearly show that although the visual system of the simulated rat can use

landmark information to locate the goal in an egocentric search scenario, this information
does not prevent the simulated rat from making rotational errors during reorientation within
an allocentric frame of reference (Figure 11C and Figure 12). In impoverished environments,
visual features from the edges of walls are often more salient than those from the landmarks,
leading to rotational errors when the arrangement of landmarks is symmetric.

In addition to providing a possible explanation for the data of Cheng (1986), the
simulation results are consistent with the data showing that rotational errors disappear
when rats are allowed to see non-ambiguous extra-maze cues (Margules & Gallistel, 1988)
and that in a rectangular water maze without corner features approximately half of the
errors are rotational errors (Margules & Gallistel, 1988; Pearce et al., 2004). Results of the
experiments with rats (Cheng, 1986) and children (Hermer & Spelke, 1996) suggest that
changing the color of one of the walls does not help to decrease the number of rotational
errors, in favor of the impenetrability argument mentioned above. The model is consistent
with these data simply due to the fact that the visual system in the model is not sensitive
to brightness and color of the visual stimuli, but only to contrast. Put differently, our
results suggest that edge-like visual stimuli are more salient than uniform stimuli during
reorientation.

The rotational errors during navigation in the working memory task are explained in
our model by rotational errors during the initial self-localization when the animal is replaced
into the environment. The self-localization error is caused by the ambiguity of visual cues
which gives rise (in the case of a rectangular environment with different lengths of adjacent
sides) to two different choices of directional reference. This ambiguity is resolved during
head direction estimation (Equation A10) such that on the level of view cells and place
cells the information about the cue ambiguity is lost and can not be used to correct the
rotational error, even after the rat fails to observe the food at the expected location. In
other words, the animal does not keep a memory of its initial uncertainty. This is a direct
consequence of our model approach and could be tested in experiments.

General Discussion

We have presented a model of navigation which is able to use an egocentric taxon
strategy and an allocentric locale strategy to remember a goal location. The taxon strategy
associates momentary views of the environment (snapshots) directly with rewarded mo-
tor actions, and supports stimulus-response (S-R) behavior. The locale strategy is based
on the memorized representation of the environment, which is built by associating visual
snapshots with path integration in populations of grid cells and place cells. Place cells be-
come associated with rewarded motor actions during goal learning, supporting place-based
navigation.

Our model uses a view-based approach in order to (i) explain several key neurophysio-
logical properties of grid cells and place cells; (ii) reproduce S-R and place-based behaviors
of normal and lesioned rats in the watermaze; and (iii) provide an explanation for key
experimental results concerning the influence of environmental geometry on goal-search be-
havior. The view-based approach to the study of place-sensitive activity in the hippocampal
formation provides an alternative to other approaches that require calculation of distances
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to environmental boundaries (Barry et al., 2006; Hartley, Burgess, Lever, Cacucci, & Keefe,
2000), or landmark detection (Sharp, 1991; Touretzky & Redish, 1996). Moreover, the
view-based explanation of geometry-related effects is biologically more plausible than the
explanation involving a dedicated brain module for geometry processing (Cheng, 1986; Her-
mer & Spelke, 1996; Cheng & Newcombe, 2005). These results tie together four important
lines of research on animal spatial cognition: the role of place cells for behavior; the role of
different navigational strategies; the role of geometry of space for spatial orientation; and
the role of learning. These four aspects will now be discussed in detail.

Grid Cells and Place Cells

In our model, visual input is represented exclusively by snapshots of the environment
sampled by a large set of overlapping orientation sensitive filters. Despite this simple, low-
level representation, the model is able to capture a number of neurophysiological properties
of grid and place cells: (1) CA1 and dMEC cells exhibit spatially-localized and grid-like
firing patterns, respectively (Fyhn et al., 2004; O’Keefe & Conway, 1978); (2) anatomical
topology is not observed in the CA1 population, but cells in the dMEC are organized in
several subpopulations with different spatial frequencies and orientations (Hafting et al.,
2005; Muller & Kubie, 1987; O’Keefe & Conway, 1978); (3) firing fields of both cell types
rotate following a rotation of visual cues (Hafting et al., 2005; Muller & Kubie, 1987); (4)
CA1 cells stretch their fields if the environment is stretched and some place fields disappear
when the environment is shrunk (O’Keefe & Burgess, 1996; Redish et al., 2000); and (5)
firing fields of entorhinal grid cells rescale in response to stretching or shrinking of the
environment (Barry et al., 2007).

Computational models of place cells (Arleo and Gerstner (2000); Burgess, Recce,
and O’Keefe (1994); Hartley et al. (2000); Kali and Dayan (2000); Samsonovich and Mc-
Naughton (1997); Sharp (1991); Touretzky and Redish (1996) to cite only a few) and grid
cells (Burgess, Barry, & O’Keefe, 2007; Fuhs & Touretzky, 2006; McNaughton et al., 2006;
Rolls, Stringer, & Elliot, 2006) are numerous. In this work we do not propose a new model
of place cells or grid cells, but rather try to answer the question whether the feed-forward
projection hypothesis for CA1 place-cell formation is consistent with known properties of
place cells, e.g. dependence of place-field shapes on the geometric layout of the environment
(O’Keefe & Burgess, 1996), or their dynamics during movement along a shrinking linear
track (Gothard et al., 1996). The results of our simulations suggest that the answer is pos-
itive. Several previous models of place cells addressed the issue of place field deformation
in response to environment manipulation (Byrne et al., 2007; O’Keefe & Burgess, 1996;
Samsonovich & McNaughton, 1997), while the phenomenon of rescaling of entorhinal firing
patterns has not been considered so far and hence our results are novel in this respect.

The key property of place cells is that their spatial firing fields are fixed with respect
to the external environment, making it possible to treat their activity as a location signal.
In our model, this property is mainly due to the connections from view cells (via grid cells)
to place cells. The activity of a view cell depends strongly on the current allocentric location
of the animal, and only weakly on the current allocentric orientation (see Figure 3), such
that a population of view cells can reliably fix the place field in the environment. Hartley
et al. (2000) put forward a model of place cell firing, in which boundary vector cells play
a role similar to that of view cells in our model. A boundary vector cell (BVC) responds
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maximally when the set of distances to currently observed boundaries matches those to
which the BVC is tuned. Consider an environment in which the only visual cues are formed
by the edges of a wall (i.e. no visual pattern is present on the wall, the floor or the ceiling of
the environment). Under the assumption that the current allocentric heading is estimated
correctly, a view cell that stores a snapshot in direction Φ in this environment, would be
equivalent to a BVC with preferred direction Φ. The preferred distance of the BVC would
be encoded in the position of the wall edges on the snapshot image.

However, despite their equivalence in some cases, view cells are conceptually different
from BVCs, since distance calculation and image matching are quite different operations.
The difference is immediately seen if, in our example, the height of the wall is changed
after the environment has been explored. The change in the wall height would cause view
cells in our model to fire in a different location, defined by view matching. In a navigation
task, such a change would cause the animal to search for a goal in a different position, with
respect to the environment where the height of the wall remained the same. No such change
would be observed in the BVC model. To our knowledge, there is no experimental data
on rats that can provide direct support for one or the other model. For species other than
rats (e.g. honeybees and pigeons), experimental evidence suggest that visual information is
treated differently depending on the species (K. Cheng, personal communication).

The model of place cell firing described here includes visual input and path integration
and does not take into account the potential role of olfactory and tactile information. This
is a clear limitation of the present model and has to be addressed in a future work.

Taxon and Locale Strategies

On the behavioral level, the model reproduces rat behavior in variable- and constant-
start versions of the watermaze task and is consistent with a number of lesion studies. In a
common view, locale strategies involve cognitive mapping abilities which allow the animal
to compute its path (i.e. perform some sort of trajectory planning) towards the place where
the goal was encountered previously (Morris, 1981; O’Keefe & Nadel, 1978). This is usually
put in contrast to ‘stimulus-response’ (S-R) learning which associates motor responses to
relevant stimuli using Pavlovian-like conditioning mechanisms (Packard & McGaugh, 1996;
Devan & White, 1999).

In our model, both taxon and locale strategies learn to approach the goal using
the same reward-based algorithm that associates stimuli with motor responses and hence
can both be considered as S-R based strategies, in contradiction to the common view. The
distinction between the two strategies in our model lies in the fact that the notion of stimulus
‘S’ is interpreted differently for the two strategies. In the case of taxon strategy, the stimuli
are directly encoded as visual features, and become associated with motor actions during
reward-based learning. In contrast, the locale strategy is learned in two phases: first, the
visual features are processed to yield place-cell activities in a phase of unrewarded ‘latent’
learning; second, the place-cell activities are used as stimuli during the S-R learning phase.

Despite the fact that the locale strategy in the model is based on S-R learning and
does not involve trajectory planning, the behavior of the simulated rat in the Morris water
maze task is remarkably similar to that of real rats. This suggests that for wide range of
navigation tasks in which an animal has to remember the position of a hidden goal in a
fixed environment, the navigation strategy which is often termed ‘cognitive’ or ‘map-based’
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can be implemented by a simple, associative learning mechanism (Chamizo, 2003), based
on place cells. It does not exclude, of course, that true planning abilities may be needed in
other spatial tasks, such as those that require making shortcuts.

Influence of Environmental Geometry

An important conclusion from our results concerns the effects of environmental ge-
ometry on the activity of spatially selective cells and goal-oriented behavior. Our results
suggest that the influence of geometry of space observed in experimental data is a byproduct
of visual information processing. Rotational errors, observed during reorientation in rectan-
gular arenas, are caused in the model by the structure of visual inputs, rather than by the
arena geometry. Hence, we argue that the concept of a geometric module is not necessary.
More precisely, (i) if the geometric module is viewed as a separate brain structure respon-
sible for geometry-related calculations, then there is no need of such a structure, since our
model can reproduce Cheng’s results without it; (ii) if the geometric module is meant to be
a theoretical abstraction, then we question the explanatory power of this abstraction. In
environments in which the arrangement of walls is symmetric, the edges of walls represent
ambiguous cues, whereas visual patterns attached to the walls (e.g. landmarks) represent
non-ambiguous cues. Behavioral decisions made on the basis of the ambiguous cues may
appear to be caused by the arena geometry, but could in fact be based on sets of local
features, arranged in a symmetric and hence ambiguous configuration. The latter seems to
us to be a more parsimonious explanation.

The idea that a simple navigation strategy based on view-based matching may explain
the rotation errors in the experiment of Cheng (1986) has been very recently investigated
by Stürzl et al. (2008), in parallel to our own work (Sheynikhovich, 2007). They have
shown that a simple snapshot-matching navigation strategy can explain rotational errors in
a quasi-symmetric environment similar to the one used in the experiment of Cheng (1986).
Apart from proposing the link between the orientation errors and activities of place cells
and grid cells in the hippocampal formation, our present model extends their findings in two
important ways. First, our model proposes a biologically plausible mechanism of reward-
based learning of navigational strategies, whereas in the standard view-based matching
algorithms the navigating animal moves in such a way as to increase the match between the
currently visible snapshot and the a priory known target snapshot (Collett & Collett, 2002;
Stürzl et al., 2008). Second, due to the learning of two different strategies in the model,
we were able to account for the persistence of rotational errors during working memory
experiment, and for the decrease of the errors during the reference memory experiment of
Cheng (1986). Although in both cases the rotational errors were caused by the ambiguity in
the visual input, there is a fundamental difference in the way the two navigational strategies
deal with this ambiguity in the model. During reorientation required by the locale strategy,
rotational errors result from the matching process between the currently perceived snapshots
and all snapshots stored in memory during exploration. Since snapshots are taken in random
directions, the ambiguity of visual cues, and the number of rotational errors, does not
decrease with reward-based training, and is independent of the starting location. The
situation is different for the taxon strategy that associates incoming snapshots with rewarded
rotation angles. In the beginning of training in the constant-start condition the number of
snapshots that are already associated with turns by the correct angle is low and the number

TO APPEAR IN PSYCHOLOGICAL REVIEW VOL. 116 ( 2009)



Sheynikhovich, Chavarriaga, Strösslin, Arleo and Gerstner. 33
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Figure 13. Visual input in the model in the case of transparent walls or an elevated environment
without walls. Top row: Snapshots taken from the center of a simulated environment consisting of
a circular arena with white surface and opaque gray walls (A) or invisible walls (B), located inside
of a large square room with multiple visual cues and black floor. Bottom row: Filter representation
of the two snapshots. Even in the absence of the opaque wall, its border with the white arena
surface can be detected by the visual system (filter responses corresponding to the surface edge in
the environment with invisible walls are shown in red).

of rotational errors is high (Figure 11D). However, as the learning continues, progressively
more snapshots become associated with corresponding rotations leading to the decrease of
rotational errors with training. In other words, the model suggests that the decrease in
the number of rotational errors when switching from variable to constant starting positions
might be due to change in navigational strategy.

We would like to emphasize that although in our simulations the effect of geometry
was due to the presence of opaque walls surrounding the arena, the wall presence is not a
necessary condition for the model to work. Figure 13 illustrates this point. On panel A
(top) we show a snapshot taken from the center of the simulated watermaze environment
with a gray circular wall, white ‘water’ and multiple background cues. Even if the wall is
made absolutely transparent (Panel B, top), the edge formed by the surface of the maze
and the background can still be visible (unless special precautions are taken to diminish the
visibility in the experiment) and can be used as a cue. The same holds true for the case of
the edge formed by a drop (i.e. when an elevated experimental arena has no walls (Barry et
al., 2006)). The bottom panels in Figure 13 show the filter responses to the corresponding
snapshots. In an environment with a lot of polarizing background cues, the filter responses
to the edge of the arena surface might not play an important role, whereas in a visually
impoverished environment it might provide information about the position of the animal
with respect to the maze edge (which might be interpreted as encoding of the distance to
the transparent wall (Maurer & Derivaz, 2000) or to the drop (Barry et al., 2006)).

Latent Unsupervised Learning versus Reward-Based Learning

In our model, visual input is encoded by an ensemble of view cells. Each view cell has
learned and stored a particular view of the environment during exploration. The learning
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and recruitment occurs in an unsupervised manner and is independent of reward. Similarly,
the connections between view cells and grid cells and those between grid cells and place
cells are set according to an unsupervised Hebbian learning rule. Hence, the representation
of the environment by place cells is formed in a completely unsupervised manner, i.e.,
independently of the reward structure, akin to the concept of latent learning in psychology.

Given the representation by place cells, the model learns to perform the appropriate
actions to reach the escape platform using locale navigation strategy. The learning of the
locale strategy is triggered by reward given at the target location. Hence, the locale pathway
in our model has a preprocessing stream from visual input to place cells, that is independent
of reward and formed by latent unsupervised learning. Preprocessing is followed by the
association between places and actions learned by reward-modulated plasticity. The taxon
strategy in our model is as a whole reward dependent, since the association between visual
input and actions is learned by reinforcement learning.

We speculate that the differences in learning between the two pathways may partially
explain recent experiments of blocking and overshadowing effects, that show a difference
between local intra-maze landmarks and global environmental shape on goal-search behavior
(Doeller & Burgess, 2008; Hayward, Good, & Pearce, 2004). In a pure reward-based learning
paradigm, if one stimulus is learned to reliably predict reinforcement, it will prevent (or
block) learning of associations between other stimuli and the reinforcement. For example,
if a visual cue present in the view field predicts that turning by an angle θ will result in
reward (e.g. by strengthening connection weights between the visual filters corresponding
to the position of the cue in the snapshot and the action cell corresponding to turning
angle θ), then adding a second visual cue will not give rise to a weight increase between the
second cue and (the same) action cell (resulting from the fact that δ in Equation A4 will be
equal to 0 after the association between the first cue and reward has been learned). Thus,
since taxon navigation in our model is based on pure stimulus-response association learned
by reinforcement learning rule, taxon navigation should show overshadowing or blocking.
Consequently, an object which was learned to be consistently located with respect to a first
landmark, cannot be located with respect to a second landmark that is added on, or made
consistent, only later (Doeller & Burgess, 2008).

For the locale strategy, however, the situation is different. If a sufficiently salient
cue (i.e. the one that triggers creation of new view cells) is added after an object location
was already learned by the locale strategy, the new view cells might become associated
by unsupervised Hebbian learning with grid cells and place cells in the initial (reward-
independent) processing stream from visual input to place cells. These new view cells will
then be able to drive behavior (via the connections to grid cells and place cells to action
cells) even in the absence of the previously learned cues. This might explain why learning an
object location with respect to one part of the wall does not block learning with respect to
another part of the wall in a circular maze (Doeller & Burgess, 2008). In our simulations, a
part of the wall constitutes a prominent visual cue, and hence could potentially be encoded
by new view cells which are formed independently of reward.

Finally, the model assumption that the taxon and locale strategies can be learned
in parallel and are mediated by separate memory systems, suggest an explanation for the
absence of blocking and overshadowing between intra-maze landmarks (that allow taxon
learning) and the shape of the environment (that favors place-based learning) (Hayward
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et al., 2004; Hayward, McGregor, Good, & Pearce, 2003). However, a detailed model of
interaction between the two strategies (Chavarriaga, Strösslin, Sheynikhovich, & Gerstner,
2005b, 2005a) is required to explain the precise pattern of overshadowing and blocking effects
in various cue configurations and training protocols (Doeller & Burgess, 2008; Roberts &
Pearce, 1998) which is out of the scope of the present paper.

Predictions Derived from the Model

Several predictions can be made in relation to our results, concerning the issue of
the effect of geometry on place-cell firing and behavior. First, since rotational errors are
mainly caused by the arrangement of visual features in the environment, their number
can be decreased by either making the overall arrangement of landmarks non-symmetric
or by making the landmarks sufficiently different. For example, adding a disambiguating
visual feature at the middle of one of the walls should decrease rotational error in the
working memory experiment of Cheng (1986). This prediction is supported by the data from
reorientation experiments with children, in which rotational errors decreased significantly
when a bookshelf was placed at the middle of one of the walls of the rectangular testing room
(Learmonth, Newcombe, & Huttenlocher, 2001). Second, since the decrease in the number
of rotational errors is explained in the model by strategy switching, we predict that lesioning
the taxon pathway (CP or SNc) will increase the number of rotational errors in the reference
memory task (Figure 11B) relative to controls, while not changing the performance in the
working memory task (Figure 11A). Third, since in our simulations the variability of starting
position strongly biased the simulated rat towards using the locale strategy, we predict that
changing starting position from trial to trial in the reference memory experiment of Cheng
(1986) would result in the increase in the number of rotational errors, with respect to the
case of fixed starting position. Finally, the model predicts that when a rotational error is
committed, place cells (and grid cells) corresponding to the location that is rotationally
opposite to the actual one, should be active (Lenck-Santini, Muller, Save, & Poucet, 2002;
O’Keefe & Speakman, 1987). In other words, the rat ‘thinks’ it is at a different, diagonally
opposite, place, rather than at the place where it actually is.
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1. Time step, s. ∆t 0.125
2. Running speed of the simulated rat, cm/s. v 16
3. Horizontal view field of the simulated rats, degrees. V 300
4. Size of the visual filter grid K 9216
5. Gabor filter spatial width, degrees σg 1.8
6. Size of the action cell populations Nac 360
7. Reward-based learning rate β 10−4

8. Future discount factor γ 0.8
9. Eligibility trace decay factor λ 0.8
10. Probability of a random action ǫ 0.1
11. Width of generalization profile in the action space, degrees σψ 20
12. Number of grid cell populations N 6
13. Size of the grid cell population N2

gc 625
14. Noise in the self-motion estimate of speed and direction, in % of the

change from previous step (testing / exploration)
η, ζ 10 / 0.0

15. Lateral spread of the weights∗ σhex 1.2
16. Divisive normalization constant∗ µ 0.015
17. Place cell activity threshold θpc 0.6
18. Firing rate threshold to consider a cell ‘highly active’ θact 0.7
19. Number of active cells to consider a location as familiar T 15
20. Calibration constant for head direction (during testing / upon entry) αhd 0.7 / 1.0
21. View cell directionality σΦ 1.2
22. View cell activity amplitude A 1
23. Width of the visual Gaussian in the filter space σvc 0.6
24. Calibration constant for position (during testing / upon entry) αpos 0.1 / 1.0

Table A1: Model parameters. The parameters of the grid cell network model, described in Supple-
mentary Methods are marked by an asterisk (*). The main ‘free’ parameters that were adjusted to
produce the simulation results are 5, 11, 17, 18, 20 - 24; other parameters were set either directly
from available experimental data (e.g. 2 and 3, see text) or according to standard computational
principles that govern learning (e.g. 7-10) or self-organization (e.g. 15, 16).

Appendix. Implementation of the Model

In all simulations, the position of the model rat changed in discrete time steps ∆t =
0.125 s. The running speed v of the model rat was constant and equal to 16 cm/s. The
values of model parameters used in the equations below are listed in Table A1.

Visual Input

An example of a two-dimensional Gabor filter sensitive to vertical lines in the image
is shown in Figure 3A, bottom (inset). Such a Gabor filter is a two-dimensional complex
wavelet defined in the space domain as:

g(~xkl, ~wm) = exp

(

−
‖~x− ~xkl‖

2

2σ2
g

)

· exp (i~ωm · (~x− ~xkl)) , (A1)

where ~xkl = (xkl, ykl) is the coordinate of the grid point (k, l) at which the filter is centered
in visual space, ~wm/‖~wm‖ defines the filter orientation, ‖~wm‖/2π is the frequency of the
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modulating sinusoidal wave, σg is the width of the circular receptive field and ~x is running
over all pixels in the image. Sampling in our model of visual input is sufficiently dense so
that the distance between the nearby grid points is 2σg. A response of the filter to the
corresponding portion of the gray-level image I perceived at time t is characterized by its
amplitude:

rvis
klm(t) =

√

(

ℜ[g(~xkl, ~wm)] ∗ I(t)

)2

+

(

ℑ[g(~xkl, ~wm)] ∗ I(t)

)2

, (A2)

where ℜ[·] and ℑ[·] are the real and imaginary parts, respectively, and 〈∗〉 denotes integration
over visual space. The set of K = k · l ·m filter amplitudes rvis

j , where index j runs over
all grid points and orientations, serves as the internal neural representation of the visual
snapshot observed at time t.

Learning of Taxon and Locale Strategies

Action cell i in the model of CP represents a particular direction of movement ψi =
2πi/Nac, where Nac=360 cells. The action cells are driven by the responses of visual filters
to input snapshots, such that the activity of a cell i is equal to a weighted sum of the
presynaptic input rCP

i =
∑

j w
CP
ij r

vis
j . Given the activities of the action cells in CP, the

optimal movement according to the taxon strategy consists of an egocentric rotation by
angle ΨCP defined as the preferred direction of the maximally active cell.

Action cells in NA are driven by the input from place cells and their activity is
described analogously to the cells in CP, i.e. rNA

i =
∑

j w
NA
ij rpc

j , where rpc
j is the activity

of place cell j (see Equation A9). The optimal action encoded by the activities of the cells
in NA is a movement in an allocentric direction Ψ̂NA defined by the population vector:

Ψ̂NA = arctan

∑

i r
NA
i sin(ψNA

i )
∑

i r
NA
i cos(ψNA

i )
. (A3)

Conversion of the allocentric angle Ψ̂NA to the egocentric motor action ΨNA is performed
using an estimation of current heading Φ (Equation A11) as ΨNA = Ψ̂NA − Φ. Here we
apply a simple algorithmic approach for the readout of the action cell activities and their
conversion into a unified reference frame. In a more biologically plausible setting both
operations can be performed by using lateral interactions between actions cells (Deneve,
Latham, & Pouget, 1999, 2001).

How successful a strategy is on a particular trial is determined by the weights wCP
ij

for the taxon strategy and wNA
ij for the locale strategy. We apply standard reinforcement

learning theory (Sutton & Barto, 1998) to learn the weight values. The learning algorithms
are identical for the CP and NA populations and so we omit the population index from the
equations below. In our model, the value Q of the movement in direction ψi is given by the
firing rate of the corresponding action cell, i.e. Q(st, at = ψi) ≡ ri, where ri is the activity
of the i-th action cell. According to the reinforcement learning theory, optimal action values
on subsequent time steps should be related as Q(st, at) = Rt + γQ(st+1, at+1). The weights
are adjusted on each time step so as to enforce this relationship:

∆wij(t) = β · δ(t) · eij(t) , (A4)
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where β = 0.0001 is the learning rate, δ(t) = Rt + γQ(st, at) −Q(st−1, at−1) is the reward
prediction error, and eij(t) is the eligibility trace which represents the memory of past
actions. The eligibility trace of a synapse (Sutton & Barto, 1998) is increased each time
the synapse has participated in generating a movement and decays with a constant γλ

eij(t+ 1) = exp
[

−(ψi − Ψ)2/2σ2
ψ

]

rpc
j + γλeij(t) . (A5)

The exponential term ensures that actions ψi similar to the actually performed action Ψ
are also eligible for learning, thereby providing generalization in the action space (Strösslin,
Sheynikhovich, Chavarriaga, & Gerstner, 2005). A taxon trial is finished after a single
orientation step, and so the last term in Equation A5 is always zero for the taxon strategy
(i.e. only one previous action is taken into account). To explore potentially useful actions, an
ǫ-greedy action selection mechanism is used during learning: the optimal action is performed
with probability 1 − ǫ, while a movement in a random direction is chosen with probability
ǫ (ǫ = 0.1).

Grid Cells

In our model, path integration is performed in a network consisting ofN identical grid-
cell populations, that can be represented as two-dimensional sheets of recurrently connected
neurons (Fuhs & Touretzky, 2006; McNaughton et al., 2006). The recurrent connectivity
in population n = 1, . . . , N is chosen to form a two-dimensional attractor map, such that
the shape of the activity profile at the stable state of recurrent dynamics is approximately
constant, while its position ~Pn(t) on the sheet can change as a result of an external input.
The position of the activity profile in the sheet is controlled by the animal’s speed and
direction of movement, as well as by visual input, as described below. The architecture of
the attractor network in each sheet, giving rise to the periodic triangular grid of Gaussian-
like firing fields, is standard and described in an online Supplementary Material.

In this section we describe the update of an activity profile position due to a pure
self-motion input (i.e. path integration), while the correction of path integration by visual
input is described later (see Equation A14). If the only available information about the
movement comes from self-motion, then the position of the activity profile in the grid-cell
population n at time t with respect to its position ~Pn(t − 1) at the previous time step is
given by

~P pi
n (t) = ~Pn(t− 1) + Rn · (νn~s) , (A6)

where Rn is the rotation matrix that defines the mapping of the movement direction of the
animal to the movement direction of the activity profile across the sheet

Rn =

∣

∣

∣

∣

∣

∣

∣

∣

cos(ξn) − sin(ξn)
sin(ξn) cos(ξn)

∣

∣

∣

∣

∣

∣

∣

∣

, (A7)

νn defines the mapping of the animal velocity to the velocity of the activity profile, and
~s = [vpi∆t ·cos(Φpi(t)), vpi∆t ·sin(Φpi(t))] is the internal estimation of the change in position
with speed and head direction given by:

vpi(t) = v + η

Φpi(t) = Φ(t− 1) + ∆Φ + ζ . (A8)
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Here η and ζ are zero-mean normal random variables that describe noise in the internal
estimation of the constant animal velocity v and rotation from the previous time step ∆Φ,
respectively. Second line in Equation A8 describes an algorithmic implementation of the
integration of head angular velocity over time, which is thought to be performed in the
brain by a network of head direction cells (Ranck Jr., 1984; Taube, Muller, & Ranck,
1990a, 1990b). For the neural models of head direction network see Arleo and Gerstner
(2001); Skaggs, Knierim, Kudrimoti, and McNaughton (1995). The correction of the pure
self-motion estimate of the head direction at time t is described later (see Equation A11).

In Equation A7, ξn = (n − 1) · 15◦/N , n = 1, . . . , N defines relative orientations
of different grids which, according to the experimental data from Barry et al. (2007), are
distributed in the range from 0◦ to 15◦. The experimentally observed spacings between the
grid vertices (Hafting et al., 2005) were simulated by appropriately tuning the values of the
parameters νn. Although grid orientations in dMEC change independently of grid spacings,
in the model we use the same index n for both the spacings and orientations (an arbitrary
permutation of ξn independently of νn does not change any of the results). Upon the entry
into a novel environment (i.e. at time t = 0), the activity packets are assigned arbitrary
positions in the corresponding charts and current heading is initialized by an arbitrary angle
(we use Φ(0) = 0).

Place Cells

Place cells are driven by feed-forward input from the grid cells. Activity of cell i is
given by:

rpc
i =





∑

j

wpc
ij r

gc
j − θpc





+

, (A9)

where rgcj is the activity of grid cell j, wpc
ij is the connection weight and θpc is the activity

threshold ([x]+ = x if x > 0 and [x]+ = 0 otherwise).

During exploration, a place cell is ‘recruited’ from a pool of cells if the current location
is represented by less than T = 15 sufficiently active place cells, i.e.

∑

kH(rpc
k − θact) ≤

T , where H(x) = 1 if x > 0 and H(x) = 0 otherwise. At the moment of recruitment,
the weights wpc

ij of the cell i are set equal to the normalized activity of the grid cells,

i.e., wpc
ij = rgcj (t)/

∑

j(r
gc
j (t))2 where t is the time step of exploration at the moment of

recruitment. The weights of this form can be learned online using any self-normalizing
competitive learning rule (see, e.g., Oja (1982)).

Snapshot-Based Estimation of Head Direction

Equation A8 represents a purely idiothetic update of the current estimate of head
direction and hence (i) it is subject to the cumulative error and (ii) it has to be reset
upon the entry to a familiar environment. The solution for both problems requires the
knowledge of an allocentric estimate of the head direction. We use the following snapshot-
based reorientation procedure. Suppose that a local view i taken from a location x has
been stored in memory together with the corresponding head direction Φi. At a later time
the model animal returns to the same location but with an unknown head orientation. In
order to estimate the unknown head direction Φ, we determine the angle ∆Φ = Φ−Φi that
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leads to the best alignment of the current local view with the stored one. The goodness of
an alignment with shift ∆Φ is given by the cross-correlation Ci(∆Φ) between the current
view and the stored view i. Searching for the maximum of Ci across all possible shifts ∆Φ

yields the correct angle Φ = Φi+argmax
∆Φ

(

Ci(∆Φ)

)

. Generalizing this idea to all the views

taken from all different locations yields the allocentric head direction estimate

Φvis = argmax
Φ

(

∑

i

Ci(∆Φ)
∣

∣

∣

Φi+∆Φ=Φ

)

. (A10)

Correction of the idiothetic estimate of head direction Φpi (see Equation A8) is performed
at each time step according to the following formula:

Φ(t) = Φpi + αhd(Φ
vis − Φpi) , (A11)

where αhd defines the amount of correction. Upon the entry to a familiar environment, head
direction Φ is initialized with value Φvis by setting αhd = 1. While our model of the head
direction network (Equations A8,A11) is algorithmic (Franz, Schölkopf, Mallot, & Bülthoff,
1998), rather than ‘neuronal’, it captures the fact that head direction cells are anchored to
visual cues of the environment (Mizumori & Williams, 1993).

Readjustment of Path Integration

View cells are used in the model to perform vision-based correction of the idiothetic
estimate of the current position, performed in the network of grid cells (Equation A6).
Similarly to the simulated place cells, a new view cell is recruited at each time step during
exploration, unless T = 15 view cells are strongly active. Upon recruitment, the new view
cell i is initialized with a basis function center ~ρ vc

i with components ρvc
ij = rvis

j (t) that
represents the current view at time t (see Equation A2). At the same time we store the
estimated momentary head direction Φi = Φ(t) in which this view was taken (given by
Equation A11). If the simulated rat observes later a different view with an estimated head
direction Φ, the stored view ~ρ vc

i is rotated by the angular difference (Φ−Φi) and view cell
i responds with the activity:

rvc
i = A exp

(

−
1

2σ2
vc

[

1

Ωi

‖~r vis − ~ρ vc
î
‖

]2)

· exp

(

cos(Φ − Φi) − 1

σ2
Φ

)

, (A12)

where A is the amplitude, ~ρ vc
î

is the center of the radial basis function after rotation

by an amount Φ − Φi (note the hat over the i), ~r vis is the vector of amplitudes of the
Gabor wavelets corresponding to the currently observed view, ‖.‖ is the Euclidean norm
and Ωi = V − (Φ − Φi) is a normalization factor that accounts for the overlap of the two
visual fields in the angular plane. The second exponential term gives more weight to the
comparisons with larger overlap Ω of the visual fields (σΦ = 1.2). This factor ensures that
only views that have been taken in similar head directions are compared with each other
Note that a simple view-matching approach without rotation and alignment of views would
show negligible similarity for differences in head directions Φ−Φi larger than the width of
a single Gabor filter (i.e. σg in Equation A1 expressed in angular coordinates). The value
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of the parameter σvc, controlling the sensitivity of the visual system, was chosen such that
the average width of the receptive field of a view cell was equal to ≈10 cm. The view-cell
activities given by Equation A12 represent a distributed code for the allocentric position of
the simulated animal in a familiar environment. An example of the receptive field of a view
cell, and dependence of the view cell firing from the head direction of movement through
the field (i.e. the head direction) are shown in Figure 3B.

Readjustment of the path integration network is performed via associative connections
between view cells and grid cells. We set the connection weight wvis

ij projecting from view
cell j to grid cell i depending on the size of the spatial overlap between the regions in space
where these cells are strongly active (i.e. the firing rate of the cell exceeds θact), resulting
in the following expression for the weight values:

wvis
ij = Z−1

∑

x,y,φ

[

rgci (x, y, φ) − θact
]+

·
[

rvc
j (x, y, φ) − θact

]+
, (A13)

where Z is the normalization term ensuring that
∑

j (wvis
ij )2 = 1,∀i; x, y, φ are the spatial

positions and orientations visited by the simulated animal during exploration. Equation A13
can be interpreted as the result of Hebbian learning between view cells and grid cells, with rj
being the presynaptic and ri the postsynaptic firing rates. Given the weights, a stimulation
of the visual system alone will cause a ‘location’ signal ~P vc

n in each of the N grid-cell
populations, which is used to update the path integrator

~Pn(t) = ~P pi
n (t) + αpos(~P

vc
n (t) − ~P pi

n (t)) , (A14)

where ~P pi
n is the estimation of the new position due to the pure self-motion input (see

Equation A6) and αpos controls the importance of visual input. A relatively high value of
the activity threshold for the weight values (θact = 0.7) ensures that only strongly active
grid cells and view cells become connected, such that the location signal induced by the
visual system activates only a small subset of grid cells in each population.

If an animal enters a familiar environment (i.e. with existing place cell population) the
reorientation procedure is performed which consists of (i) determining the allocentric head
direction by calculating Φvis according to Equation A10, (ii) determining the allocentric
position by calculating view cell activities rvc

i according to Equation A12 and (iii) initializing
the activity profile positions in all grid cell populations according to the view cell activities
propagated via the connections with strengths wvis

ij .
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