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Preface

The task of understanding the principles of information processing in the brain poses,
apart from numerous experimental questions, challenging theoretical problems on all
levels from molecules to behavior. This books concentrates on modeling approaches
on the level of neurons and small populations of neurons, since we think that this is
an appropriate level to adress fundamental questions of neuronal coding, signal trans-
mission, or synaptic plasticity. In this text we concentrate on theoretical concepts
and phenomenological models derived from them. We think of a neuron primarily
as a dynamic element that emits output pulses whenever the excitation exceeds some
threshold. The resulting sequence of pulses or ‘spikes’ contains all the information that
is transmitted from one neuron to the next. In order to understand signal transmission
and signal processing in neuronal systems, we need an understanding of their basic
elements, i.e., the neurons, which is the topic of part I. New phenomena emerge when
several neurons are coupled. Part II introduces network concepts, in particular pattern
formation, collective excitations, and rapid signal transmission between neuronal pop-
ulations. Learning concepts presented in Part III are based on spike-time dependent
synaptic plasticity.

We wrote this book as an introduction to spiking neuron models for advanced
undergraduate or graduate students. It can be used either as the main text for a course
that focuses on neuronal dynamics; or as part of a larger course in Computational
Neuroscience, theoretical biology, neuronal modeling, biophysics, or neural networks.
For a one-semester course on neuronal modeling, we usually teach one chapter per
week focusing on the first sections of each chapter for lectures and give the remainder
as reading assignment. Many of the examples can be adapted to become exercises or
projects for students. While writing the book we had in mind students of physics,
mathematics, or computer science with an interest in biology; but it might also be
useful for students of biology who are interested in mathematical modeling. All the
necessary mathematical concepts are introduced in an elementary fashion, and we have
provided many illustrative figures which complement the mathematical analysis and
help the reader picture what is going on. No prior knowledge beyond undergraduate
mathematics should be necessary to read the book. An asterix (*) marks those sections
that have a more mathematical focus. These sections can be skipped at a first reading.

We have also tried to keep the book self-contained with respect to the underlying
Neurobiology. The fundamentals of neuronal excitation and synaptic signal transmis-
sion are briefly introduced in Chapter 1 together with an outlook on the principal topics
of the book, viz., formal spiking neuron models and the problem of neuronal coding.
In Chapter 2 we review biophysical models, such as the Hodgkin-Huxley equations of
neuronal dynamics, and models of dendritic integration based on the cable equation.
These are the starting point for a systematic reduction to neuron models with a reduced
complexity that are open to an analytical treatment. Whereas Chapter 3 is dedicated
to two-dimensional differential equations as a description of neuronal dynamics, Chap-
ter 4 introduces formal spiking neuron models, namely the integrate-and-fire model and
the Spike Response Model. These formal neuron models are the foundation for all the
following chapters. Part I on “Single Neuron Models” is rounded off by Chapter 5 which



gives an overview of spike-train statistics and illustrates how noise can be implemented
in spiking neuron models.

The step from single neuron models to networks of neurons is taken in Chapter
6 where equations for the macroscopic dynamics of large populations of neurons are
derived. Based on these equations phenomena like signal transmission and coding
(Chapter 7), oscillations and synchrony (Chapter 8), and pattern formation in spatially
structured networks (Chapter 9) are investigated. Up to this point, only networks with
a fixed synaptic connectivity have been discussed. The third part of the book, finally,
deals with synaptic plasticity and its role for development, learning, and memory.
In Chapter 10, principles of Hebbian plasticity are presented and various models of
synaptic plasticity are described that are more or less directly inspired by neurbiological
findings. Equations that relate the synaptic weight dynamics to statistical properties
of the neuronal spike activity are derived in Chapter 11. Last but not least, Chapter 12
presents an – admittedly personal – choice of illustrative applications of spike-timing
dependent synaptic plasticity to fundamental problems of neuronal coding.

While the book contains material which is now considered as standard for courses
of the type mentioned earlier, it also provides a bridge to current research which has
developed over the last few years. In most chapters, the reader will find some sections
which either report recent results or shed new light on well-known models. The view-
point taken in the presentation of the material is of course highly subjective and a bias
towards our own research is obvious. Nevertheless, we hope that the book will find the
interest of students and researchers in the field.

Werner M. Kistler
Wulfram Gerstner

Lausanne, November 2001
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Chapter 1

Introduction

The aim of this chapter is to introduce several elementary notions of neuro-
science, in particular the concepts of action potentials, postsynaptic potentials,
firing thresholds, and refractoriness. Based on these notions a first phenomeno-
logical model of neuronal dynamics is built that will be used as a starting point
for a discussion of neuronal coding. Due to the limitations of space we cannot –
and do not want to – give a comprehensive introduction into such a complex field
as neurobiology. The presentation of the biological background in this chapter is
therefore highly selective and simplistic. For an in-depth discussion of neurobi-
ology we refer the reader to the literature mentioned at the end of this chapter.
Nevertheless, we try to provide the reader with a minimum of information nec-
essary to appreciate the biological background of the theoretical work presented
in this book.

1.1 Elements of Neuronal Systems

Over the past hundred years, biological research has accumulated an enormous
amount of detailed knowledge about the structure and function of the brain. The
elementary processing units in the central nervous system are neurons which are
connected to each other in an intricate pattern. A tiny portion of such a network
of neurons is sketched in Fig. 1.1 which shows a drawing by Ramón y Cajal, one
of the pioneers of neuroscience around 1900. We can distinguish several neurons
with triangular or circular cell bodies and long wire-like extensions. This picture
can only give a glimpse of the network of neurons in the cortex. In reality, cortical
neurons and their connections are packed into a dense network with more than
104 cell bodies and several kilometers of ‘wires’ per cubic millimeter. In other
areas of the brain the wiring pattern may look different. In all areas, however,
neurons of different sizes and shapes form the basic elements.

The cortex does not consist exclusively of neurons. Beside the various types
of neuron there is a large number of ‘supporter’ cells, so-called glia cells, that
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12 CHAPTER 1. INTRODUCTION

Fig. 1.1: This reproduction of a drawing of Ramón y Cajal shows a few neurons
in the mammalian cortex that he observed under the microscope. Only a small
portion of the neurons contained in the sample of cortical tissue have been made
visible by the staining procedure; the density of neurons is in reality much higher.
Cell b is a nice example of a pyramidal cell with a triangularly shaped cell body.
Dendrites, which leave the cell laterally and upwards, can be recognized by their
rough surface. The axons are recognizable as thin, smooth lines which extend
downwards with a few branches to the left and right. From Ramòn y Cajal
(1909).

are required for energy supply and structural stabilization of brain tissue. Since
glia cells are not directly involved in information processing, we will not discuss
them any further. We will also neglect a few rare subtypes of neuron, such as
analog neurons in the mammalian retina. Throughout this book we concentrate
on spiking neurons only.

1.1.1 The Ideal Spiking Neuron

A typical neuron can be divided into three functionally distinct parts, called den-
drites, soma, and axon; see Fig. 1.2. Roughly speaking, the dendrites play the
role of the ‘input device’ that collects signals from other neurons and transmits
them to the soma. The soma is the ‘central processing unit’ that performs an
important non-linear processing step: If the total input exceeds a certain thresh-
old, then an output signal is generated. The output signal is taken over by the
‘output device’, the axon, which delivers the signal to other neurons.

The junction between two neurons is called a synapse. Let us suppose that
a neuron sends a signal across a synapse. It is common to refer to the sending
neuron as the presynaptic cell and to the receiving neuron as the postsynaptic
cell. A single neuron in vertebrate cortex often connects to more than 104

postsynaptic neurons. Many of its axonal branches end in the direct neighborhood
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Fig. 1.2: A. Single neuron in a drawing by Ramón y Cajal. Dendrite, soma,
and axon can be clearly distinguished. The inset shows an example of a neuronal
action potential (schematic). The action potential is a short voltage pulse of 1-2
ms duration and an amplitude of about 100 mV. B. Signal transmission from a
presynaptic neuron j to a postsynaptic neuron i. The synapse is marked by the
dashed circle. The axons at the lower right end lead to other neurons (schematic
figure).

of the neuron, but the axon can also stretch over several centimeters so as to reach
to neurons in other areas of the brain.

1.1.2 Spike Trains

The neuronal signals consist of short electrical pulses and can be observed by
placing a fine electrode close to the soma or axon of a neuron; see Fig. 1.2. The
pulses, so-called action potentials or spikes, have an amplitude of about 100 mV
and typically a duration of 1-2 ms. The form of the pulse does not change as the
action potential propagates along the axon. A chain of action potentials emitted
by a single neuron is called a spike train – a sequence of stereotyped events which
occur at regular or irregular intervals. Since all spikes of a given neuron look
alike, the form of the action potential does not carry any information. Rather, it
is the number and the timing of spikes which matter. The action potential is the
elementary unit of signal transmission.

Action potentials in a spike train are usually well separated. Even with very
strong input, it is impossible to excite a second spike during or immediately
after a first one. The minimal distance between two spikes defines the absolute
refractory period of the neuron. The absolute refractory period is followed by a
phase of relative refractoriness where it is difficult, but not impossible to excite
an action potential.
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1.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the den-
drite (or soma) of a postsynaptic cell is the synapse. The most common type of
synapse in the vertebrate brain is a chemical synapse. At a chemical synapse,
the axon terminal comes very close to the postsynaptic neuron, leaving only a
tiny gap between pre- and postsynaptic cell membrane, called the synaptic cleft.
When an action potential arrives at a synapse, it triggers a complex chain of
bio-chemical processing steps that lead to a release of neurotransmitter from the
presynaptic terminal into the synaptic cleft. As soon as transmitter molecules
have reached the postsynaptic side, they will be detected by specialized receptors
in the postsynaptic cell membrane and open (either directly or via a biochemical
signaling chain) specific channels so that ions from the extracellular fluid flow
into the cell. The ion influx, in turn, leads to a change of the membrane poten-
tial at the postsynaptic site so that, in the end, the chemical signal is translated
into an electrical response. The voltage response of the postsynaptic neuron to a
presynaptic action potential is called the postsynaptic potential.

Apart from chemical synapses neurons can also be coupled by electrical synap-
ses, so-called gap junctions. Specialized membrane proteins make a direct elec-
trical connection between the two neurons. Not very much is known about the
functional aspects of gap junctions, but they are thought to be involved in the
synchronization of neurons.

1.2 Elements of Neuronal Dynamics

The effect of a spike on the postsynaptic neuron can be recorded with an intracel-
lular electrode which measures the potential difference u(t) between the interior
of the cell and its surroundings. This potential difference is called the membrane
potential. Without any spike input, the neuron is at rest corresponding to a con-
stant membrane potential. After the arrival of a spike, the potential changes and
finally decays back to the resting potential, cf. Fig. 1.3A. If the change is posi-
tive, the synapse is said to be excitatory. If the change is negative, the synapse
is inhibitory.

At rest, the cell membrane has already a strong negative polarization of about
-65mV. An input at an excitatory synapse reduces the negative polarization of
the membrane and is therefore called depolarizing. An input that increases the
negative polarization of the membrane even further is called hyperpolarizing.

1.2.1 Postsynaptic Potentials

Let us formalize the above observation. We study the time course ui(t) of the
membrane potential of neuron i. Before the input spike has arrived, we have
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ui(t) = urest. At t = 0 the presynaptic neuron j fires its spike. For t > 0, we see
at the electrode a response of neuron i

ui(t)− urest =: εij(t) . (1.1)

The right-hand side of Eq. (1.1) defines the postsynaptic potential (PSP). If
the voltage difference ui(t) − urest is positive (negative) we have an excitatory
(inhibitory) postsynaptic potential or short EPSP (IPSP). In Fig. 1.3A we have
sketched the EPSP caused by the arrival of a spike from neuron j at an excitatory
synapse of neuron i.

1.2.2 Firing Threshold and Action Potential

Consider two presynaptic neurons j = 1, 2, which both send spikes to the post-
synaptic neuron i. Neuron j = 1 fires spikes at t

(1)
1 , t

(2)
1 , . . . , similarly neuron

j = 2 fires at t
(1)
2 , t

(2)
2 , . . . . Each spike evokes a postsynaptic potential εi1 or εi2,

respectively. As long as there are only few input spikes, the total change of the
potential is approximately the sum of the individual PSPs,

ui(t) =
∑

j

∑
f

εij(t− t
(f)
j ) + urest , (1.2)

i.e., the membrane potential responds linearly to input spikes; see Fig. 1.3B.
On the other hand, linearity breaks down if too many input spikes arrive

during a short interval. As soon as the membrane potential reaches a critical
value ϑ, its trajectory shows a behavior that is quite different from a simple
summation of PSPs: The membrane potential exhibits a pulse-like excursion with
an amplitude of about 100 mV, viz., an action potential. This action potential
will propagate along the axon of neuron i to the synapses of other neurons. After
the pulse the membrane potential does not directly return to the resting potential,
but passes through a phase of hyperpolarization below the resting value. This
hyperpolarization is called ‘spike-afterpotential’.

Single EPSPs have amplitudes in the range of one millivolt. The critical
value for spike initiation is about 20 to 30 mV above the resting potential. In
most neurons, four spikes – as shown schematically in Fig. 1.3C – are thus not
sufficient to trigger an action potential. Instead, about 20-50 presynaptic spikes
have to arrive within a short time window before postsynaptic action potentials
are triggered.

1.3 A Phenomenological Neuron Model

In order to build a phenomenological model of neuronal dynamics, we describe
the critical voltage for spike initiation by a formal threshold ϑ. If ui(t) reaches ϑ
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Fig. 1.3: A postsynaptic neuron i receives input from two presynaptic neurons
j = 1, 2. A. Each presynaptic spike evokes an excitatory postsynaptic potential
(EPSP) that can be measured with an electrode as a potential difference ui(t)−
urest. The time course of the EPSP caused by the spike of neuron j = 1 is
εi1(t − t

(f)
1 ). B. An input spike from a second presynaptic neuron j = 2 that

arrives shortly after the spike from neuron j = 1, causes a second postsynaptic
potential that adds to the first one. C. If ui(t) reaches the threshold ϑ, an action
potential is triggered. As a consequence, the membrane potential starts a large
positive pulse-like excursion (arrow). On the voltage scale of the graph, the peak
of the pulse is out of bounds. After the pulse the voltage returns to a value below
the resting potential.
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from below we say that neuron i fires a spike. The moment of threshold crossing
defines the firing time t

(f)
i . The model makes use of the fact that action potentials

always have roughly the same form. The trajectory of the membrane potential
during a spike can hence be described by a certain standard time course denoted
by η(t− t

(f)
i ).

1.3.1 Definition of the Model SRM0

Putting all elements together we have the following description of neuronal dy-
namics. The variable ui describes the momentary value of the membrane potential
of neuron i. It is given by

ui(t) = η(t− t̂i) +
∑

j

∑
f

εij(t− t
(f)
j ) + urest (1.3)

where t̂i is the last firing time of neuron i, i.e., t̂i = max{t(f)
i | t(f)

i < t}. Firing
occurs whenever ui reaches the threshold ϑ from below,

ui(t) = ϑ and
d

dt
ui(t) > 0 =⇒ t = t

(f)
i (1.4)

The term εij in (1.3) describes the response of neuron i to spikes of a presynaptic
neuron j. The term η in (1.3) describes the form of the spike and the spike-
afterpotential.

Note that we are only interested in the potential difference, viz., the distance
from the resting potential. By an appropriate shift of the voltage scale, we can
always set urest = 0. The value of u(t) is then directly the distance from the
resting potential. This is implicitly assumed in most neuron models discussed in
this book.

The model defined in equations (1.3) and (1.4) is called SRM0 where SRM is
short for Spike Response Model (Gerstner, 1995). The subscript zero is intended
to remind the reader that it is a particularly simple ‘zero order’ version of the
full model that will be introduced in Chapter 4. Phenomenological models of
spiking neurons similar to the models SRM0 have a long tradition in theoretical
neuroscience (Hill, 1936; Stein, 1965; Geisler and Goldberg, 1966; Weiss, 1966).
Some important limitations of the model SRM0 are discussed below in Section
1.3.2. Despite the limitations, we hope to be able to show in the course of this
book that spiking neuron models such as the Spike Response Model are a useful
conceptual framework for the analysis of neuronal dynamics and neuronal coding.
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Fig. 1.4: In formal models of spiking neurons the shape of an action potential
(dashed line) is usually replaced by a δ pulse (vertical line). The negative over-

shoot (spike-afterpotential) after the pulse is included in the kernel η(t − t
(1)
i )

(thick line) which takes care of ‘reset’ and ‘refractoriness’. The pulse is triggered

by the threshold crossing at t
(1)
i . Note that we have set urest = 0.

Example: Formal pulses

In a simple model, we may replace the exact form of the trajectory η during an ac-
tion potential by, e.g., a square pulse, followed by a negative spike-afterpotential,

η(t− t
(f)
i ) =

⎧⎨
⎩

1/Δt for 0 <t− t
(f)
i < Δt

−η0 exp

(
− t−t

(f)
i

τ

)
for Δt < t− t

(f)
i

(1.5)

with parameters η0, τ, Δt > 0. In the limit of Δt → 0 the square pulse approaches
a Dirac δ function; see Fig. 1.4.

The positive pulse marks the moment of spike firing. For the purpose of the
model, it has no real significance, since the spikes are recorded explicitly in the
set of firing times t

(1)
i , t

(2)
i , . . . . The negative spike-afterpotential, however, has

an important implication. It leads after the pulse to a ‘reset’ of the membrane
potential to a value below threshold. The idea of a simple reset of the variable ui

after each spike is one of the essential components of the integrate-and-fire model
that will be discussed in detail in Chapter 4.

If η0 � ϑ then the membrane potential after the pulse is significantly lower
than the resting potential. The emission of a second pulse immediately after the
first one is therefore more difficult, since many input spikes are needed to reach
the threshold. The negative spike-after potential in Eq. (1.5) is thus a simple
model of neuronal refractoriness.
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Example: Formal spike trains

Throughout this book, we will refer to the moment when a given neuron emits
an action potential as the firing time of that neuron. In models, the firing time
is usually defined as the moment of threshold crossing. Similarly, in experiments
firing times are recorded when the membrane potential reaches some threshold
value uϑ from below. We denote firing times of neuron i by t

(f)
i where f = 1, 2, . . .

is the label of the spike. Formally, we may denote the spike train of a neuron i
as the sequence of firing times

Si(t) =
∑

f

δ(t− t
(f)
i ) (1.6)

where δ(x) us the Dirac δ function with δ(x) = 0 for x �= 0 and
∫∞
−∞ δ(x)dx = 1.

Spikes are thus reduced to points in time.

1.3.2 Limitations of the Model

The model presented in Section 1.3.1 is highly simplified and neglects many as-
pects of neuronal dynamics. In particular, all postsynaptic potentials are assumed
to have the same shape, independently of the state of the neuron. Furthermore,
the dynamics of neuron i depends only on its most recent firing time t̂i. Let us
list the major limitations of this approach.

(i) Adaptation, Bursting, and Inhibitory Rebound
To study neuronal dynamics experimentally, neurons can be isolated and stim-

ulated by current injection through an intracellular electrode. In a standard ex-
perimental protocol we could, for example, impose a stimulating current that
is switched at time t0 from a value I1 to a new value I2. Let us suppose that
I1 = 0 so that the neuron is quiescent for t < t0. If the current I2 is sufficiently
large, it will evoke spikes for t > t0. Most neurons will respond to the current
step with a spike train where intervals between spikes increase successively until
a steady state of periodic firing is reached; cf. Fig. 1.5A. Neurons that show
this type of adaptation are called regularly-firing neurons (Connors and Gutnick,
1990). Adaptation is a slow process that builds up over several spikes. Since the
model SRM0 takes only the most recent spike into account, it cannot capture
adaptation. Detailed neuron models which will be discussed in Chapter 2 de-
scribe the slow processes that lead to adaptation explicitly. To mimic adaptation
with formal spiking neuron models we would have to add up the contributions to
refractoriness of several spikes back in the past; cf. Chapter 4.

A second class of neurons are fast-spiking neurons. These neurons show now
adaptation and can therefore be well approximated by the model SRM0 intro-
duced in Section 1.3.1. Many inhibitory neurons are fast-spiking neurons. Apart
from regular-spiking and fast-spiking neurons, there are also bursting neurons
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Fig. 1.5: Response to a current step. In A - C, the current is switched on at
t = t0 to a value I2 > 0. Regular-spiking neurons (A) exhibit adaptation of the
interspike intervals whereas fast-spiking neurons (B) show no adaptation. An
example of a bursting neuron is shown in C. Many neurons emit an inhibitory
rebound spike (D) after an inhibitory current I1 < 0 is switched off. Schematic
figure.

which form a separate group (Connors and Gutnick, 1990). These neurons re-
spond to constant stimulation by a sequence of spikes that is periodically inter-
rupted by rather long intervals; cf. Fig. 1.5C. Again, a neuron model that takes
only the most recent spike into account cannot describe bursting. For a review
of bursting neuron models, the reader is referred to (Izhikevich, 2000).

Another frequently observed behavior is post-inhibitory rebound. Consider a
step current with I1 < 0 and I2 = 0, i.e., an inhibitory input that is switched off at
time t0; cf. Fig. 1.5D. Many neurons respond to such a change with one or more
‘rebound spikes’: Even the release of inhibition can trigger action potentials. We
will return to inhibitory rebound in Chapter 2.

(ii) Saturating excitation and shunting inhibition
In the model SRM0 introduced in Section 1.3.1, the form of a postsynaptic

potential generated by a presynaptic spike at time t
(f)
j does not depend on the

state of the postsynaptic neuron i. This is of course a simplification and reality
is somewhat more complicated. In Chapter 2 we will discuss detailed neuron
models that describe synaptic input as a change of the membrane conductance.
Here we simply summarize the major phenomena.

In Fig. 1.6 we have sketched schematically an experiment where the neuron
is driven by a constant current I0. We assume that I0 is too weak to evoke firing
so that, after some relaxation time, the membrane potential settles at a constant
value u0. At t = t(f) a presynaptic spike is triggered. The spike generates a current
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Fig. 1.6: The shape of postsynaptic potentials depends on the momentary level
of depolarization. A. A presynaptic spike that arrives at time t(f) at an inhibitory
synapse has hardly any effect on the membrane potential when the neuron is at
rest, but a large effect if the membrane potential u is above the resting potential.
If the membrane is hyperpolarized below the reversal potential of the inhibitory
synapse, the response to the presynaptic input changes sign. B. A spike at
an excitatory synapse evokes a postsynaptic potential with an amplitude that
depends only slightly on the momentary voltage u. For large depolarizations the
amplitude becomes smaller (saturation). Schematic figure.

pulse at the postsynaptic neuron (postsynaptic current, PSC) with amplitude

PSC ∝ u0 − Esyn (1.7)

where u0 is the membrane potential and Esyn is the ‘reversal potential’ of the
synapse. Since the amplitude of the current input depends on u0, the response of
the postsynaptic potential does so as well. Reversal potentials are systematically
introduced in Chapter 2.2; models of synaptic input are discussed in Chapter 2.4.

Example: Shunting Inhibition and Reversal Potential

The dependence of the postsynaptic response upon the momentary state of the
neuron is most pronounced for inhibitory synapses. The reversal potential of
inhibitory synapses Esyn is below, but usually close to the resting potential. Input
spikes thus have hardly any effect on the membrane potential if the neuron is
at rest; cf. 1.6a. However, if the membrane is depolarized, the very same input
spikes evoke a nice inhibitory postsynaptic potentials. If the membrane is already
hyperpolarized, the input spike can even produce a depolarizing effect. There is
a intermediate value u0 = Esyn – the reversal potential – where the response to
inhibitory input ‘reverses’ from hyperpolarizing to depolarizing.

Though inhibitory input usually has only a small impact on the membrane
potential, the local conductivity of the cell membrane can be significantly in-
creased. Inhibitory synapses are often located on the soma or on the shaft of the
dendritic tree. Due to their strategic position a few inhibitory input spikes can
‘shunt’ the whole input that is gathered by the dendritic tree from hundreds of
excitatory synapses. This phenomenon is called ‘shunting inhibition’.
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Fig. 1.7: The shape of postsynaptic potentials (dashed lines) depends on the
time t − t̂i that has passed since the last output spike current if neuron i. The
postsynaptic spike has been triggered at time t̂i. A presynaptic spike that arrives
at time t

(f)
j shortly after the spike of the postsynaptic neuron has a smaller effect

than a spike that arrives much later. The spike arrival time is indicated by an
arrow. Schematic figure.

The reversal potential for excitatory synapses is usually significantly above the
resting potential. If the membrane is depolarized u0 � urest the amplitude of an
excitatory postsynaptic potential is reduced, but the effect is not as pronounced
as for inhibition. For very high levels of depolarization a saturation of the EPSPs
can be observed; cf. 1.6b.

Example: Conductance Changes after a Spike

The shape of the postsynaptic potentials does not only depend on the level of
depolarization but, more generally, on the internal state of the neuron, e.g., on
the timing relative to previous action potentials.

Suppose that an action potential has occured at time t̂i and that a presynaptic
spike arrives at a time t

(f)
j > t̂i. The form of the postsynaptic potential depends

now on the time t
(f)
j − t̂i; cf. Fig. 1.7. If the presynaptic spike arrives during or

shortly after a postsynaptic action potential it has little effect because some of
the ion channels that were involved in firing the action potential are still open.
If the input spike arrives much later it generates a postsynaptic potential of the
usual size. We will return to this effect in Chapter 2.2.

Example: Spatial Structure

The form of postsynaptic potentials also depends on the location of the synapse
on the dendritic tree. Synapses that are located at the distal end of the dendrite
are expected to evoke a smaller postsynaptic response at the soma than a synapse
that is located directly on the soma; cf. Chapter 2. If several inputs occur on the
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Fig. 1.8: Spatio-temporal pulse pattern. The spikes of 30 neurons (A1-E6, plotted
along the vertical axes) are shown as a function of time (horizontal axis, total
time is 4 000 ms). The firing times are marked by short vertical bars. From
Krüger and Aiple (1988).

same dendritic branch within a few milliseconds, the first input will cause local
changes of the membrane potential that influence the amplitude of the response
to the input spikes that arrive slightly later. This may lead to saturation or, in
the case of so-called ‘active’ currents, to an enhancement of the response. Such
nonlinear interactions between different presynaptic spikes are neglected in the
model SRM0. A purely linear dendrite, on the other hand, can be incorporated
in the model as we will see in Chapter 4.

1.4 The Problem of Neuronal Coding

The mammalian brain contains more than 1010 densely packed neurons that are
conected to an intricate network. In every small volume of cortex, thousands
of spikes are emitted each millisecond. An example of a spike train recording
from thirty neurons is shown in Fig. 1.8. What is the information contained in
such a spatio-temporal pattern of pulses? What is the code used by the neurons
to transmit that information? How might other neurons decode the signal? As
external observers, can we read the code and understand the message of the
neuronal activity pattern?

The above questions point to the problem of neuronal coding, one of the fun-
damental issues in neuroscience. At present, a definite answer to these questions
is not known. Traditionally it has been thought that most, if not all, of the rele-
vant information was contained in the mean firing rate of the neuron. The firing
rate is usually defined by a temporal average; see Fig. 1.9. The experimentalist
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sets a time window of, say T = 100ms or T = 500ms and counts the number of
spikes nsp(T ) that occur in this time window. Division by the length of the time
window gives the mean firing rate

ν =
nsp(T )

T
(1.8)

usually reported in units of s−1 or Hz.
The concept of mean firing rates has been successfully applied during the last

80 years. It dates back to the pioneering work of Adrian (Adrian, 1926, 1928) who
showed that the firing rate of stretch receptor neurons in the muscles is related to
the force applied to the muscle. In the following decades, measurement of firing
rates became a standard tool for describing the properties of all types of sensory
or cortical neurons (Mountcastle, 1957; Hubel and Wiesel, 1959), partly due to
the relative ease of measuring rates experimentally. It is clear, however, that
an approach based on a temporal average neglects all the information possibly
contained in the exact timing of the spikes. It is therefore no surprise that the
firing rate concept has been repeatedly criticized and is subject of an ongoing
debate (Abeles, 1994; Bialek et al., 1991; Hopfield, 1995; Shadlen and Newsome,
1994; Softky, 1995; Rieke et al., 1996; Oram et al., 1999).

During recent years, more and more experimental evidence has accumulated
which suggests that a straightforward firing rate concept based on temporal aver-
aging may be too simplistic to describe brain activity. One of the main arguments
is that reaction times in behavioral experiments are often too short to allow long
temporal averages. Humans can recognize and respond to visual scenes in less
than 400ms (Thorpe et al., 1996). Recognition and reaction involve several pro-
cessing steps from the retinal input to the finger movement at the output. If,
at each processing step, neurons had to wait and perform a temporal average in
order to read the message of the presynaptic neurons, the reaction time would be
much longer.

In experiments on a visual neuron in the fly, it was possible to ‘read the neural
code’ and reconstruct the time-dependent stimulus based on the neuron’s firing
times (Bialek et al., 1991). There is evidence of precise temporal correlations
between pulses of different neurons (Abeles, 1994; Lestienne, 1996) and stimulus
dependent synchronization of the activity in populations of neurons (Eckhorn
et al., 1988; Gray and Singer, 1989; Gray et al., 1989; Engel et al., 1991a; Singer,
1994). Most of these data are inconsistent with a näıve concept of coding by
mean firing rates where the exact timing of spikes should play no role.

In the following sections, we review some potential coding schemes and ask:
What exactly is a pulse code – and what is a rate code? The question of neuronal
coding has important implications for modeling, because pulse codes require a
more detailed description of neuronal dynamics than rate codes. Models of neu-
rons at different levels of detail will be the topic of part I of the book.
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Fig. 1.9: A. Definition of the mean firing rate via a temporal average. B. Gain
function, schematic. The output rate ν is given as a function of the total input
I0.

1.5 Rate Codes

A quick glance at the experimental literature reveals that there is no unique
and well-defined concept of ‘mean firing rate’. In fact, there are at least three
different notions of rate which are often confused and used simultaneously. The
three definitions refer to three different averaging procedures: either an average
over time, or an average over several repetitions of the experiment, or an average
over a population of neurons. The following three subsections will reconsider the
three concepts. An excellent discussion of rate codes can be found in (Rieke et al.,
1996).

1.5.1 Rate as a Spike Count (Average over Time)

The first and most commonly used definition of a firing rate refers to a temporal
average. As discussed in the preceding section, this is essentially the spike count
in an interval of duration T divided by T ; see Fig. 1.9. The length T of the time
window is set by the experimenter and depends on the type of neuron recorded
from and the stimulus. In practice, to get sensible averages, several spikes should
occur within the time window. Typical values are T = 100 ms or T = 500 ms,
but the duration may also be longer or shorter.

This definition of rate has been successfully used in many preparations, par-
ticularly in experiments on sensory or motor systems. A classical example is the
stretch receptor in a muscle spindle (Adrian, 1926). The number of spikes emitted
by the receptor neuron increases with the force applied to the muscle. Another
textbook example is the touch receptor in the leech (Kandel and Schwartz, 1991).
The stronger the touch stimulus, the more spikes occur during a stimulation pe-
riod of 500 ms.

These classical results show that the experimenter as an external observer can
evaluate and classify neuronal firing by a spike count measure – but is this really
the code used by neurons in the brain? In other words, is a neuron which receives
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signals from a sensory neuron only looking at and reacting to the number of spikes
it receives in a time window of, say, 500 ms? We will approach this question from
a modeling point of view later on in the book. Here we discuss some critical
experimental evidence.

From behavioral experiments it is known that reaction times are often rather
short. A fly can react to new stimuli and change the direction of flight within
30-40 ms; see the discussion in (Rieke et al., 1996). This is not long enough
for counting spikes and averaging over some long time window. The fly has to
respond after a postsynaptic neuron has received one or two spikes. Humans can
recognize visual scenes in just a few hundred milliseconds (Thorpe et al., 1996),
even though recognition is believed to involve several processing steps. Again,
this does not leave enough time to perform temporal averages on each level. In
fact, humans can detect images in a sequence of unrelated pictures even if each
image is shown for only 14 – 100 milliseconds (Keysers et al., 2001).

Temporal averaging can work well in cases where the stimulus is constant
or slowly varying and does not require a fast reaction of the organism - and
this is the situation usually encountered in experimental protocols. Real-world
input, however, is hardly stationary, but often changing on a fast time scale.
For example, even when viewing a static image, humans perform saccades, rapid
changes of the direction of gaze. The image projected onto the retinal photo
receptors changes therefore every few hundred milliseconds.

Despite its shortcomings, the concept of a firing rate code is widely used not
only in experiments, but also in models of neural networks. It has led to the idea
that a neuron transforms information about a single input variable (the stimulus
strength) into a single continuous output variable (the firing rate); cf. Fig. 1.9B.
The output rate ν increases with the stimulus strength and saturates for large
input I0 towards a maximum value νmax. In experiments, a single neuron can be
stimulated by injecting with an intra-cellular electrode a constant current I0. The
relation between the measured firing frequency ν and the applied input current
I0 is sometimes called the frequency-current curve of the neuron. In models, we
formalize the relation between firing frequency (rate) and input current and write
ν = g(I0). We refer to g as the neuronal gain function or transfer function.

From the point of view of rate coding, spikes are just a convenient way to
transmit the analog output variable ν over long distances. In fact, the best coding
scheme to transmit the value of the rate ν would be by a regular spike train with
intervals 1/ν. In this case, the rate could be reliably measured after only two
spikes. From the point of view of rate coding, the irregularities encountered in
real spike trains of neurons in the cortex must therefore be considered as noise.
In order to get rid of the noise and arrive at a reliable estimate of the rate, the
experimenter (or the postsynaptic neuron) has to average over a larger number
of spikes. A critical discussion of the temporal averaging concept can be found
in (Shadlen and Newsome, 1994; Softky, 1995; Rieke et al., 1996).



1.5. RATE CODES 27

Δt
1

tΔ

tΔ

(single neuron, repeated runs)

input

1st run

2nd

3rd
...

ρ

spike density 
in PSTH

ρ =
K
1

t
PSTH

  rate =  average over several runs

n (t; t+     )K

Fig. 1.10: Definition of the spike density in the Peri-Stimulus-Time Histogram
(PSTH) as an average over several runs of the experiment.

1.5.2 Rate as a Spike Density (Average over Several Runs)

There is a second definition of rate which works for stationary as well as for time-
dependent stimuli. The experimenter records from a neuron while stimulating
with some input sequence. The same stimulation sequence is repeated several
times and the neuronal response is reported in a Peri-Stimulus-Time Histogram
(PSTH); see Fig. 1.10. The time t is measured with respect to the start of the
stimulation sequence and Δt is typically in the range of one or a few milliseconds.
The number of occurrences of spikes nK(t; t + Δt) summed over all repetitions
of the experiment divided by the number K of repetitions is a measure of the
typical activity of the neuron between time t and t + Δt. A further division by
the interval length Δt yields the spike density of the PSTH

ρ(t) =
1

Δt

nK(t; t + Δt)

K
. (1.9)

Sometimes the result is smoothed to get a continuous ‘rate’ variable. The spike
density of the PSTH is usually reported in units of Hz and often called the (time-
dependent) firing rate of the neuron.

As an experimental procedure, the spike density measure is a useful method
to evaluate neuronal activity, in particular in the case of time-dependent stimuli.
The obvious problem with this approach is that it can not be the decoding scheme
used by neurons in the brain. Consider for example a frog which wants to catch
a fly. It can not wait for the insect to fly repeatedly along exactly the same
trajectory. The frog has to base its decision on a single ‘run’ – each fly and each
trajectory is different.

Nevertheless, the experimental spike density measure can make sense, if there
are large populations of independent neurons that receive the same stimulus.
Instead of recording from a population of N neurons in a single run, it is ex-
perimentally easier to record from a single neuron and average over N repeated
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Fig. 1.11: A. A postsynpatic neuron receives spike input from the population m
with activity Am. B. The population activity is defined as the fraction of neurons
that are active in a short interval [t, t + Δt] divided by Δt.

runs. Thus, the spike density coding relies on the implicit assumption that there
are always populations of neurons and therefore leads us to the third notion of a
firing rate, viz., a rate defined as a population average.

1.5.3 Rate as a Population Activity (Average over Several
Neurons)

The number of neurons in the brain is huge. Often many neurons have similar
properties and respond to the same stimuli. For example, neurons in the pri-
mary visual cortex of cats and monkeys are arranged in columns of cells with
similar properties (Hubel and Wiesel, 1962, 1977; Hubel, 1988). Let us idealize
the situation and consider a population of neurons with identical properties. In
particular, all neurons in the population should have the same pattern of input
and output connections. The spikes of the neurons in a population m are sent
off to another population n. In our idealized picture, each neuron in population
n receives input from all neurons in population m. The relevant quantity, from
the point of view of the receiving neuron, is the proportion of active neurons in
the presynaptic population m; see Fig. 1.11A. Formally, we define the population
activity

A(t) =
1

Δt

nact(t; t + Δt)

N
=

1

Δt

∫ t+Δt

t

∑
j

∑
f δ(t− t

(f)
j ) dt

N
(1.10)

where N is the size of the population, nact(t; t+Δt) the number of spikes (summed
over all neurons in the population) that occur between t and t + Δt and Δt a
small time interval; see Fig. 1.11. Eq. (1.10) defines a variable with units s−1 –
in other words, a rate.

The population activity may vary rapidly and can reflect changes in the stimu-
lus conditions nearly instantaneously (Gerstner, 2000a; Brunel et al., 2001). Thus
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the population activity does not suffer from the disadvantages of a firing rate de-
fined by temporal averaging at the single-unit level. A potential problem with
the definition (1.10) is that we have formally required a homogeneous population
of neurons with identical connections which is hardly realistic. Real populations
will always have a certain degree of heterogeneity both in their internal parame-
ters and in their connectivity pattern. Nevertheless, rate as a population activity
(of suitably defined pools of neurons) may be a useful coding principle in many
areas of the brain. For inhomogeneous populations, the definition (1.10) may be
replaced by a weighted average over the population.

Example: Population vector coding

We give an example of a weighted average in an inhomogeneous population. Let
us suppose that we are studying a population of neurons which respond to a
stimulus x. We may think of x as the location of the stimulus in input space.
Neuron i responds best to stimulus xi, another neuron j responds best to stimulus
xj . In other words, we may say that the spikes for a neuron i ‘represent’ an input
vector xi and those of j an input vector xj . In a large population, many neurons
will be active simultaneously when a new stimulus x is represented. The location
of this stimulus can then be estimated from the weighted population average

xest(t) =

∫ t+Δt

t

∑
j

∑
f xj δ(t− t

(f)
j ) dt∫ t+Δt

t

∑
j

∑
f δ(t− t

(f)
j ) dt

(1.11)

Both numerator and denominator are closely related to the population activity
(1.10). The estimate (1.11) has been successfully used for an interpretation of
neuronal activity in primate motor cortex (Georgopoulos et al., 1986; Wilson and
McNaughton, 1993). It is, however, not completely clear whether postsynaptic
neurons really evaluate the fraction (1.11). In any case, eq. (1.11) can be applied
by external observers to ‘decode’ neuronal signals, if the spike trains of a large
number of neurons are accessible.

1.6 Spike Codes

In this section, we will briefly introduce some potential coding strategies based
on spike timing.

1.6.1 Time-to-First-Spike

Let us study a neuron which abruptly receives a ‘new’ input at time t0. For
example, a neuron might be driven by an external stimulus which is suddenly
switched on at time t0. This seems to be somewhat academic, but even in a
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stimulus

Fig. 1.12: Time-to-first spike. The spike train of three neurons are shown. The
third neuron from the top is the first one to fire a spike after the stimulus onset
(arrow). The dashed line indicates the time course of the stimulus.

realistic situation abrupt changes in the input are quite common. When we look
at a picture, our gaze jumps from one point to the next. After each saccade,
the photo receptors in the retina receive a new visual input. Information about
the onset of a saccade would easily be available in the brain and could serve as
an internal reference signal. We can then imagine a code where for each neuron
the timing of the first spike after the reference signal contains all information
about the new stimulus. A neuron which fires shortly after the reference signal
could signal a strong stimulation, firing somewhat later would signal a weaker
stimulation; see Fig. 1.12.

In a pure version of this coding scheme, each neuron only needs to fire a single
spike to transmit information. (If it emits several spikes, only the first spike after
the reference signal counts. All following spikes would be irrelevant.) To imple-
ment a clean version of such a coding scheme, we imagine that each neuron is shut
off by inhibition as soon as it has fired a spike. Inhibition ends with the onset of
the next stimulus (e.g., after the next saccade). After the release from inhibition
the neuron is ready to emit its next spike that now transmits information about
the new stimulus. Since each neuron in such a scenario transmits exactly one
spike per stimulus, it is clear that only the timing conveys information and not
the number of spikes.

A coding scheme based on the time-to-first-spike is certainly an idealization.
In a slightly different context coding by first spikes has been discussed by S.
Thorpe (Thorpe et al., 1996). Thorpe argues that the brain does not have time
to evaluate more than one spike from each neuron per processing step. Therefore
the first spike should contain most of the relevant information. Using information-
theoretic measures on their experimental data, several groups have shown that
most of the information about a new stimulus is indeed conveyed during the
first 20 or 50 milliseconds after the onset of the neuronal response (Optican and
Richmond, 1987; Kjaer et al., 1994; Tovee et al., 1993; Tovee and Rolls, 1995).
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background oscillation

Fig. 1.13: Phase. The neurons fire at different phases with respect to the back-
ground oscillation (dashed). The phase could code relevant information.

Rapid computation during the transients after a new stimulus has also been
discussed in model studies (Hopfield and Herz, 1995; Tsodyks and Sejnowski,
1995; van Vreeswijk and Sompolinsky, 1997; Treves et al., 1997). Since time-
to-first spike is a highly simplified coding scheme, analytical studies are possible
(Maass, 1998).

1.6.2 Phase

We can apply a code by ’time-to-first-spike’ also in the situation where the ref-
erence signal is not a single event, but a periodic signal. In the hippocampus,
in the olfactory system, and also in other areas of the brain, oscillations of some
global variable (for example the population activity) are quite common. These
oscillations could serve as an internal reference signal. Neuronal spike trains could
then encode information in the phase of a pulse with respect to the background
oscillation. If the input does not change between one cycle and the next, then
the same pattern of phases repeats periodically; see Fig. 1.13.

The concept of coding by phases has been studied by several different groups,
not only in model studies (Hopfield, 1995; Jensen and Lisman, 1996; Maass, 1996),
but also experimentally (O’Keefe, 1993). There is, for example, evidence that
the phase of a spike during an oscillation in the hippocampus of the rat conveys
information on the spatial location of the animal which is not fully accounted for
by the firing rate of the neuron (O’Keefe, 1993).

1.6.3 Correlations and Synchrony

We can also use spikes from other neurons as the reference signal for a spike code.
For example, synchrony between a pair or many neurons could signify special
events and convey information which is not contained in the firing rate of the
neurons; see Fig. 1.14. One famous idea is that synchrony could mean ‘belonging
together’ (Milner, 1974; von der Malsburg, 1981). Consider for example a complex
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Fig. 1.14: Synchrony. The upper four neurons are nearly synchronous, two other
neurons at the bottom are not synchronized with the others.

scene consisting of several objects. It is represented in the brain by the activity
of a large number of neurons. Neurons which represent the same object could
be ‘labeled’ by the fact that they fire synchronously (von der Malsburg, 1981;
von der Malsburg and Buhmann, 1992; Eckhorn et al., 1988; Gray and Singer,
1989). Coding by synchrony has been studied extensively both experimentally
(Eckhorn et al., 1988; Gray and Singer, 1989; Gray et al., 1989; Singer, 1994;
Engel et al., 1991b,a; Kreiter and Singer, 1992) and in models (Wang et al., 1990;
von der Malsburg and Buhmann, 1992; Eckhorn et al., 1990; Aertsen and Arndt,
1993; König and Schillen, 1991; Schillen and König, 1991; Gerstner et al., 1993a;
Ritz et al., 1994; Terman and Wang, 1995; Wang, 1995). For a review of potential
mechanism, see (Ritz and Sejnowski, 1997).

More generally, not only synchrony but any precise spatio-temporal pulse pat-
tern could be a meaningful event. For example, a spike pattern of three neurons,
where neuron 1 fires at some arbitrary time t1 followed by neuron 2 at time
t1 + δ12 and by neuron 3 at t1 + δ13, might represent a certain stimulus condition.
The same three neurons firing with different relative delays might signify a dif-
ferent stimulus. The relevance of precise spatio-temporal spike patterns has been
studied intensively by Abeles (Abeles, 1991; Abeles et al., 1993; Abeles, 1994).
Similarly, but on a somewhat coarse time scale, correlations of auditory and vi-
sual neurons are found to be stimulus dependent and might convey information
beyond that contained in the firing rate alone (deCharms and Merzenich, 1996;
Steinmetz et al., 2000).

1.6.4 Stimulus Reconstruction and Reverse Correlation

Let us consider a neuron which is driven by a time dependent stimulus s(t). Every
time a spike occurs, we note the time course of the stimulus in a time window of
about 100 milliseconds immediately before the spike. Averaging the results over
several spikes yields the typical time course of the stimulus just before a spike
(de Boer and Kuyper, 1968). Such a procedure is called a ‘reverse correlation’
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stimulus

Fig. 1.15: Reverse correlation technique (schematic). The stimulus in the top
trace has caused the spike train shown immediately below. The time course of
the stimulus just before the spikes (dashed boxes) has been averaged to yield the
typical time course (bottom).

approach; see Fig. 1.15. In contrast to the PSTH experiment sketched in Section
1.5.2 where the experimenter averages the neuron’s response over several trials
with the same stimulus, reverse correlation means that the experimenter averages
the input under the condition of an identical response, viz., a spike. In other
words, it is a spike-triggered average; see, e.g., (de Ruyter van Stevenick and
Bialek, 1988; Rieke et al., 1996). The results of the reverse correlation, i.e.,
the typical time course of the stimulus which has triggered the spike, can be
interpreted as the ‘meaning’ of a single spike. Reverse correlation techniques have
made it possible to measure, for example, the spatio-temporal characteristics of
neurons in the visual cortex (Eckhorn et al., 1993; DeAngelis et al., 1995).

With a somewhat more elaborate version of this approach, W. Bialek and his
co-workers have been able to ‘read’ the neural code of the H1 neuron in the fly
and to reconstruct a time-dependent stimulus (Bialek et al., 1991; Rieke et al.,
1996). Here we give a simplified version of their argument.

Results from reverse correlation analysis suggest, that each spike signifies the
time course of the stimulus preceding the spike. If this is correct, a reconstruction
of the complete time course of the stimulus s(t) from the set of firing times
F = {t(1), . . . t(n)} should be possible; see Fig. 1.16.

As a simple test of this hypothesis, Bialek and coworkers have studied a linear
reconstruction. A spike at time t(f) gives a contribution κ(t− t(f)) to the estima-
tion sest(t) of the time course of the stimulus. Here, t(f) ∈ F is one of the firing
times and κ(t − t(f)) is a kernel which is nonzero during some time before and
around t(f); cf. Fig. 1.16B. A linear estimate of the stimulus is

sest(t) =

n∑
f=1

κ(t− t(f)) . (1.12)

The form of the kernel κ was determined through optimization so that the av-
erage reconstruction error

∫
dt[s(t) − sest(t)]2 was minimal. The quality of the

reconstruction was then tested on additional data which was not used for the
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Fig. 1.16: Reconstruction of a stimulus (schematic). A. A stimulus evokes a
spike train of a neuron. The time course of the stimulus may be estimated
from the spike train; redrawn after [Rieke et al., 1996]. B. In the framework of
linear stimulus reconstruction, the estimation sest(t) (dashed) is the sum of the
contributions κ (solid lines) of all spikes.

optimization. Surprisingly enough, the simple linear reconstruction (1.12) gave a
fair estimate of the time course of the stimulus even though the stimulus varied
on a time scale comparable to the typical interspike interval (Bialek et al., 1991;
Bialek and Rieke, 1992; Rieke et al., 1996). This reconstruction method shows
nicely that information about a time dependent input can indeed be conveyed by
spike timing.

1.7 Discussion: Spikes or Rates?

The dividing line between spike codes and firing rates is not always as clearly
drawn as it may seem at first sight. Some codes which were first proposed as
pure examples of pulse codes have later been interpreted as variations of rate
codes. For example the stimulus reconstruction (1.12) with kernels seems to be
a clear example of a spike code. Nevertheless, it is also not so far from a rate
code based on spike counts (Abbott, 1994; Theunissen and Miller, 1995). To see
this, consider a spike count measure with a running time window K(.). We can
estimate the rate ν at time t by

ν(t) =

∫
K(τ) S(t− τ)dτ∫

K(τ)dτ
(1.13)

where S(t) =
∑n

f=1 δ(t−t(f)) is the spike train under consideration. The integrals
run from minus to plus infinity. For a rectangular time window K(τ) = 1 for
−T/2 < τ < T/2 and zero otherwise, (1.13) reduces exactly to our definition
(1.8) of a rate as a spike count measure.

The time window in (1.13) can be made rather short so that at most a few
spikes fall into the interval T . Furthermore, there is no need that the window
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K(.) be symmetric and rectangular. We may just as well take an asymmetric
time window with smooth borders. Moreover, we can perform the integration
over the δ function which yields

ν(t) = c
n∑

f=1

K(t− t(f)) (1.14)

where c = [
∫

K(s)ds]−1 is a constant. Except for the constant c (which sets
the overall scale to units of one over time), the generalized rate formula (1.14)
is now identical to the reconstruction formula (1.12). In other words, the linear
reconstruction is just the firing rate measured with a cleverly optimized time
window.

Similarly, a code based on the ’time-to-first-spike’ is also consistent with a
rate code. If, for example, the mean firing rate of a neuron is high for a given
stimulus, then the first spike is expected to occur early. If the rate is low, the
first spike is expected to occur later. Thus the timing of the first spike contains
a lot of information about the underlying rate.

Finally, a code based on population activities introduced above as an example
of a rate code may be used for very fast temporal coding schemes. As discussed
later in Chapter 6, the population activity reacts quickly to any change in the
stimulus. Thus rate coding in the sense of a population average is consistent with
fast temporal information processing, whereas rate coding in the sense of a näıve
spike count measure is not.

The discussion of whether or not to call a given code a rate code is still
ongoing, even though precise definitions have been proposed (Theunissen and
Miller, 1995). What is important, in our opinion, is to have a coding scheme
which allows neurons to quickly respond to stimulus changes. A näıve spike
count code with a long time window is unable to do this, but many of the other
codes are. The name of such a code, whether it is deemed a rate code or not is
of minor importance.

Example: Towards a definition of rate codes

We have seen above in Eq. (1.14) that stimulus reconstruction with a linear kernel
can be seen as a special instance of a rate code. This suggests a formal definition
of a rate code via the reconstruction procedure: If all information contained in a
spike train can be recovered by the linear reconstruction procedure of Eq. (1.12),
then the neuron is, by definition, using a rate code. Spike codes would then be
codes where a linear reconstruction is not successful. Theunissen and Miller have
proposed a definition of rate coding that makes the above ideas more precise
(Theunissen and Miller, 1995).

To see how their definition works, we have to return to the reconstruction
formula (1.12). It is, in fact, the first term of a systematic Volterra expansion for
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the estimation of the stimulus from the spikes (Bialek et al., 1991)

sest(t) =
∑

f

κ1(t− t(f)) +
∑
f,f ′

κ2(t− t(f), t− t(f
′)) + . . . . (1.15)

For a specific neuron, inclusion of higher-order terms κ2, κ3, . . . may or may not
improve the quality of the estimation. For most neurons where the reconstruction
has been carried through it seems that the higher-order terms do not contribute
a large amount of information (Rieke et al., 1996). The neurons would then be
classified as rate coding.

Let us now suppose that the reconstruction procedure indicates a significant
contribution of the second-order term. Does this exclude rate coding? Unfortu-
nately this is not the case. We have to exclude two other possibilities. Firstly, we
might have chosen a suboptimal stimulus. A neuron might for example encode
the variable x by a rate code, so that a nearly perfect linear reconstruction of x
would be possible,

x(t) ≈ xest =
n∑

f=1

κ1;x(t− t(f)) ; (1.16)

But if we chose a stimulus s = x2 instead of x, then the reconstruction for sest

would involve second-order terms, even though the neuron is really using rate
code.

Secondly, according to Theunissen and Miller [1995] a spike code should show
a temporal structure that is more precise than the temporal structure of the
stimulus. The fact that neurons show precise and reliable spike timing as such
is, for them, not sufficient to classify the neuron as a temporal encoder, since
the neuronal precision could just be the image of precise temporal input. Let us
consider a stimulus with cut-off frequency ω. In order to exclude the possibility
that the timing is induced by the stimulus, Theunissen and Miller propose to
consider the Fourier spectrum of the higher-order reconstruction kernels. If the
Fourier transform of the higher-order kernels contains frequencies less than ω only,
then the code is a rate code. If higher-order kernels are significant and contain
frequencies above ω, then the information is encoded temporally. A positive
example of a spike code (or of ‘temporal encoding’) according to this definition
would be the code by correlation and synchrony introduced above. Another
example would be the phase code, in particular if the number of spikes per cycle
is independent of the stimulus strength. For the exact mathematical definition of
a temporal code according to Theunissen and Miller, the reader is refered to the
original literature (Theunissen and Miller, 1995).
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1.8 Summary

The neuronal signal consists of short voltage pulses called action potentials or
spikes. These pulses travel along the axon and are distributed to several post-
synaptic neurons where they evoke postsynaptic potentials. If a postsynaptic
neuron receives several spikes from several presynaptic neurons within a short
time window, its membrane potential may reach a critical value and an action
potential is triggered. This action potential is the output signal which is, in turn,
transmitted to other neurons.

The sequence of action potentials contains the information that is conveyed
from one neuron to the next – but what is the code used by the neurons? Even
though it is a question of fundamental importance the problem of neuronal cod-
ing is still not fully resolved. We have reviewed three concepts of rate codes, viz.
spike count over some time window, spike density in a histogram, and population
activity in an ensemble of neurons. All three concepts have been successfully used
in experimental data analysis. All of these concepts are, however, problematic
when they are interpreted as the actual code used for neuronal information trans-
mission. A constructive criticism of rate codes may come from a presentation of
potential spike codes, if their usefulness in terms of computational power or ease
of implementation in biological hardware can be shown. It should be clear that
modeling cannot give definite answers to the problem of neuronal coding. The
final answers have to come from experiments. One task of modeling may be to
discuss possible coding schemes, study their computational potential, exemplify
their utility, and point out their limitations.

It is difficult to draw a clear border line between pulse and rate codes. What-
ever the name of the code, it should offer a neural system the possibility to react
quickly to changes in the input. This seems to be a minimum requirement if fast
behavioral reaction times are to be accounted for.

If pulse coding is relevant, a description of information processing in the brain
must be based on spiking neuron models. If all information is contained in the
mean firing rate, then models on the level of rates suffice. Since we do not want
to take any decision a priori about the neuronal code, we concentrate in this book
on models of spiking neurons. In some cases, for example for stationary input,
it will turn out that the spiking neuron models can be strictly reduced to rate
models; in other cases such a reduction is not possible. By modeling on the level
of spiking neurons, the question of neuronal coding can thus be kept open.

Literature

An elementary, non-technical introduction to neurons and synapses can be found
in the book by Thompson (1993). At an intermediate level is “From neuron to
brain” by Kuffler et al. (1984). A standard textbook on Neuroscience covering a
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wealth of experimental results is “Principles of Neural Science” by Kandel and
Schwartz (1991).

Phenomenological spiking neuron models similar to the model discussed in
Section 1.3.1 have a long tradition in theoretical neuroscience, e.g., (Lapicque,
1907; Hill, 1936; McCulloch and Pitts, 1943; Stein, 1965; Geisler and Goldberg,
1966; Weiss, 1966; Stein, 1967b). They are reviewed in Holden (1976), Tuckwell
(1988), and Maass and Bishop (1998).

An excellent discussion of the problem of neuronal coding can be found in
the book ‘SPIKES - Exploring the neural code’ by Rieke et al. (1996). The
debate of spikes versus rates is also highlighted in several papers (Abeles, 1994;
Abbott, 1994; Shadlen and Newsome, 1994; Softky, 1995; Maass and Bishop,
1998; Theunissen and Miller, 1995).
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Chapter 2

Detailed Neuron Models

From a biophysical point of view, action potentials are the result of currents
that pass through ion channels in the cell membrane. In an extensive series
of experiments on the giant axon of the squid, Hodgkin and Huxley succeeded
to measure these currents and to describe their dynamics in terms of differential
equations. In Section 2.2, the Hodgkin-Huxley model is reviewed and its behavior
illustrated by several examples.

The Hodgkin-Huxley equations are the starting point for detailed neuron mod-
els which account for numerous ion channels, different types of synapse, and the
specific spatial geometry of an individual neuron. Ion channels, synaptic dynam-
ics, and the spatial structure of dendrites are the topics of Sections 2.3–2.5. The
Hodgkin-Huxley model is also an important reference model for the derivation
of simplified neuron models in Chapters 3 and 4. Before we can turn to the
Hodgkin-Huxley equations, we need to give some additional information on the
equilibrium potential of ion channels.

2.1 Equilibrium potential

Neurons are just as other cells enclosed by a membrane which separates the inte-
rior of the cell from the extracellular space. Inside the cell the concentration of
ions is different from that in the surrounding liquid. The difference in concentra-
tion generates an electrical potential which plays an important role in neuronal
dynamics. In this section, we want to provide some background information and
give an intuitive explanation of the equilibrium potential.

2.1.1 Nernst potential

From the theory of thermodynamics, it is known that the probability that a
molecule takes a state of energy E is proportional to the Boltzmann factor p(E) ∝
exp(−E/kT ) where k is the Boltzmann constant and T the temperature. Let us
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Fig. 2.1: A. At thermal equilibrium, positive ions in an electric field will be
distributed so that less ions are in a state of high energy and more at low energy.
Thus a voltage difference generates a gradient in concentration. B. Similarly, a
difference in ion concentration generates an electrical potential. The concentra-
tion n2 inside the neuron is different from the concentration n1 of the surround.
The resulting potential is called the Nernst-potential. The solid line indicates the
cell membrane. Ions can pass through the gap.

consider positive ions with charge q in a static electrical field. Their energy at
location x is E(x) = q u(x) where u(x) is the potential at x. The probability to
find an ion in the region around x is therefore proportional to exp[−q u(x)/kT ].
Since the number of ions is huge, we may interpret the probability as a ion density.
For ions with positive charge q > 0, the ion density is therefore higher in regions
with low potential u. Let us write n(x) for the ion density at point x. The
relation between the density at point x1 and point x2 is

n(x1)

n(x2)
= exp

[
−q u(x1)− q u(x2)

k T

]
(2.1)

A difference in the electrical potential Δu = u(x1)− u(x2) generates therefore a
difference in ion density; cf. Fig. 2.1.

Since this is a statement about an equilibrium state, the reverse must also be
true. A difference in ion density generates a difference Δu in the electrical poten-
tial. We consider two regions of ions with concentration n1 and n2, respectively.
Solving (2.1) for Δu we find that, at equilibrium, the concentration difference
generates a voltage

Δu =
k T

q
ln

n2

n1
(2.2)

which is called the Nernst potential (Hille, 1992).
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2.1.2 Reversal Potential

The cell membrane consists of a thin bilayer of lipids and is a nearly perfect elec-
trical insulator. Embedded in the cell membrane are, however, specific proteins
which act as ion gates. A first type of gate are the ion pumps, a second one
are ion channels. Ion pumps actively transport ions from one side to the other.
As a result, ion concentrations in the intra-cellular liquid differ from that of the
surround. For example, the sodium concentration inside the cell (≈ 60mM/l) is
lower than that in the extracellular liquid (≈ 440 mM/l). On the other hand, the
potassium concentration inside is higher (≈ 400 mM/l) than in the surround (≈
20 mM/l).

Let us concentrate for the moment on sodium ions. At equilibrium the dif-
ference in concentration causes a Nernst potential ENa of about +50 mV. That
is, at equilibrium the interior of the cell has a positive potential with respect to
the surround. The interior of the cell and the surrounding liquid are in contact
through ion channels where Na+ ions can pass from one side of the membrane
to the other. If the voltage difference Δu is smaller than the value of the Nernst
potential ENa, more Na+ ions flow into the cell so as to decrease the concentration
difference. If the voltage is larger than the Nernst potential ions would flow out
the cell. Thus the direction of the current is reversed when the voltage Δu passes
ENa. For this reason, ENa is called the reversal potential.

Example: Reversal Potential for Potassium

As mentioned above, the ion concentration of potassium is higher inside the cell
(≈ 400 mM/l) than in the extracellular liquid (≈ 20 mM/l). Potassium ions have
a single positive charge q = 1.6 × 10−19 C. Application of the Nernst equation
with the Boltzmann constant k = 1.4× 10−23 J/K yields EK ≈ −77mV at room
temperature. The reversal potential for K+ ions is therefore negative.

Example: Resting Potential

So far we have considered either sodium or potassium. In real cells, these and
other ion types are simultaneously present and contribute to the voltage across the
membrane. It is found experimentally that the resting potential of the membrane
is about urest ≈ -65 mV. Since EK < urest < ENa, potassium ions will, at the
resting potential, flow out of the cell while sodium ions flow into the cell. The
active ion pumps balance this flow and transport just as many ions back as pass
through the channels. The value of urest is determined by the dynamic equilibrium
between the ion flow through the channels (permeability of the membrane) and
active ion transport (efficiency of the ion pumps).



44 CHAPTER 2. DETAILED NEURON MODELS

+

-

+ +

- -

+

-
K

Naoutside

inside

K NaRC

I
+

+

Fig. 2.2: Schematic diagram for the Hodgkin-Huxley model.

2.2 Hodgkin-Huxley Model

Hodgkin and Huxley (Hodgkin and Huxley, 1952) performed experiments on the
giant axon of the squid and found three different types of ion current, viz., sodium,
potassium, and a leak current that consists mainly of Cl− ions. Specific voltage-
dependent ion channels, one for sodium and another one for potassium, control
the flow of those ions through the cell membrane. The leak current takes care of
other channel types which are not described explicitly.

2.2.1 Definition of the model

The Hodgkin-Huxley model can be understood with the help of Fig. 2.2. The
semipermeable cell membrane separates the interior of the cell from the extracel-
lular liquid and acts as a capacitor. If an input current I(t) is injected into the
cell, it may add further charge on the capacitor, or leak through the channels in
the cell membrane. Because of active ion transport through the cell membrane,
the ion concentration inside the cell is different from that in the extracellular
liquid. The Nernst potential generated by the difference in ion concentration is
represented by a battery.

Let us now translate the above considerations into mathematical equations.
The conservation of electric charge on a piece of membrane implies that the
applied current I(t) may be split in a capacitive current IC which charges the
capacitor C and further components Ik which pass through the ion channels.
Thus

I(t) = IC(t) +
∑

k

Ik(t) (2.3)

where the sum runs over all ion channels. In the standard Hodgkin-Huxley model
there are only three types of channel: a sodium channel with index Na, a potas-
sium channel with index K and an unspecific leakage channel with resistance R;
cf. Fig. 2.2. From the definition of a capacity C = Q/u where Q is a charge and
u the voltage across the capacitor, we find the charging current IC = C du/dt.



Chapter 3

Two-Dimensional Neuron Models

The behavior of high-dimensional nonlinear differential equations is difficult to
visualize – and even more difficult to analyze. Two-dimensional differential equa-
tions, however, can be studied in a transparent manner by means of a phase plane
analysis. A reduction of the four-dimensional equation of Hodgkin and Huxley to
a two-variable neuron model is thus highly desirable. In the first section of this
chapter we exploit the temporal properties of the gating variables of the Hodgkin-
Huxley model so as to approximate the four-dimensional differential equation by
a two-dimensional one. Section 3.2 is devoted to the phase plane analysis of
generic neuron models consisting of two coupled differential equations, one for
the membrane potential and the other one for the so-called relaxation variable.
One of the questions to which we will return repeatedly throughout this chapter
is the problem of the firing threshold. Section 3.3 summarizes some results on
threshold and excitability in two-dimensional models. As a first step, however,
we have to go through the approximations that are necessary for a reduction of
the Hodgkin-Huxley model to two dimensions.

3.1 Reduction to two dimensions

In this section we perform a systematic reduction of the four-dimensional Hodgkin-
Huxley model to two dimensions. To do so, we have to eliminate two of the four
variables. The essential ideas of the reduction can also be applied to detailed
neuron models that may contain many different ion channels. In this case, more
than two variables would have to be eliminated, but the procedure would be
completely analogous (Kepler et al., 1992).

3.1.1 General approach

We focus on the Hodgkin-Huxley model discussed in Chapter 2.2 and start with
two qualitative observations. First, we see from Fig. 2.3B that the time scale of
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the dynamics of the gating variable m is much faster than that of the variables n,
h, and u. This suggests that we may treat m as an instantaneous variable. The
variable m in the ion current equation (2.5) of the Hodgkin-Huxley model can
therefore be replaced by its steady-state value, m(t) → m0[u(t)]. This is what we
call a quasi steady state approximation.

Second, we see from Fig. 2.3B that the time constants τn(u) and τh(u) are
roughly the same, whatever the voltage u. Moreover, the graphs of n0(u) and
1−h0(u) in Fig. 2.3A are rather similar. This suggests that we may approximate
the two variables n and (1 − h) by a single effective variable w. To keep the
formalism slightly more general we use a linear approximation (b−h) ≈ a n with
some constants a, b and set w = b − h = a n. With h = b − w, n = w/a, and
m = m0(u), equations (2.4) - (2.5) become

C
du

dt
= −gNa[m0(u)]3 (b−w) (u−VNa)−gK

(w

a

)4

(u−VK)−gL (u−VL)+I , (3.1)

or
du

dt
=

1

τ
[F (u, w) + R I] , (3.2)

with R = g−1
L , τ = R C and some function F . We now turn to the three equations

(2.6). The m equation has disappeared since m is treated as instantaneous.
Instead of the two equations (2.6) for n and h, we are left with a single effective
equation

dw

dt
=

1

τw
G(u, w) , (3.3)

where τw is a parameter and G a function that has to be specified. Eqs. (3.2) and
(3.3) define a general two-dimensional neuron model. The mathematical details of
the reduction of the four-dimensional Hodgkin-Huxley model to the two equations
(3.2) and (3.3) are given below. Before we go through the mathematical step, we
will present two examples of two-dimensional neuron dynamics. We will return
to these examples repeatedly throughout this chapter.

Example: Morris-Lecar model

Morris and Lecar (1981) proposed a two-dimensional description of neuronal spike
dynamics. A first equation describes the evolution of the membrane potential u,
the second equation the evolution of a slow ‘recovery’ variable ŵ. In dimensionless
variables, the Morris-Lecar equations read

du

dt
= −g1 m̂0(u) (u− 1)− g2 ŵ (u− V2)− gL (u− VL) + I , (3.4)

dŵ

dt
= − 1

τ(u)
[ŵ − w0(u)] . (3.5)
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The voltage has been scaled so that one of the reversal potentials is unity. Time
is measured in units of τ = RC. If we compare Eq. (3.4) with Eq. (3.1), we note
that the first current term on the right-hand side of Eq. (3.1) has a factor (b−w)
which closes the channel for high voltage and which is absent in (3.4). Another
difference is that neither m̂0 nor ŵ in Eq. (3.4) have exponents. To clarify the
relation between the two models, we could set m̂0(u) = [m0(u)]3 and ŵ = (w/a)4.
In the following we consider Eqs. (3.4) and (3.5) as a model in its own rights and
drop the hats over m0 and w.

The equilibrium functions shown in Fig. 2.3A typically have a sigmoidal shape.
It is reasonable to approximate the voltage dependence by

m0(u) =
1

2

[
1 + tanh

(
u− u1

u2

)]
(3.6)

w0(u) =
1

2

[
1 + tanh

(
u− u3

u4

)]
(3.7)

with parameters u1, . . . , u4, and to approximate the time constant by

τ(u) =
τw

cosh
(

u−u3

u4

) (3.8)

with a further parameter τw.
The Morris-Lecar model (3.4)–(3.8) gives a phenomenological description of

action potentials. Action potentials occur, if the current I is sufficiently strong.
We will see later on that the firing threshold in the Morris-Lecar model can be
discussed by phase plane analysis.

Example: FitzHugh-Nagumo model

FitzHugh and Nagumo where probably the first to propose that, for a discussion
of action potential generation, the four equations of Hodgkin and Huxley can
be replaced by two, i.e., Eqs. (3.2) and (3.3). They obtained sharp pulse-like
oscillations reminiscent of trains of action potentials by defining the functions
F (u, w) and G(u, w) as

F (u, w) = u− 1

3
u3 − w

G(u, w) = b0 + b1 u− w , (3.9)

where u is the membrane voltage and w is a recovery variable (FitzHugh, 1961;
Nagumo et al., 1962). Note that both F and G are linear in w; the sole non-
linearity is the cubic term in u. The FitzHugh-Nagumo model is one of the
simplest model with non-trivial behavior lending itself to a phase plane analysis,
which will be discussed below in Sections 3.2 and 3.3.
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Fig. 3.1: Arbitrary points (n, h) are projected onto the line in direction of e1 and
passing through the point (n0(urest), h0(urest)). The dotted line gives the curve
(n0(u), h0(u)).

3.1.2 Mathematical steps (*)

The reduction of the Hodgkin-Huxley model to Eqs. (3.2) and (3.3) presented in
this paragraph is inspired by the geometrical treatment of Rinzel (1985); see also
the slightly more general method of Abbott and Kepler (1990) and Kepler et al.
(1992).

The overall aim of the approach is to replace the variables n and h in the
Hodgkin-Huxley model by a single effective variable w. At each moment of time,
the values (n(t), h(t)) can be visualized as points in the two-dimensional plane
spanned by n and h; cf. Fig. 3.1. We have argued above that the time course
of the variable n is expected to be similar to that of 1 − h. If, at each time, n
was equal to 1 − h, then all possible points (n, h) would lie on the straight line
h = 1 − n passing through the points (0, 1) and (1, 0) of the plane. To keep
the model slightly more general we allow for an arbitrary line h = b− a n which
passes through (0, b) and (1, b − a). It would be unreasonable to expect that
all points (n(t), h(t)) that occur during the temporal evolution of the Hodgkin-
Huxley model fall exactly on that line. The reduction of the number of variables
is achieved by a projection of those points onto the line. The position along the
line h = b − a n gives the new variable w; cf. Fig. 3.1. The projection is the
essential approximation during the reduction.

To perform the projection, we will proceed in three steps. A minimal condition
for the projection is that the approximation introduces no error while the neuron
is at rest. As a first step, we therefore shift the origin of the coordinate system
to the rest state and introduce new variables

x = n− n0(urest) (3.10)

y = h− h0(urest) . (3.11)

At rest, we have x = y = 0.
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Second, we turn the coordinate system by an angle α which is determined as
follows. For a given constant voltage u, the dynamics of the gating variables n
and h approaches the equilibrium values (n0(u), h0(u)). The points (n0(u), h0(u))
as a function of u define a curve in the two-dimensional plane. The slope of the
curve at u = urest yields the turning angle α via

tan α =
dh0

du
|urest

dn0

du
|urest

. (3.12)

Turning the coordinate system by α moves the abscissa e1 of the new coordinate
system in a direction tangential to the curve. The coordinates (z1, z2) in the new
system are (

z1

z2

)
=

(
cos α sin α
− sin α cos α

) (
x
y

)
. (3.13)

Third, we set z2 = 0 and retain only the coordinate z1 along e1. The inverse
transform, (

x
y

)
=

(
cos α − sin α
sin α cos α

) (
z1

z2

)
, (3.14)

yields x = z1 cos α and y = z1 sin α since z2 = 0. Hence, after the projection, the
new values of the variables n and h are

n′ = n0(urest) + z1 cos α , (3.15)

h′ = h0(urest) + z1 sin α . (3.16)

In principle, z1 can directly be used as the new effective variable. From (3.13)
we find the differential equation

dz1

dt
= cos α

dn

dt
+ sin α

dh

dt
. (3.17)

We use (2.7) and replace, on the right-hand side, n(t) and h(t) by (3.15) and
(3.16). The result is

dz1

dt
= − cos α

z1 cos α + n0(urest)− n0(u)

τn(u)
− sin α

z1 sin α + h0(urest)− h0(u)

τh(u)
,

(3.18)
which is of the form dz1/dt = G(u, z1), as desired.

To see the relation to Eqs. (3.1) and (3.3), it is convenient to rescale z1 and
define

w = − tan α n0(urest)− z1 sin α . (3.19)

If we introduce a = − tan α, we find from Eq. (3.15) n′ = w/a and from Eq. (3.16)
h′ = b− w which are the approximations that we have used in (3.1). The differ-
ential equation for the variable w is of the desired form dw/dt = G(u, w) and can
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be found from Eq. (3.18). If we approximate the time constants τn and τh by a
common function τ(u), the dynamics of w is

dw

dt
= − 1

τ(u)
[w − w0(u)] . (3.20)

with a new equilibrium function w0(u) that is a linear combination of the functions
h0 and n0. From Eqs. (3.18) and (3.19) we find

w0(u) = − sin α [cosα n0(u) + sin α h0(u)− c] (3.21)

with a parameter c that is determined by direct calculation. In practice, both
w0(u) and τ(u) are fitted by the expressions (3.7) and (3.8).

3.2 Phase plane analysis

In two-dimensional models, the temporal evolution of the variables (u, w)T can
be visualized in the so-called phase plane. From a starting point (u(t), w(t))T the
system will move in a time Δt to a new state (u(t + Δt), w(t + Δt))T which has
to be determined by integration of the differential equations (3.2) and (3.3). For
Δt sufficiently small, the displacement (Δu, Δw)T is in the direction of the flow
(u̇, ẇ)T , i.e., (

Δu
Δw

)
=

(
u̇
ẇ

)
Δt , (3.22)

which can be plotted as a vector field in the phase plane. Here u̇ = du/dt is given
by (3.2) and ẇ = dw/dt by (3.3). The flow field is also called the phase portrait
of the system. An important tool in the construction of the phase portrait are
the nullclines which are introduced now.

3.2.1 Nullclines

Let us consider the set of points with u̇ = 0, called the u-nullcline. The direction
of flow on the u-nullcline is in direction of (0, ẇ)T , since u̇ = 0. Hence arrows
in the phase portrait are vertical on the u-nullcline. Similarly, the w-nullcline is
defined by the condition ẇ = 0 and arrows are horizontal. The fixed points of the
dynamics, defined by u̇ = ẇ = 0 are given by the intersection of the u-nullcline
with the w-nullcline. In Fig. 3.2 we have three fixed points.

So far we have argued that arrows on the u-nullcline are vertical, but we do not
know yet whether they point up or down. To get the extra information needed,
let us return to the w-nullcline. By definition, it separates the region with ẇ > 0
from the area with ẇ < 0. Suppose we evaluate G(u, w) on the right-hand side
of Eq. (3.3) at a single point, e.g, at (0, 1). If G(0, 1) > 0, then the whole area



Chapter 4

Formal Spiking Neuron Models

Detailed conductance-based neuron models can reproduce electrophysiological
measurements to a high degree of accuracy, but because of their intrinsic complex-
ity these models are difficult to analyze. For this reason, simple phenomenological
spiking neuron models are highly popular for studies of neural coding, memory,
and network dynamics. In this chapter we discuss formal threshold models of
neuronal firing. Spikes are generated whenever the membrane potential u crosses
some threshold ϑ from below. The moment of threshold crossing defines the firing
time t(f),

t(f) : u(t(f)) = ϑ and
du(t)

dt

∣∣∣∣
t=t(f)

> 0 . (4.1)

Since spikes are stereotyped events they are fully characterized by their firing
time. We focus on models that are based on a single variable u. Some well-known
instances of spiking neuron models differ in the specific way the dynamics of the
variable u is defined. We start our discussion with the integrate-and-fire neuron
(Section 4.1) and turn then to the Spike Response Model (Section 4.2). In Sec-
tion 4.3 we illustrate the relation of spiking neuron models to conductance-based
models. Section 4.4 outlines an analytical approach for a study of integrate-
and-fire neurons with passive dendrites. As a first application of spiking neuron
models we reconsider in Section 4.5 the problem of neuronal coding. The spik-
ing neuron models introduced in this chapter form the basis for the analysis of
network dynamics and learning in the following chapters.

4.1 Integrate-and-fire model

In this section, we give an overview of integrate-and-fire models. The leaky
integrate-and-fire neuron introduced in Section 4.1.1 is probably the best-known
example of a formal spiking neuron model. Generalizations of the leaky integrate-
and-fire model include the nonlinear integrate-and-fire model that is discussed in
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Fig. 4.1: Schematic diagram of the integrate-and-fire model. The basic circuit is
the module inside the dashed circle on the right-hand side. A current I(t) charges
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Section 4.1.2. All integrate-and-fire neurons can either be stimulated by external
current or by synaptic input from presynaptic neurons. Standard formulations of
synaptic input are given in Section 4.1.3.

4.1.1 Leaky Integrate-and-Fire Model

The basic circuit of an integrate-and-fire model consists of a capacitor C in parallel
with a resistor R driven by a current I(t); see Fig. 4.1. The driving current can
be split into two components, I(t) = IR + IC. The first component is the resistive
current IR which passes through the linear resistor R. It can be calculated from
Ohm’s law as IR = u/R where u is the voltage across the resistor. The second
component IC charges the capacitor C. From the definition of the capacity as
C = q/u (where q is the charge and u the voltage), we find a capacitive current
IC = C du/dt. Thus

I(t) =
u(t)

R
+ C

du

dt
. (4.2)

We multiply (4.2) by R and introduce the time constant τm = R C of the ‘leaky
integrator’. This yields the standard form

τm
du

dt
= −u(t) + R I(t) . (4.3)
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We refer to u as the membrane potential and to τm as the membrane time constant
of the neuron.

In integrate-and-fire models the form of an action potential is not described
explicitly. Spikes are formal events characterized by a ‘firing time’ t(f). The firing
time t(f) is defined by a threshold criterion

t(f) : u(t(f)) = ϑ . (4.4)

Immediately after t(f), the potential is reset to a new value ur < ϑ,

lim
t→t(f);t>t(f)

u(t) = ur . (4.5)

For t > t(f) the dynamics is again given by (4.3) until the next threshold crossing
occurs. The combination of leaky integration (4.3) and reset (4.5) defines the
basic integrate-and-fire model (Stein, 1967b). We note that, since the membrane
potential is never above threshold, the threshold condition (4.1) reduces to the
criterion (4.4), i.e., the condition on the slope du/dt can be dropped.

In its general version, the leaky integrate-and-fire neuron may also incorporate
an absolute refractory period, in which case we proceed as follows. If u reaches
the threshold at time t = t(f), we interrupt the dynamics (4.3) during an absolute
refractory time Δabs and restart the integration at time t(f) + Δabs with the new
initial condition ur.

Example: Constant stimulation and firing rates

Before we continue with the definition of the integrate-and-fire model and its
variants, let us study a simple example. Suppose that the integrate-and-fire
neuron defined by (4.3)–(4.5) is stimulated by a constant input current I(t) = I0.
For the sake of simplicity we take the reset potential to be ur = 0.

As a first step, let us calculate the time course of the membrane potential.
We assume that a spike has occurred at t = t(1). The trajectory of the membrane
potential can be found by integrating (4.3) with the initial condition u(t(1)) =
ur = 0. The solution is

u(t) = R I0

[
1− exp

(
−t− t(1)

τm

)]
. (4.6)

The membrane potential (4.6) approaches for t → ∞ the asymptotic value
u(∞) = R I0. For R I0 < ϑ no further spike can occur. For R I0 > ϑ, the
membrane potential reaches the threshold ϑ at time t(2), which can be found
from the threshold condition u(t(2)) = ϑ or

ϑ = R I0

[
1− exp

(
−t(2) − t(1)

τm

)]
. (4.7)
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Fig. 4.2: A. Time course of the membrane potential of an integrate-and-fire
neuron driven by constant input current I0 = 1.5. The voltage u(t) is normalized
by the value of the threshold ϑ = 1. B. Gain function. The firing rate ν of an
integrate-and-fire neuron without (solid line) and with absolute refractoriness of
δabs = 4 ms (dashed line) as a function of a constant driving current I0. Current
units are normalized so that the onset of repetitive firing is at Iθ = 1. Other
parameters are R = 1, τm = 10ms, and ur = 0.

Solving (4.7) for the time interval T = t(2) − t(1) yields

T = τm ln
R I0

R I0 − ϑ
. (4.8)

After the spike at t(2) the membrane potential is again reset to ur = 0 and
the integration process starts again. If the stimulus I0 remains constant, the
following spike will occur after another interval of duration T . We conclude that
for a constant input current I0, the integrate-and-fire neuron fires regularly with
period T given by (4.8). For a neuron with absolute refractory period the firing
period T ′ is given by T ′ = T + Δabs with T defined by Eq. (4.8). In other words,
the interspike interval is longer by an amount Δabs compared to that of a neuron
without absolute refractory period.

The mean firing rate of a noiseless neuron is defined as ν = 1/T . The firing
rate of an integrate-and-fire model with absolute refractory period Δabs stimulated
by a current I0 is therefore

ν =

[
Δabs + τm ln

R I0

R I0 − ϑ

]−1

. (4.9)

In Fig. 4.2B the firing rate is plotted as a function of the constant input I0 for
neurons with and without absolute refractory period.
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Fig. 4.3: Voltage u(t) of an integrate-and-fire model (top) driven by the input
current I(t) shown at the bottom. The input I(t) consists of a superposition of
four sinusoidal components at randomly chosen frequencies plus a positive bias
current I0 = 1.2 which drives the membrane potential towards the threshold.

Example: Time-dependent stimulus I(t)

The results of the preceding example can be generalized to arbitrary stimulation
conditions and an arbitrary reset value ur < ϑ. Let us suppose that a spike has
occurred at t̂. For t > t̂ the stimulating current is I(t). The value ur will be
treated as an initial condition for the integration of (4.3), i.e.,

u(t) = ur exp

(
−t− t̂

τm

)
+

1

C

∫ t−t̂

0

exp

(
− s

τm

)
I(t− s) ds . (4.10)

This expression describes the membrane potential for t > t̂ and is valid up to the
moment of the next threshold crossing. If u(t) = ϑ, the membrane potential is
reset to ur and integration restarts; see Fig. 4.3.

4.1.2 Nonlinear integrate-and-fire model

In a general nonlinear integrate-and-fire model, Eq. (4.3) is replaced by

τ
d

dt
u = F (u) + G(u) I ; (4.11)

cf. Abbott and van Vreeswijk (1993). As before, the dynamics is stopped if u
reaches the threshold ϑ and reinitialized at u = ur. A comparison with Eq. (4.3)
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Fig. 4.4: Quadratic integrate-and-fire model. A. Without external current I = 0,
the membrane potential relaxes for all initial condition u < uc to the resting po-
tential urest. If the membrane potential is moved above uc, the potential increases
further since du/dt > 0. The neuron is said to fire if u reaches the threshold
ϑ = −40mV. B. A constant super-threshold current I is characterized by the
fact that du/dt > 0 for all u. If u reaches the firing threshold of -40mV, it is
reset to -80mV. This results in repetitive firing.

shows that G(u) can be interpreted as a voltage-dependent input resistance while
−F (u)/(u− urest) corresponds to a voltage-dependent decay constant. A specific
instance of a nonlinear integrate-and-fire model is the quadratic model (Latham
et al., 2000; Hansel and Mato, 2001; Feng, 2001),

τ
d

dt
u = a0 (u− urest) (u− uc) + RI , (4.12)

with parameters a0 > 0 and uc > urest; cf. Fig. 4.4. For I = 0 and initial
conditions u < uc, the voltage decays to the resting potential urest. For u >
uc it increases so that an action potential is triggered. The parameter uc can
therefore be interpreted as the critical voltage for spike initiation by a short
current pulse. We will see in the next example that the quadratic integrate-and-
fire model is closely related to the so-called Θ-neuron, a canonical type-I neuron
model (Ermentrout, 1996; Latham et al., 2000).

Rescaling and standard forms (*)

It is always possible to rescale the variables so that threshold and membrane time
constant are equal to unity and that the resting potential vanishes. Furthermore,
there is no need to interpret the variable u as the membrane potential. For
example, starting from the nonlinear integrate-and-fire model Eq. (4.11), we can
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introduce a new variable ũ by the transformation

u(t) −→ ũ(t) = τ

∫ u(t)

0

dx

G(x)
(4.13)

which is possible if G(x) �= 0 for all x in the integration range. In terms of ũ we
have a new nonlinear integrate-and-fire model of the form

dũ

dt
= γ(ũ) + I (t) (4.14)

with γ(ũ) = τF (u)/G(u). In other words, a general integrate-and-fire model
(4.11) can always be reduced to the standard form (4.14). By a completely anal-
ogous transformation, we could eliminate the function F in Eq. (4.11) and move
all the dependence into a new voltage dependent G (Abbott and van Vreeswijk,
1993).

Example: Relation to a canonical type I model (*)

In this section, we show that there is a close relation between the quadratic
integrate-and-fire model (4.12) and the canonical type I phase model,

dφ

dt
= [1− cos φ] + ΔI [1 + cos φ] ; (4.15)

cf. Section 3.2.4 (Ermentrout, 1996; Ermentrout and Kopell, 1986; Strogatz, 1994;
Hoppensteadt and Izhikevich, 1997; Latham et al., 2000).

Let us denote by Iθ the minimal current necessary for repetitive firing of the
quadratic integrate-and-fire neuron. With a suitable shift of the voltage scale and
constant current I = Iθ + ΔI the equation of the quadratic neuron model can
then be cast into the form

du

dt
= u2 + ΔI . (4.16)

For ΔI > 0 the voltage increases until it reaches the firing threshold ϑ � 1
where it is reset to a value ur 
 −1. Note that the firing times are insensitive
to the actual values of firing threshold and reset value because the solution of
Eq. (4.16) grows faster than exponentially and diverges for finite time (hyperbolic
growth). The difference in the firing times for a finite threshold of, say, ϑ = 10
and ϑ = 10 000 is thus negligible.

We want to show that the differential equation (4.16) can be transformed into
the canonical phase model (4.15) by the transformation

u(t) = tan

(
φ(t)

2

)
. (4.17)
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To do so, we take the derivative of (4.17) and use the differential equation (4.15)
of the generic phase model. With help of the trigonometric relations d tanx/dx =
1/ cos2(x) and 1 + cosx = cos2(x/2) we find

du

dt
=

1

cos2(φ/2)

1

2

dφ

dt

= tan2(φ/2) + ΔI = u2 + ΔI . (4.18)

Thus Eq. (4.17) with φ(t) given by (4.15) is a solution to the differential equa-
tion of the quadratic integrate-and-fire neuron. The quadratic integrate-and-fire
neuron is therefore (in the limit ϑ→∞ and ur → −∞) equivalent to the generic
type I neuron (4.15).

4.1.3 Stimulation by Synaptic Currents

So far we have considered an isolated neuron that is stimulated by an external
current I(t). In a more realistic situation, the integrate-and-fire model is part
of a larger network and the input current I(t) is generated by the activity of
presynaptic neurons.

In the framework of the integrate-and-fire model, each presynaptic spike gen-
erates a postsynaptic current pulse. More precisely, if the presynaptic neuron j
has fired a spike at t

(f)
j , a postsynaptic neuron i ‘feels’ a current with time course

α(t− t
(f)
j ). The total input current to neuron i is the sum over all current pulses,

Ii(t) =
∑

j

wij

∑
f

α(t− t
(f)
j ) . (4.19)

The factor wij is a measure of the efficacy of the synapse from neuron j to neuron
i.

Though Eq. (4.19) is a reasonable model of synaptic interaction, reality is
somewhat more complicated, because the amplitude of the postsynaptic current
pulse depends on the actual value of the membrane potential ui. As we have seen
in Chapter 2, each presynaptic action potential evokes a change in the conduc-
tance of the postsynaptic membrane with a certain time course g(t − t(f)). The

postsynaptic current generated by a spike at time t
(f)
j is thus

α(t− t
(f)
j ) = −g(t− t

(f)
j ) [ui(t)− Esyn] . (4.20)

The parameter Esyn is the reversal potential of the synapse.
The level of the reversal potential depends on the type of synapse. For ex-

citatory synapses, Esyn is much larger than the resting potential. For a voltage
ui(t) close to the resting potential, we have ui(t) < Esyn. Hence the current Ii

induced by a presynaptic spike at an excitatory synapse is positive and increases



4.1. INTEGRATE-AND-FIRE MODEL 109

the membrane potential 1. The higher the voltage, the smaller the amplitude of
the input current. Note that a positive voltage ui > urest is itself the result of
input spikes which have arrived at other excitatory synapses. Hence, there is a
saturation of the postsynaptic current and the total input current is not just the
sum of independent contributions. Nevertheless, since the reversal potential of
excitatory synapses is usually significantly above the firing threshold, the factor
[ui − Esyn] is almost constant and saturation can be neglected.

For inhibitory synapses, the reversal potential is close to the resting poten-
tial. An action potential arriving at an inhibitory synapse pulls the membrane
potential towards the reversal potential Esyn. Thus, if the neuron is at rest, in-
hibitory input hardly has any effect on the membrane potential. If the membrane
potential is instead considerably above the resting potential, then the same input
has a strong inhibitory effect. This is sometimes described as silent inhibition:
inhibition is only seen if the membrane potential is above the resting potential.
Strong silent inhibition is also called ‘shunting’ inhibition, because a significantly
reduced resistance of the membrane potential forms a short circuit that literally
shunts excitatory input the neuron might receive from other synapses.

Example: Pulse-coupling and α-function

The time course of the postsynaptic current α(s) introduced in Eq. (4.19) can
be defined in various ways. The simplest choice is a Dirac δ-pulse, α(s) = q δ(s),
where q is the total charge that is injected in a postsynaptic neuron via a synapse
with efficacy wij = 1. More realistically, the postsynaptic current α should have
a finite duration, e.g., as in the case of an exponential decay with time constant
τs,

α(s) =
q

τs

exp

(
− s

τs

)
Θ(s) . (4.21)

As usual, Θ is the Heaviside step function with Θ(s) = 1 for s > 0 and Θ(s) = 0
else. Equation (4.21) is a simple way to account for the low-pass characteristics
of synaptic transmission; cf. Fig. 4.1.

An even more sophisticated version of α includes a finite rise time τr of the
postsynaptic current and a transmission delay Δax,

α(s) =
q

τs − τr

[
exp

(
−s−Δax

τs

)
− exp

(
−s−Δax

τr

)]
Θ(s−Δax) . (4.22)

In the limit of τr → τs, (4.22) yields

α(s) = q
s−Δax

τ 2
s

exp

(
−s−Δax

τs

)
Θ(s−Δax) . (4.23)

1Note that in Eq. (4.20) we consider the synaptic current as an external current whereas
in Chapter 2 we have considered it as a membrane current and therefore used a different sign
convention. In both cases, an excitatory input increases the membrane potential.
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In the literature, a function of the form x exp(−x) such as (4.23) is often called an
α-function. While this has motivated our choice of the symbol α for the synaptic
input current, α may stand for any form of an input current pulse.

4.2 Spike response model (SRM)

The Spike Response Model (SRM) is – just like the nonlinear integrate-and-fire
model – a generalization of the leaky integrate-and-fire model. The direction of
the generalization is, however, somewhat different. In the nonlinear integrate-
and-fire model, parameters are made voltage dependent whereas in the SRM
they depend on the time since the last output spike. Another difference between
integrate-and-fire models and the SRM concerns the formulation of the equations.
While integrate-and-fire models are usually defined in terms of differential equa-
tions, the SRM expresses the membrane potential at time t as an integral over
the past.

The explicit dependence of the membrane potential upon the last output spike
allows us to model refractoriness as a combination of three components, viz., (i)
a reduced responsiveness after an output spike; (ii) an increase in threshold after
firing; and (iii) a hyperpolarizing spike after-potential. In Section 4.2.1 the Spike
Response Model is introduced and its properties illustrated. Its relation to the
integrate-and-fire model is the topic of Section 4.2.2. An important special case
of the Spike Response Model is the simplified model SRM0 that we have already
encountered in Chapter 1.3.1. Section 4.2.3 will discuss it in more detail.

4.2.1 Definition of the SRM

In the framework of the Spike Response Model the state of a neuron i is described
by a single variable ui. In the absence of spikes, the variable ui is at its resting
value, urest = 0. Each incoming spike will perturb ui and it takes some time before
ui returns to zero. The function ε describes the time course of the response to an
incoming spike. If, after the summation of the effects of several incoming spikes,
ui reaches the threshold ϑ an output spike is triggered. The form of the action
potential and the after-potential is described by a function η. Let us suppose
neuron i has fired its last spike at time t̂i. After firing the evolution of ui is given
by

ui(t) = η(t− t̂i) +
∑

j

wij

∑
f

εij(t− t̂i, t− t
(f)
j )

+

∫ ∞

0

κ(t− t̂i, s) Iext(t− s) ds (4.24)
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where t
(f)
j are spikes of presynaptic neurons j and wij is the synaptic efficacy. The

last term accounts for an external driving current I ext. The two sums run over
all presynaptic neurons j and all firing times t

(f)
j < t of neuron j. We emphasize

that all terms depend on t− t̂i, i.e., the time since the last output spike.
In contrast to the integrate-and-fire neuron discussed in Section (4.1) the

threshold ϑ is not fixed but may also depend on t− t̂i

ϑ −→ ϑ(t− t̂i) . (4.25)

During an absolute refractory period Δabs, we may for example set ϑ to a large
and positive value to avoid firing and let it relax back to its equilibrium value
for t > t̂i + Δabs. Firing occurs whenever the membrane potential ui reaches the
dynamic threshold ϑ(t− t̂i) from below

t = t
(f)
i ⇔ ui(t) = ϑ(t− t̂i) and

dui(t)

dt
> 0 . (4.26)

As mentioned before t̂i is the last firing time,

t̂i = max
{
t
(f)
i < t

}
. (4.27)

Dynamic thresholds are a standard feature of phenomenological neuron models
(Fuortes and Mantegazzini, 1962; Geisler and Goldberg, 1966; Weiss, 1966; Stein,
1967b; MacGregor and Oliver, 1974; Horn and Usher, 1989; Eckhorn et al., 1990;
Abeles, 1991). Models similar to Eqs. (4.24)–(4.26) can be traced back much
further; see, e.g., Hill (1936).

Interpretation

So far Eqs. (4.1) and (4.24) define a mathematical model. Can we give a biological
interpretation of the terms? Let us identify the variable ui with the membrane
potential of neuron i. The functions η, κ and εij are response kernels that de-
scribe the effect of spike emission and spike reception on the variable ui. This
interpretation has motivated the name ‘Spike Response Model’, SRM for short
(Gerstner, 1995; Kistler et al., 1997). Let us discuss the meaning of the response
kernels.

The kernel η describes the standard form of an action potential of neuron i
including the negative overshoot which typically follows a spike (after-potential).
Graphically speaking, a contribution η is ‘pasted in’ each time the membrane
potential reaches the threshold ϑ; cf. Fig. 4.5. Since the form of the spike is always
the same, the exact time course of the action potential carries no information.
What matters is whether there is the event ‘spike’ or not. The event is fully
characterized by the firing time t

(f)
i . In a simplified model, the form of the action

potential may therefore be neglected as long as we keep track of the firing times
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Fig. 4.5: Schematic interpretation of the Spike Response Model. The figure shows
the time course ui(t) of the membrane potential of neuron i as a function of time
t. A spike of neuron i has been initiated at t̂i. The kernel η(t − t̂i) for t > t̂i
describes the form of the action potential (positive pulse) and the (negative) spike
after-potential that follows the pulse (thick solid line). If an input current pulse is
applied at a time t′′ a long time after the firing at t̂i, it evokes a standard response
described by the function κ(∞, t− t′′) and indicated by the dashed line starting
at t′′ (arrow). An input current pulse at t′ (arrow) which arrives shortly after the
postsynaptic spike at t̂i evokes, due to refractoriness of the neuron, a response of
significantly shorter duration. Its time course is described by the response kernel
κ(t − t̂i, t − t′); see the dashed line after t′. Immediately after firing at t̂i, the
threshold is increased (dot-dashed line).

t
(f)
i . The kernel η describes then simply the ‘reset’ of the membrane potential to

a lower value after the spike at t̂i just like in the integrate-and-fire model. The
leaky integrate-and-fire model is in fact a special case of the SRM as we will see
below in Section 4.2.2.

The kernel κ(t − t̂i, s) is the linear response of the membrane potential to
an input current. It describes the time course of a deviation of the membrane
potential from its resting value that is caused by a short current pulse (“impulse
response”). We have already seen in Chapters 2.2 and 3 that the response de-
pends, in general, on the time that has passed since the last output spike at t̂i.
Immediately after t̂i many ion channels are open so that the resistance of the
membrane is reduced. The voltage response to an input current pulse decays
therefore more rapidly back to zero than in a neuron that has been inactive. A
reduced or shorter response is one of the signatures of neuronal refractoriness.
This form of refractory effect is taken care of by making the kernel κ depend, via
its first argument, on the time difference t− t̂i. We illustrate the idea in Fig. 4.5.
The response to a first input pulse at t′ is shorter and less pronounced than that
to a second one at t′′, an effect which is well-known experimentally (Fuortes and
Mantegazzini, 1962; Powers and Binder, 1996; Stevens and Zador, 1998).

The kernel εij(t−t̂i, s) as a function of s = t−t
(f)
j can be interpreted as the time

course of a postsynaptic potential evoked by the firing of a presynaptic neuron j at
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time t
(f)
j . Depending on the sign of the synapse from j, to i, εij models either an

excitatory or inhibitory postsynaptic potential (EPSP or IPSP). Similarly as for
the kernel κ, the exact shape of the postsynaptic potential depends on the time t−
t̂i that has passed since the last spike of the postsynaptic neuron i. In particular,
if neuron i has been active immediately before the arrival of a presynaptic action
potential, the postsynaptic neuron is in a state of refractoriness. In this case, the
response to an input spike is smaller than that of an ‘unprimed’ neuron. The first
argument of εij(t− t̂i, s) accounts for the dependence upon the last firing time of
the postsynaptic neuron.

Total Postsynaptic Potential

In order to simplify the notation for later use, it is convenient to introduce the
total postsynaptic potential,

h(t|t̂i) =
∑

j

wij

∑
t
(f)
j

εij(t− t̂i, t− t
(f)
j ) +

∫ ∞

0

κ(t− t̂i, s) Iext
i (t− s) ds . (4.28)

Equation (4.24) can then be written in compact form,

ui(t) = η(t− t̂i) + h(t|t̂i) . (4.29)

Refractoriness

Refractoriness may be characterized experimentally by the observation that im-
mediately after a first action potential it is impossible (absolute refractoriness)
or more difficult (relative refractoriness) to excite a second spike (Fuortes and
Mantegazzini, 1962).

Absolute refractoriness can be incorporated in the SRM by setting the dy-
namic threshold during a time Δabs to an extremely high value that cannot be
attained.

Relative refractoriness can be mimicked in various ways; see Fig. 4.5. First,
after the spike the membrane potential, and hence η, passes through a regime
of hyperpolarization (after-potential) where the voltage is below the resting po-
tential. During this phase, more stimulation than usual is needed to drive the
membrane potential above threshold. This is equivalent to a transient increase
of the firing threshold (see below). Second, ε and κ contribute to relative refrac-
toriness because, immediately after an action potential, the response to incoming
spikes is shorter and, possibly, of reduced amplitude (Fuortes and Mantegazzini,
1962). Thus more input spikes are needed to evoke the same depolarization of
the membrane potential as in an ‘unprimed’ neuron. The first argument of the ε
function (or κ function) allows us to incorporate this effect.
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Removing the dynamic threshold

From a formal point of view, there is no need to interpret the variable u as the
membrane potential. It is, for example, often convenient to transform the variable
u so as to remove the time-dependence of the threshold. In fact, a general Spike
Response Model with arbitrary time-dependent threshold ϑ(t− t̂) = ϑ0 +Δ(t− t̂),
can always be transformed into a Spike Response Model with fixed threshold ϑ0

by a change of variables

u(t) −→ ũ(t) = u(t)−Δ(t− t̂) . (4.30)

The function Δ(t− t̂) can easily be absorbed in the definition of the η kernel.

Example: Impulse response of the FitzHugh-Nagumo model

In Chapter 3 we have studied the FitzHugh-Nagumo model as an example of a
two-dimensional neuron model. Here we want to show that the response of the
FitzHugh-Nagumo model to a short input current pulse depends on the time since
the last spike. Let us trigger, in a simulation of the model, an action potential
at t = 0. This can be done by applying a short, but strong current pulse. The
result is a voltage trajectory of large amplitude which we identify with the kernel
η(t). Figure 4.6 shows the hyperpolarizing spike after-potential which decays
slowly back to the resting level. To test the responsiveness of the FitzHugh-
Nagumo model during the recovery phase after the action potential, we apply,
at a time t(f) > 0, a second short input current pulse of low amplitude. The
response to this test pulse is compared with the unperturbed trajectory. The
difference between the two trajectories defines the kernel κ(t − t̂, t − t(f)). In
Fig. 4.6 several trajectories are overlayed showing the response to stimulation at
t = 10, 15, 20, 30 or 40. The shape and duration of the response curve depends
on the time that has passed since the initiation of the action potential. Note
that the time constant of the response kernel κ is always shorter than that of the
hyperpolarizing spike after-potential. Analogous results for the Hodgkin-Huxley
model will be discussed below in Section 4.3.1.

Example: A motoneuron model

Motoneurons exhibit a rather slow return to the resting potential after an action
potential (Powers and Binder, 1996). The time constant of the decay of the hy-
perpolarizing spike after-potential can be in the range of 100ms or more and is
therefore much slower than the membrane time constant that characterizes the
response to a short current input. On the other hand, it is found that if mo-
toneurons are stimulated by a constant super-threshold current, their membrane
potential has a roughly linear trajectory when approaching threshold. To quali-
tatively describe these observations, we can use a Spike Response Model with the
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Fig. 4.6: FitzHugh-Nagumo model. An action potential has been triggered at
t = 0. After the action potential additional pulse input occurs at t = 10, 15, 20, 30,
or 40 [arbitrary units]. In A the trajectories of all runs are plotted on top of each
other. Part B shows a zoomed-in section of two trajectories. A pulse input at
time t=10 after the onset of the action potential has a short lasting effect (top
right) compared to a pulse at t=40 (bottom right). All parameters as in Fig. 3.5.
There is no constant bias current.

following kernels:

η(t− t̂) = −η0 e
− (t−t̂)

τrefr Θ(t− t̂) (4.31)

κ(t− t̂, s) =
R

τm

[
1− e−

(t−t̂)
τrec

]
e−

s
τm Θ(s) Θ(t− t̂− s) (4.32)

where τm is an effective passive membrane time constant, R is the input resis-
tance, τrefr is the ‘refractory’ time constant, τrec is the ‘response recovery’ time
constant, η0 is a scale factor for the refractory function. The passive membrane
time constant τm and input resistance R characterize the membrane response
to small current pulses. The refractory function η describes the return of the
membrane potential to baseline after an action potential. It is characterized by a
slow time constant τrefr. For the κ-kernel we use a decaying exponential in s with
time constant τm, modulated by the ‘recovery’ factor {1 − exp[−(t − t̂)/τrec]}.
This results in a spike-time dependent scaling of the amplitude of postsynaptic
potentials. The recovery time τrec is taken much longer than τm.

The effect of the modulation of the input conductance as a function of t − t̂
is depicted in Fig. 4.7. An input current pulse shortly after the reset at time t̂
evokes a postsynaptic potential of much lower amplitude than an input current
pulse that arrives much later. Fig. 4.7 qualitatively reproduces the membrane
trajectory of motoneurons when stimulated by the same input pattern (Powers
and Binder, 1996; Poliakov et al., 1996).
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Fig. 4.7: Effect of recovery time constant τrec. Top: Input current consisting of
a sequence of pulses superimposed on a constant bias. Bottom: The membrane
potential response (thick line) to the input pulses clearly shows that the response
amplitude increases as a function of the time since the last spike. Parameters:
τrec = τrefr = 100ms; τm = 4ms; taken from Herrmann and Gerstner (2001b).

4.2.2 Mapping the Integrate-and-Fire Model to the SRM

In this section, we show that the leaky integrate-and-fire neuron defined in Sec-
tion 4.1 is a special case of the Spike Response Model. We consider an integrate-
and-fire neuron driven by external current Iext and postsynaptic current pulses
α(t− t

(f)
j ). The potential ui is thus given by

τm
dui

dt
= −ui(t) + R

∑
j

wij

∑
f

α(t− t
(f)
j ) + R Iext

i (t) . (4.33)

In order to construct a mapping of the integrate-and-fire model to the Spike
Response Model, we integrate Eq. (4.33) with u(t̂i) = ur as its initial condition.
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The result is in analogy to Eq. (4.10)

u(t) = ur exp

(
−t− t̂i

τm

)
(4.34)

+
∑

j

wij

∑
f

1

C

∫ t−t̂i

0

exp

(
− s

τm

)
α(t− t

(f)
j − s) ds

+
1

C

∫ t−t̂i

0

exp

(
− s

τm

)
Iext
i (t− s) ds

= η(t− t̂i) +
∑

j

wij

∑
f

ε(t− t̂i, t− t
(f)
j ) +

∫ ∞

0

κ(t− t̂i, s) Iext
i (t− s) ds ,

with

η(s) = ur exp

(
− s

τm

)
, (4.35)

ε(s, t) =
1

C

∫ s

0

exp

(
− t′

τm

)
α(t− t′) dt′ , (4.36)

κ(s, t) =
1

C
exp

(
− t

τm

)
Θ(s− t) Θ(t) . (4.37)

As usual, Θ(x) denotes the Heaviside step function. The kernels (4.35)–(4.37)
allow us to map the integrate-and-fire neuron exactly to the the Spike Response
Model, as desired; cf. Eq. (4.24).

In order obtain an explicit expression for the ε kernel (4.36) we have to specify
the time course of the postsynaptic current α(s). Here, we take α(s) as defined
in (4.21), viz.,

α(s) =
q

τs
exp (−s/τs) Θ(s) . (4.38)

With q = C = 1, the integration of Eq. (4.36) yields

ε(s, t) =
exp

(
−max(t−s,0)

τs

)
1− τs

τm

[
exp

(
−min(s, t)

τm

)
− exp

(
−min(s, t)

τs

)]
Θ(s) Θ(t) ;

(4.39)
cf. Fig. 4.8. If presynaptic spikes arrive before the last postsynaptic spike, then
they have only a small effect on the actual value of the membrane potential be-
cause only that part of the postsynaptic current that arrives after t̂i contributes
to the postsynaptic potential. Spikes that arrive after t̂i produce a full postsy-
naptic potential. Note that causality implies that the ε kernel has to vanishes for
negative arguments.
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Fig. 4.8: The kernel ε(t, t− t
(f)
j ) as a function of t for various presynaptic firing

times t
(f)
j = −2, -1, 2, 5; cf. Eq. (4.39) with τs = 1 and τm = 5. The last postsy-

naptic spike was at t̂ = 0. If presynaptic spikes arrive before the last postsynaptic
spike, then they have only a small effect on the membrane potential; cf. the two
small EPSPs that correspond to t

(f)
j = −2 and t

(f)
j = −1. If presynaptic spikes

arrive after the last postsynaptic spike then they evoke a full-blown EPSP; cf.
the two large EPSPs that correspond to t

(f)
j = 2 and t

(f)
j = 5.

Example: Spike-time dependent time constant

We have seen above that the Spike Response Model contains the integrate-and-fire
model as a special case. In this example, we show in addition that even a gen-
eralization of the integrate-and-fire model that has a time dependent membrane
time constant can be described within the SRM framework.

To be specific, we consider an integrate-and-fire model with spike-time depen-
dent time constant, i.e., with a membrane time constant τ that is a function of
the time since the last postsynaptic spike,

du

dt
= − u

τ(t − t̂)
+

1

C
Iext(t) ; (4.40)

cf. Wehmeier et al. (1989); Stevens and Zador (1998). As usual, t̂ denotes the
last firing time of the neuron. The neuron is insensitive to input during an
absolute refractory period of duration Δabs. After the refractory period, the
membrane potential is reset to a value ur. Starting the integration of Eq. (4.40)
at u(t̂ + Δabs) = ur, we find for t > t̂ + Δabs

u(t) = ur exp

[
−
∫ t

t̂+Δabs

dt′

τ(t′ − t̂)

]
(4.41)

+
1

C

∫ ∞

0

Θ(t− t̂−Δabs − s) exp

[
−
∫ t

t−s

dt′

τ(t′ − t̂)

]
Iext(t− s) ds ,

which is a special case of Eq. (4.24). As we have seen above in Fig. 4.6, the
effective membrane time constant of many standard neuron models is reduced
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Fig. 4.28: Potential u of a postsynaptic neuron which receives input from two
groups of presynaptic neurons. A. Spike trains of the two groups are phase
shifted with respect to each other. The total potential u does not reach the
threshold. There are no output spikes. B. Spikes from two presynaptic groups
arrive synchronously. The summed EPSPs reach the threshold ϑ and cause the
generation of an output spike.

where N = 100 is the number of presynaptic neurons. If the postsynaptic neuron
has not been active in the recent past, we can neglect the refractory term η on
the right-hand side of Eq. (4.112). The maximum of (4.112) occurs at t = τ =
10 ms and has a value of wNJ/e ≈ 37 mV which is above threshold. Thus the
postsynaptic neuron fires before t = 10 ms. We conclude that the same number
of input spikes can have different effects depending on their level of synchrony;
cf. Fig. 4.28.

We will return to the question of coincidence detection, i.e., the distinction
between synchronous and asynchronous input, in the following chapter. For a
classical experimental study exploring the relevance of temporal structure in the
input, see Segundo et al. (1963).

Example: Spatio-temporal summation

In neurons with a spatially extended dendritic tree the form of the postsynaptic
potential depends not only on the type, but also on the location of the synapse;
cf. Chapter 2. To be specific, let us consider a multi-compartment integrate-and-
fire model. As we have seen above in Section 4.4, the membrane potential ui(t)
can be described by the formalism of the Spike Response Model. If the last output
spike t̂i is long ago, we can neglect the refractory kernel ηi and the membrane
potential is given by

ui(t) =
∑

j

wij

∑
f

εij(t− t
(f)
j ). (4.113)

cf. Eq. (4.90). The subscript ij at the ε kernel takes care of the fact that the
postsynaptic potential depends on the location of the synapse on the dendrite.
Due to the low-pass characteristics of the dendrite, synaptic input at the tip of
the dendrite causes postsynaptic potentials with a longer rise time and lower
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Fig. 4.29: Sensitivity to temporal order of synaptic inputs on a dendrite. A. A
neuron is stimulated by three synaptic inputs in a sequence that starts at the
distal part of the dendrite and ends with an input close to the soma. Since the
EPSP caused by the distal input has a longer rise time than that generated by
the proximal input, the EPSPs add up coherently and the membrane potential
reaches the firing threshold ϑ. B. If the temporal sequence of spike inputs is
reversed, the same number of input spikes does not trigger an action potential
(schematic figure).

amplitude than input directly into the soma. The total potential ui(t) depends
therefore on the temporal order of the stimulation of the synapses. An input
sequence starting at the far end of the dendrite and approaching the soma is
more effective in triggering an output spike than the same number of input spikes
in reverse order; cf. Fig. 4.29.

4.6 Summary

In formal spiking neuron models, spikes are fully characterized by their firing time
t(f) defined by a threshold criterion. Integrate-and-fire and Spike Response Model
are typical examples of spiking neuron models. Leaky integrate-and-fire point
neurons with current input can be mapped exactly to the Spike Response Model.
Even multi-compartment integrate-and-fire models can be mapped to the Spike
Response Model, if indirect effects due to previous output spikes are neglected.
An integrate-and-fire model with spike-time dependent parameters, which is a
generalization of the leaky integrate-and-fire model, can be seen as a special case
of the Spike Response Model. The nonlinear integrate-and-fire model, i.e., a
model where parameters are voltage dependent is a different generalization. The
quadratic integrate-and-fire model is particularly interesting since it is a generic
example for a type I neuron model.

Detailed conductance based neuron models can be approximately mapped to
formal spiking neuron models. With the help of formal spiking neuron models,
problems of pulse coding can be studied in a transparent graphical manner. The
Spike Response Model, defined in this chapter, will be reconsidered in part II
where systems of spiking neurons are analyzed.
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Weiss, 1966), but the ideas can be traced back much further (Lapicque, 1907;
Hill, 1936). It has been recognized early that these models lend themselves for
hardware implementations (French and Stein, 1970) and mathematical analysis
(Stein, 1965, 1967a), and can be fitted to experimental data (Brillinger, 1988,
1992). Recent developments in computation and coding with formal spiking neu-
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Chapter 5

Noise in Spiking Neuron Models

In vivo recordings of neuronal activity are characterized by a high degree of
irregularity. The spike train of individual neurons is far from being periodic and
relations between the firing patterns of several neurons seem to be random. If
the electrical activity picked up by an extra-cellular electrode is made audible
by a loudspeaker then we basically hear – noise. The question whether this is
indeed just noise or rather a highly efficient way of coding information cannot
easily be answered. Listening to a computer modem or a fax machine might also
leave the impression that this is just noise. Being able to decide whether we are
witnessing the neuronal activity that is underlying the composition of a poem (or
the electronic transmission of a love letter) and not just meaningless noise is one
of the most burning problems in Neuroscience.

Several experiments have been undertaken to tackle this problem. It seems
as if neurons can react in a very reliable and reproducible manner to fluctuat-
ing currents that are injected via intracellular electrodes. As long as the same
time-course of the injected current is used the action potentials occur with pre-
cisely the same timing relative to the stimulation (Mainen and Sejnowski, 1995;
Bryant and Segundo, 1976). A related phenomenon can be observed by using
non-stationary sensory stimulation. Spatially uniform random flicker, for exam-
ple, elicits more or less the same spike train in retinal ganglion cells if the same
flicker sequence is presented again (Berry et al., 1997). A similar behavior has
been reported for motion-sensitive neurons of the visual system in flies (de Ruyter
van Steveninck et al., 1997) and monkey cortex (Bair and Koch, 1996). On the
other hand, neurons produce irregular spike trains in the absence of any tempo-
rally structured stimuli. Irregular spontaneous activity, i.e., activity that is not
related in any obvious way to external stimulation, and trial-to-trial variations in
neuronal responses are often considered as noise (Softky and Koch, 1993; Shadlen
and Newsome, 1994).

The origin of the irregularity in the electrical activity of cortical neurons in
vivo is poorly understood. In spiking neuron models such as the integrate-and-
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fire or Spike Response Model (SRM), noise is therefore often added explicitly to
neuronal dynamics so as to mimic the unpredictability of neuronal recordings.
In this chapter we present three different ways to implement noise in models of
neuronal networks, viz. escape noise (Section 5.3), slow noise in the parameters
(Section 5.4), and diffusive noise (Section 5.5). In Section 5.6 we discuss the
differences between subthreshold and superthreshold stimulation and explain its
consequences for spike train variability. In the subthreshold regime, it is possible
to relate the diffusive noise model to the escape noise model. Section 5.7 illus-
trates this relation. The noise models are finally applied to the phenomenon of
stochastic resonance in Section 5.8 and compared with rate models in Section 5.9.
Before we start with the discussion of the noise models, we review in Section 5.1
some experimental evidence for noise in neurons and introduce in Section 5.2 a
statistical framework of spike train analysis.

5.1 Spike train variability

If neuron models such as the Hodgkin-Huxley or the integrate-and-fire model are
driven by a sufficiently strong constant current, they generate a regular sequence
of spikes. In neuronal models with adaptation currents1 there might be a short
transient phase at the beginning, but then all interspike intervals are constant.
Spike trains of typical neurons in vivo show a much more irregular behavior.
Whether the irregularity is the sign of noise or of a rich code is at present an open
question (Softky and Koch, 1993; Shadlen and Newsome, 1994; Bair and Koch,
1996). In the first subsection we review some evidence for neuronal variability
and spike train irregularity. We then discuss potential sources of noise.

5.1.1 Are neurons noisy?

Many in vivo experiments show noisy behavior of central neurons. The activity
of neurons from the visual cortex, for example, can be recorded while a slowly
moving bar is presented on a screen within the visual field of the animal (Hubel
and Wiesel, 1959, 1977). As soon as the bar enters the neuron’s receptive field
the firing rate goes up until the bar leaves the receptive field at the opposite
border. The spike train, however, varies considerably from trial to trial, if the
same experiment is repeated several times. Furthermore, the very same neuron
is spontaneously active even if the screen is blank and no external stimulus is
applied. During spontaneous activity, the intervals between one spike and the
next exhibit a large variability resulting in a broad distribution of interspike
intervals; see e.g., Softky and Koch (1993).

1We neglect here intrinsically bursting and chaotic neurons.
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Chapter 6

Population Equations

In many areas of the brain neurons are organized in populations of units with
similar properties. Prominent examples are columns in the somatosensory and
visual cortex (Mountcastle, 1957; Hubel and Wiesel, 1962) and pools of motor
neurons (Kandel and Schwartz, 1991). Given the large number of neurons within
such a column or pool it is sensible to describe the mean activity of the neuronal
population rather than the spiking of individual neurons. The idea of a popula-
tion activity has already been introduced in Chapter 1.4. In a population of N
neurons, we calculate the proportion of active neurons by counting the number
of spikes nact(t; t + Δt) in a small time interval Δt and dividing by N . Further
division by Δt yields the population activity

A(t) = limΔt→0
1

Δt

nact(t; t + Δt)

N
=

1

N

N∑
j=1

∑
f

δ(t− t
(f)
j ) (6.1)

where δ denotes the Dirac δ function. The double sum runs over all firing times
t
(f)
j of all neurons in the population. In other words the activity A is defined by a

population average. Even though the activity has units of a rate, the population
activity is quite different from a mean firing rate defined by temporal average; cf.
Chapter 1.4.

Theories of population activity have a long tradition (Knight, 1972a; Wilson
and Cowan, 1972, 1973; Amari, 1974; Abbott and van Vreeswijk, 1993; Gerstner
and van Hemmen, 1992; Treves, 1993; Gerstner, 1995; Amit and Brunel, 1997a,b;
Brunel and Hakim, 1999; Fusi and Mattia, 1999; Brunel, 2000; Gerstner, 2000b;
Nykamp and Tranchina, 2000; Omurtag et al., 2000; Eggert and van Hemmen,
2001). In this chapter we study the properties of a large and homogeneous pop-
ulation of spiking neurons. Why do we restrict ourselves to large populations? If
we repeatedly conduct the same experiment on a population of, say, one hundred
potentially noisy neurons, the observed activity A(t) defined in Eq. (6.1) will vary
from one trial to the next. Therefore we cannot expect a population theory to
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predict the activity measurements in a single trial. Rather all population activ-
ity equations that we discuss in this chapter predict the expected activity. For
a large and homogeneous network, the observable activity is very close to the
expected activity. For the sake of notational simplicity, we do not distinguish
the observed activity from its expectation value and denote in the following the
expected activity by A(t).

After clarifying the notion of a homogeneous network in Section 6.1, we derive
in Section 6.2 population density equations, i.e., partial differential equations that
describe the probability that an arbitrary neuron in the population has a specific
internal state. In some special cases, these density equations can be integrated
and presented in the form of an integral equation. In Section 6.3 a general
integral equation for the temporal evolution of the activity A(t) that is exact in
the limit of a large number of neurons is derived. In particular, we discuss its
relation to the Wilson-Cowan equation, one of the standard models of population
activity. In Section 6.4 we solve the population equation for the fixed points of the
population activity and show that the neuronal gain function plays an important
role. Finally, in Section 6.5 the approach is extended to multiple populations and
its relation to neuronal field equations is discussed.

Most of the discussion in part II of the present book will be based upon
the population equations introduced in this chapter. The population activity
equations will allow us to study signal transmission and coding (cf. Chapter 7),
oscillations and synchronization (cf. Chapter 8), and the formation of activity
patterns in populations with a spatial structure (cf. Chapter 9). The aim of
the present chapter is two-fold. Firstly, we want to provide the reader with the
mathematical formalism necessary for a systematic study of spatial and temporal
phenomena in large populations of neurons. Secondly, we want to show that
various formulations of population dynamics that may appear quite different at a
first glance, are in fact closely related. Paragraphs that are more mathematically
oriented are marked by an asterix and can be omitted at a first reading.

6.1 Fully Connected Homogeneous Network

We study a large and homogeneous population of neurons; cf. Fig. 6.1. By ho-
mogeneous we mean that all neurons 1 ≤ i ≤ N are identical and receive the
same external input Iext

i (t) = Iext(t). Moreover, in a homogeneous population,
the interaction strength between the neurons is taken to be uniform,

wij =
J0

N
, (6.2)

where J0 is a parameter. For J0 = 0 all neurons are independent; a value J0 >
0 (J0 < 0) implies excitatory (inhibitory) all-to-all coupling. The interaction
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A(t)

t

I (t)
ext

Fig. 6.1: Population of neurons (schematic). All neurons receive the same input
Iext(t) (left) which results in a time dependent population activity A(t) (right).

strength scales with one over the number of neurons so that the total synaptic
input to each neuron remains finite in the limit of N →∞.

Model neurons are described by formal spiking neurons as introduced in Chap-
ter 4. In the case of leaky integrate-and-fire neurons with

τm
d

dt
ui = −ui + R Ii(t) (6.3)

a homogeneous network implies that all neurons have the same input resistance
R, the same membrane time constant τm, as well as identical threshold and reset
values. The input current Ii takes care of both the external drive and synaptic
coupling

Ii =
N∑

j=1

∑
f

wijα(t− t
(f)
j ) + Iext(t) . (6.4)

Here we have assumed that each input spike generates a postsynaptic current
with some generic time course α(t − t

(f)
j ). The sum on the right-hand side of

(6.4) runs over all firing times of all neurons. Because of the homogeneous all-to-
all coupling, the total input current is identical for all neurons. To see this, we
insert Eq. (6.2) and use the definition of the population activity, Eq. (6.1). We
find a total input current,

I(t) = J0

∫ ∞

0

α(s) A(t− s) ds + Iext(t) , (6.5)

which is independent of the neuronal index i. As an aside we note that for
conductance-based synaptic input, the total input current would depend on the
neuronal membrane potential which is different from one neuron to the next.

Instead of the integrate-and-fire neuron, we may also use the Spike Response
Model (SRM) as the elementary unit of the population. The membrane potential
of a SRM neuron is of the form

ui(t) = η(t− t̂i) + hPSP(t|t̂i) , (6.6)



Chapter 7

Signal Transmission and
Neuronal Coding

In the preceding chapters, a theoretical description of neurons and neuronal popu-
lations has been developed. We are now ready to apply the theoretical framework
to one of the fundamental problems of Neuroscience – the problem of neuronal
coding and signal transmission. We will address the problem as three different
questions, viz.,

(i) How does a population of neurons react to a fast change in the input? This
question, which is particularly interesting in the context of reaction time
experiments, is the topic of Section 7.2.

(ii) What is the response of an asynchronously firing population to an arbitrary
time-dependent input current? This question points to the signal transfer
properties as a function of stimulation frequency and noise. In Section 7.3
we calculate the signal transfer function for a large population as well as the
signal-to-noise ratio in a finite population of, say, a few hundred neurons.

(iii) What is the ‘meaning’ of a single spike? If a neuronal population receives
one extra input spike, how does this affect the population activity? On
the other hand, if a neuron emits a spike, what do we learn about the
input? These questions, which are intimately related to the problem of
neural coding, are discussed in Section 7.4.

The population integral equation of Chapter 6.3 allows us to discuss these
questions from a unified point of view. We focus in this chapter on a system of
identical and independent neurons, i.e., a homogeneous network without lateral
coupling. In this case, the behavior of the population as a whole is identical
to the averaged behavior of a single neuron. Thus the signal transfer function
discussed in Section 7.3 or the coding characteristics discussed in Section 7.4 can
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also be interpreted as single-neuron properties. Before we dive into the main
arguments we derive in Section 7.1 the linearized population equation that will
be used throughout this chapter.

7.1 Linearized Population Equation

We consider a homogeneous population of independent neurons. All neurons
receive the same current I(t) fluctuating about the mean I0. More specifically we
set

I(t) = I0 + ΔI(t) . (7.1)

For small fluctuations, |ΔI| 
 I0, we expect that the population activity stays
close to the value A0 that it would have for a constant current I0, i.e.,

A(t) = A0 + ΔA(t) , (7.2)

with |ΔA| 
 A0. In that case, we may expand the right-hand side of the popu-
lation equation A(t) =

∫ t

−∞ PI(t|t̂) A(t̂) dt̂ into a Taylor series about A0 to linear
order in ΔA. In this section, we want to show that for spiking neuron models
(either integrate-and-fire or SRM0 neurons) the linearized population equation
can be written in the form

ΔA(t) =

∫ t

−∞
P0(t− t̂) ΔA(t̂) dt̂ + A0

d

dt

∫ ∞

0

L(x) Δh(t− x) dx , (7.3)

where P0(t − t̂) is the interval distribution for constant input I0, L(x) is a real-
valued function that plays the role of an integral kernel, and

Δh(t) =

∫ ∞

0

κ(s) ΔI(t− s) ds (7.4)

is the input potential generated by the time-dependent part of the input current.
The first term of the right-hand side of Eq. (7.3) takes into account that previous
perturbations ΔA(t̂) with t̂ < t have an after-effect one inter-spike interval later.
The second term describes the immediate response to a change in the input
potential. If we want to understand the response of the population to an input
current ΔI(t), we need to know the characteristics of the kernel L(x). The main
task of this section is therefore the calculation of L(x).

Here we give an overview of the main results that we will obtain in the present
chapter; explicit expressions for the kernel L(x) are presented in Tab. 7.1.

(i) In the low-noise limit, the kernel L(x) is a Dirac δ function. The dynamics
of the population activity ΔA has therefore a term proportional to the
derivative of the input potential; cf. Eq. (7.3). We will see that this result
implies a fast response ΔA to any change in the input.
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(ii) For high noise, the kernel L(x) depends critically on the noise model. For
noise that is slow compared to the intrinsic neuronal dynamics (e.g., noise
in the reset or stochastic spike arrival in combination with a slow synaptic
time constant) the kernel L(x) is similar to that in the noise-free case. Thus
the dynamics of ΔA is proportional to the derivative of the input potential
and therefore fast.

(iii) For a large amount of ‘fast’ noise (e.g., escape noise), the kernel L(x) is
broad so that the dynamics of the population activity is rather proportional
to the input potential than to its derivative; cf. Eq. (7.3). As we will see,
this implies that the response to a change in the input is slow.

Results for escape noise and reset noise have been derived by Gerstner (2000b)
while results for diffusive noise have been presented by Brunel et al. (2001) based
on a linearization of the membrane potential density equation (Brunel and Hakim,
1999). The effect of slow noise in parameters has already been discussed in Knight
(1972a). Apart from the approach discussed in this section, a fast response of a
population of integrate-and-fire neurons with diffusive noise can also be induced
if the variance of the diffusive noise is changed (Lindner and Schimansky-Geier,
2001; Bethge et al., 2001).

Before we turn to the general case, we will focus in Section 7.1.1 on a noise-
free population. We will see why the dynamics of ΔA(t) has a contribution
proportional to the derivative of the input potential. In Section 7.1.2 we derive
the general expression for the kernel L(x) and apply it to different situations.
Readers not interested in the mathematical details may skip the remainder of
this section and move directly to Section 7.2.

7.1.1 Noise-free Population Dynamics (*)

We start with a reduction of the population integral equation (6.75) to the noise-
free case. In the limit of no noise, the input-dependent interval distribution
PI(t | t̂) reduces to a Dirac δ function, i.e.,

PI(t | t̂) = δ[t− t̂− T (t̂)] . (7.5)

where T (t̂) is the inter-spike interval of a neuron that has fired its last spike at
time t̂. If we insert Eq. (7.5) in the integral equation of the population activity,
A(t) =

∫ t

−∞ PI(t|t̂) A(t̂) dt̂, we find

A(t) =

∫ t

−∞
δ(t− t̂− T (t̂)) A(t̂) dt̂ . (7.6)

The interval T (t̂) of a noise-free neuron is given implicitly by the threshold con-
dition

T (t̂) = min{(t− t̂) | u(t) = ϑ; u̇ > 0, t > t̂} . (7.7)
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Definition LSRM(x) = − ∫∞
x

dξ ∂S(ξ|0)
∂Δh(ξ−x)

LIF(x) = LSRM(x) +
∫ x

0
dξ e−ξ/τ ∂S(x|0)

∂Δh(ξ)

no noise LSRM
0 (x) = δ(x)/η′

LIF
0 (x) =

[
δ(x)− δ(x− T0) e−T0/τ

]
/u′

escape noise LSRM(x) =
∫∞

x
dξ f ′[u(ξ − x)] S0(ξ)

LIF(x) = LSRM(x)− S0(x)
∫ x

0
dξ e−ξ/τ f ′[u(ξ)]

reset noise LSRM(x) = δ(x)/η′

LIF(x) =
[
δ(x)− Gσ(x− T0) e−T0/τ

]
/u′

Table 7.1: The kernel L(x) for integrate-and-fire and SRM0 neurons (upper index
IF and SRM, respectively) in the general case (‘Definition’), without noise, as well
as for escape and reset noise. S0(s) is the survivor function in the asynchronous
state and Gσ a normalized Gaussian with width σ. Primes denote derivatives
with respect to the argument.

Note that T (t̂) is the interval starting at t̂ and looking forward towards the next
spike; cf. Fig. 7.1. The integration over the δ-function in Eq. (7.6) can be done,
but since T in the argument of the δ-function depends upon t̂, the evaluation of
the integral needs some care.

We recall from the rules for δ functions that∫ b

a

δ[f(x)] g(x) dx =
g(x0)

|f ′(x0)| (7.8)

if f has a single zero-crossing f(x0) = 0 in the interval a < x0 < b with f ′(x0) �= 0.
The prime denotes the derivative. If there is no solution f(x0) = 0 in the interval
[a, b], the integral vanishes. In our case, x plays the role of the variable t̂ with
f(t̂) = t− t̂− T (t̂). Hence f ′(t̂) = −1− T ′(t̂) and

A(t) =
1

1 + T ′(t̂)
A(t̂) , (7.9)

whenever a solution of t̂ = t − Tb(t) exists. Here Tb(t) is the backward interval
of neurons that reach the threshold at time t. Eq. (7.9) allows an intuitive inter-
pretation. The activity at time t is proportional to the number of neurons that
have fired one period earlier. The proportionality constant is called compression
factor. If the inter-spike intervals decrease (T ′ < 0), then neuronal firing times
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t

Fig. 7.1: A neuron that has fired at time t̂ fires its next spike at t̂+T (t̂) where T
is the ‘forward’ interval. Looking backwards we find that a neuron that fires now
at time t has fired its last spike at t− Tb(t) where Tb is the backward interval.

are ‘compressed’ and the population activity increases. If inter-spike intervals
become larger (T ′ > 0), the population activity decreases; cf. Fig. 7.2.

To evaluate T ′(t̂) we use the threshold condition (7.7). From ϑ = u[t̂+T (t̂)] =
η[T (t̂)] + h[t̂ + T (t̂)|t̂] we find by taking the derivative with respect to t̂

0 = η′[T (t̂)] T ′(t̂) + ∂th[t̂ + T (t̂)|t̂] [1 + T ′(t̂)] + ∂t̂h[t̂ + T (t̂)|t̂] . (7.10)

The prime denotes the derivative with respect to the argument. We have intro-
duced a short-hand notation for the partial derivatives, viz., ∂th(t|t̂) = ∂h(t|t̂)/∂t
and ∂t̂h(t|t̂) = ∂h(t|t̂)/∂t̂. We solve for T ′ and find

T ′ = −∂t̂h + ∂th

η′ + ∂th
, (7.11)

where we have suppressed the arguments for brevity. A simple algebraic trans-
formation yields

1

1 + T ′
= 1 +

∂th + ∂t̂h

η′ − ∂t̂h
, (7.12)

which we insert into Eq. (7.9). The result is

A(t) =

[
1 +

∂th(t|t̂) + ∂t̂h(t|t̂)
η′(t− t̂)− ∂t̂h(t|t̂)

]
A(t̂) , with t̂ = t− Tb(t) , (7.13)

where Tb(t) is the backward interval given a spike at time t. A solution Tb(t) exists
only if some neurons reach the threshold at time t. If this is not the case, the
activity A(t) vanishes. The partial derivatives in Eq. (7.13) are to be evaluated
at t̂ = t− Tb(t); the derivative η′ = dη(s)/ds is to be evaluated at s = Tb(t). We
may summarize Eq. (7.13) by saying that the activity at time t depends on the
activity one period earlier modulated by the factor in square brackets. Note that
Eq. (7.13) is still exact.
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Linearization

Let us consider a fluctuating input current that generates small perturbations
in the population activity ΔA(t) and the input potential Δh(t) as outlined at
the beginning of this section. If we substitute A(t) = A0 + ΔA(T ) and h(t|t̂) =
h0 + δh(t|t̂) into Eq. (7.13) and linearize in ΔA and Δh we obtain an expression
of the form

ΔA(t) = ΔA(t− T ) + A0 C(t) , (7.14)

where T = 1/A0 is the interval for constant input I0 and C a time-dependent
factor, called compression factor. The activity at time t depends thus on the
activity one inter-spike interval earlier and on the instantanuous value of the
compression factor.

For SRM0 neurons we have h(t|t̂) = h(t) so that the partial derivative with
respect to t̂ vanishes. The factor in square brackets in Eq. (7.13) reduces therefore
to [1 + (h′/η′)]. If we linearize Eq. (7.13) we find the compression factor

CSRM(t) = h′(t)/η′(T ) . (7.15)

For integrate-and-fire neurons we have a similar result. To evaluate the partial
derivatives that we need in Eq. (7.13) we write u(t) = η(t− t̂) + h(t|t̂) with

η(t− t̂) = ur e−
t−t̂
τm

h(t|t̂) = h(t)− h(t̂) e−
t−t̂
τm ; (7.16)

cf. Eqs. (4.34) and (4.60). Here ur is the reset potential of the integrate-and-fire
neurons and h(t) =

∫∞
0

exp(−s/τm) I(t − s) ds is the input potential generated
by the input current I.

Taking the derivative of η and the partial derivatives of h yields

∂th + ∂t̂h

η′ − ∂t̂h
=

h′(t)− h′(t− Tb) e−Tb/τm

h′(t− Tb) e−Tb/τm − τ−1
m [ur + h(t− Tb)] e−Tb/τm

, (7.17)

which we now insert in Eq. (7.13). Since we are interested in the linearized activity
equation, we replace Tb(t) by the interval T = 1/A0 for constant input and drop
the term h′ in the denominator. This yields Eq. (7.14) with a compression factor
CIF given by

CIF(t) = [h′(t)− h′(t− T ) exp(−T/τm)]/u′ . (7.18)

Here u′ is the derivative of the membrane potential for constant input current I0,
i.e., u′ = −τ−1

m [ur +h(t−Tb)] e
−Tb/τm . The label IF is short for integrate-and-fire

neurons.
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Fig. 7.2: A change in the input potential h with positive slope h′ > 0 (dashed
line, bottom) shifts neuronal firing times closer together (middle). As a result,
the activity A(t) (solid line, top) is higher at t = t̂ + T (t̂) than it was at time t̂
(schematic diagram); taken from (Gerstner, 2000b)

Example: Compression of firing times for SRM0 neurons

In order to motivate the name ‘compression factor’ and to give an interpretation
of Eq. (7.14) we consider SRM0 neurons with an exponential refractory kernel
η(s) = −η0 exp(−s/τ). We want to show graphically that the population activity
ΔA has a contribution that is proportional to the derivative of the input potential.

We consider Fig. 7.2. A neuron which has fired at t̂ will fire again at t =
t̂+T (t̂). Another neuron which has fired slightly later at t̂+δt̂ fires its next spike
at t + δt. If the input potential is constant between t and t + δt, then δt = δt̂. If,
however, h increases between t and t+ δt as is the case in Fig. 7.2, then the firing
time difference is reduced. The compression of firing time differences is directly
related to an increase in the activity A. To see this, we note that all neurons
which fire between t̂ and t̂ + δt̂, must fire again between t and t + δt. This is due
to the fact that the network is homogeneous and the mapping t̂ → t = t̂ + T (t̂)
is monotonous. If firing time differences are compressed, the population activity
increases.

In order to establish the relation between Fig. 7.2 and Eq. (7.15), we note that
the compression faction is equal to h′/η′. For a SRM0 neuron with exponential
refractory kernel, η′(s) > 0 holds for all s > 0. An input with h′ > 0 implies
then, because of Eq. (7.14), an increase of the activity:

h′ > 0 =⇒ A(t) > A(t− T ) . (7.19)

7.1.2 Escape noise (*)

In this section we focus on a population of neurons with escape noise. The aim of
this section is two-fold. First, we want to show how to derive the linearized popu-
lation equation (7.3) that has already been stated at the beginning of Section 7.1.
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Second, we will show that in the case of high noise the population activity follows
the input potential h(t), whereas for low noise the activity follows the derivative
h′(t). These results will be used in the following three sections for a discussion of
signal transmission and coding properties.

In order to derive the linearized response ΔA of the population activity to a
change in the input we start from the conservation law,

1 =

∫ t

−∞
SI(t | t̂) A(t̂) dt̂ , (7.20)

cf. (6.73). As we have seen in Chapter 6.3 the population equation (6.75) can be
obtained by taking the derivative of Eq. (7.20) with respect to t, i.e.,

0 =
d

dt

∫ t

−∞
SI(t | t̂) A(t̂) dt̂ . (7.21)

For constant input I0, the population activity has a constant value A0. We
consider a small perturbation of the stationary state, A(t) = A0 + ΔA(t), that is
caused by a small change in the input current, ΔI(t). The time-dependent input
generates a total postsynaptic potential,

h(t|t̂) = h0(t|t̂) + Δh(t|t̂) , (7.22)

where h0(t|t̂) is the postsynaptic potential for constant input I0 and

Δh(t|t̂) =

∫ ∞

0

κ(t− t̂, s) ΔI(t− s) ds (7.23)

is the change of the postsynaptic potential generated by ΔI. We expand Eq. (7.21)
to linear order in ΔA and Δh and find

0 =
d

dt

∫ t

−∞
S0(t− t̂) ΔA(t̂) dt̂

+ A0
d

dt

{∫ t

−∞
ds

∫ t

−∞
dt̂ Δh(s|t̂) ∂SI(t | t̂)

∂Δh(s|t̂)

∣∣∣∣
Δh=0

}
. (7.24)

We have used the notation S0(t − t̂) = SI0(t | t̂) for the survivor function of the
asynchronous firing state. To take the derivative of the first term in Eq. (7.24)
we use dS0(s)/ds = −P0(s) and S0(0) = 1. This yields

ΔA(t) =

∫ t

−∞
P0(t− t̂) ΔA(t̂) dt̂

− A0
d

dt

{∫ t

−∞
ds

∫ t

−∞
dt̂ Δh(s|t̂) ∂SI(t | t̂)

∂Δh(s|t̂)

∣∣∣∣
Δh=0

}
. (7.25)
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asynchronous firing [cf. Eqs. (6.27) and (6.28)] and p1(u, t) is a small time-
dependent perturbation. The stability analysis requires a linearization of the
Fokker-Planck equation (6.21) with respect to p1 and A1.

For short transmission delays, the asynchronous state A(t) ≡ A0 can loose
its stability towards an oscillation with a frequency that is much faster than the
single-neuron firing rate. Brunel (2000) distinguishes two different variants of
such fast oscillations. First, as in the previous example there are cluster states
where the neuronal population splits into a few subgroups. Each neuron fires
nearly regularly and within a cluster neurons are almost fully synchronized; cf.
Section 8.2.3. Second, there are synchronous irregular states where the global
activity oscillates while individual neurons have a broad distribution of interspike
intervals; cf. Fig. 8.3. We will come back to synchronous irregular states in
Section 8.3.

8.2 Synchronized Oscillations and Locking

We have seen in the previous section that the state of asynchronous firing can
loose stability towards certain oscillatory modes that are solutions of the linearized
population equations. We are now going to investigate oscillatory modes in more
detail and check whether a large-amplitude oscillation where all neurons are firing
in “lockstep” can be a stable solution of the population equations.

8.2.1 Locking in Noise-Free Populations

We consider a homogeneous population of SRM0 or integrate-and-fire neurons
which is nearly perfectly synchronized and fires almost regularly with period
T . In order to analyze the existence and stability of a fully locked synchronous
oscillation we approximate the population activity by a sequence of square pulses
k, k ∈ {0,±1,±2, . . .}, centered around t = k T . Each pulse k has a certain
half-width δk and amplitude (2δk)

−1 – since all neurons are supposed to fire once
in each pulse. In order to check whether the fully synchronized state is a stable
solution of the population equation (6.75), we assume that the population has
already fired a couple of narrow pulses for t < 0 with widths δk 
 T , k ≤ 0,
and calculate the amplitude and width of subsequent pulses. If we find that
the amplitude of subsequent pulses increases while their width decreases (i.e.,
limk→∞ δk = 0), then we conclude that the fully locked state is stable.

To make the above outline more explicit, we use

A(t) =

∞∑
k=−∞

1

2δk
H[t− (k T + δk)]H[(k T + δk)− t] (8.11)

as a parameterization of the population activity; cf. Fig. 8.4. Here, H(.) denotes
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Fig. 8.4: Sequence of rectangular activity pulses. If the fully synchronized state
is stable, the width δ of the pulses decreases while the amplitude increases.

the Heaviside step function with H(s) = 1 for s > 0 and H(s) = 0 for s ≤ 0.
For stability, we need to show that the amplitude A(0), A(T ), A(2T ), . . . of the
rectangular pulses increases while the width δk of subsequent pulses decreases.

As we will see below, the condition for stable locking of all neurons in the
population can be stated as a condition on the slope of the input potential h at
the moment of firing. More precisely, if the last population pulse occurred at
about t = 0 with amplitude A(0) the amplitude of the population pulse at t = T
increases, if h′(T ) > 0:

h′(T ) > 0 ⇐⇒ A(T ) > A(0) . (8.12)

If the amplitude of subsequent pulses increases, their width decreases. In other
words, we have the following Locking Theorem. In a spatially homogeneous net-
work of SRM0 or integrate-and-fire neurons, a necessary and, in the limit of a large
number of presynaptic neurons (N →∞), also sufficient condition for a coherent
oscillation to be asymptotically stable is that firing occurs when the postsynaptic
potential arising from all previous spikes is increasing in time (Gerstner et al.,
1996b).

The Locking Theorem is applicable for large populations that are already
close to the fully synchronized state. A related but global locking argument has
been presented by (Mirollo and Strogatz, 1990). The locking argument can be
generalized to heterogeneous networks (Gerstner et al., 1993a; Chow, 1998) and to
electrical coupling (Chow and Kopell, 2000). Synchronization in small networks
has been discussed in, e.g., (Ernst et al., 1995; Chow, 1998; Hansel et al., 1995; van
Vreeswijk et al., 1994; van Vreeswijk, 1996; Bose et al., 2000). For weak coupling,
synchronization and locking can be systematically analyzed in the framework of
phase models (Kuramoto, 1975; Ermentrout and Kopell, 1984; Kopell, 1986) or
canonical neuron models (Hansel et al., 1995; Ermentrout, 1996; Hoppensteadt
and Izhikevich, 1997; Izhikevich, 1999; Ermentrout et al., 2001).

Before we derive the locking condition for spiking neuron models, we illustrate
the main idea by two examples.

Example: Perfect synchrony in noiseless SRM0 neurons

In this example we will show that locking in a population of spiking neurons
can be understood by simple geometrical arguments; there is no need to use the
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abstract mathematical framework of the population equations. It will turn out
that the results are – of course – consistent with those derived from the population
equation.

We study a homogeneous network of N identical neurons which are mutually
coupled with strength wij = J0/N where J0 > 0 is a positive constant. In
other words, the (excitatory) interaction is scaled with one over N so that the
total input to a neuron i is of order one even if the number of neurons is large
(N →∞). Since we are interested in synchrony we suppose that all neurons have
fired simultaneously at t̂ = 0. When will the neurons fire again?

Since all neurons are identical we expect that the next firing time will also be
synchronous. Let us calculate the period T between one synchronous pulse and
the next. We start from the firing condition of SRM0 neurons

ϑ = ui(t) = η(t− t̂i) +
∑

j

wij

∑
f

ε(t− t
(f)
j ) , (8.13)

where ε(t) is the postsynaptic potential. The axonal transmission delay Δax is
included in the definition of ε, i.e., ε(t) = 0 for t < Δax. Since all neurons have

fired synchronously at t = 0, we set t̂i = t
(f)
j = 0. The result is a condition of the

form
ϑ− η(t) = J0 ε(t) , (8.14)

since wij = J0/N for j = 1, . . . , N . Note that we have neglected the postsynaptic

potentials that may have been caused by earlier spikes t
(f)
j < 0 back in the past.

The graphical solution of Eq. (8.14) is presented in Fig. 8.5. The first crossing
point of the ϑ−η(t) and J0 ε(t) defines the time T of the next synchronous pulse.

What happens if synchrony at t = 0 was not perfect? Let us assume that one
of the neurons is slightly late compared to the others; Fig. 8.5B. It will receive
the input J0 ε(t) from the others, thus the right-hand side of (8.14) is the same.
The left-hand side, however, is different since the last firing was at δ0 instead of
zero. The next firing time is at t = T + δ1 where δ1 is found from

ϑ− η(T + δ1 − δ0) = J0 ε(T + δ1) . (8.15)

Linearization with respect to δ0 and δ1 yields:

δ1 < δ0 ⇐⇒ ε′(T ) > 0 . (8.16)

Thus the neuron which has been late is ‘pulled back’ into the synchronized pulse
of the others, if the postsynaptic potential ε is rising at the moment of firing at
T . Equation (8.16) is a special case of the Locking Theorem.

We see from Fig. 8.5B that, in the case of excitatory coupling, stable locking
works nicely if the transmission delay Δax is in the range of the firing period, but
slightly shorter so that firing occurs during the rise time of the EPSP.
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Fig. 8.5: A. Perfect Synchrony. All neurons have fired at t̂ = 0. The next
spike occurs when the summed postsynaptic potential J0 ε(t) reaches the dynamic
threshold ϑ − η(t). B. Stability of perfect synchrony. The last neuron is out of
tune. The firing time difference at t = 0 is δ0. One period later the firing time
difference is reduced (δ1 < δ0), since the threshold is reached at a point where
J0ε(t) is rising. Adapted from Gerstner et al. (1996b).

Example: SRM0 neurons with inhibitory coupling

Locking can also occur in networks with purely inhibitory couplings (van Vreeswijk
et al., 1994). In order to get a response at all in such a system, we need a con-
stant stimulus I0 or, equivalently, a negative firing threshold ϑ < 0. The stability
criterion, however, is equivalent to that of the previous example.

Figure 8.6 summarizes the stability arguments analogously to Fig. 8.5. In
Fig. 8.6A all neurons have fired synchronously at t = 0 and do so again at t = T
when the inhibitory postsynaptic potential has decayed so that the threshold
condition,

ϑ− η(T ) = J0

∑
k

ε(t− k T ) , (8.17)

is fulfilled. This state is stable if the synaptic contribution to the potential,∑
k ε(t− k T ), has positive slope at t = T . Figure 8.6 demonstrates that a single

neuron firing at t = δ0 instead of t = 0 is triggered again at t = T + δ1 with
|δ1| < |δ0| for simple geometrical reasons.

Derivation of the locking theorem (*)

We consider a homogeneous populations of SRM neurons that are close to a
periodic state of synchronized activity. We assume that the population activity
in the past consists of a sequence of rectangular pulses as specified in Eq. (8.11).
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Fig. 8.6: Similar plot as in Fig. 8.5 but for purely inhibitory coupling. A. All
neurons have fired synchronously at t̂ = 0. The next spike occurs when the
summed inhibitory postsynaptic potential J0 ε(t) has decayed back to the dynamic
threshold ϑ − η(t). B. Stability of perfect synchrony. The last neuron is out of
tune. The firing time difference at t = 0 is δ0. One period later the firing time
difference is reduced (δ1 < δ0), since the threshold is reached at a point where
J0 ε(t) is rising.

We determine the period T and the sequence of half-widths δk of the rectangular
pulses in a self-consistent manner. In order to prove stability, we need to show
that the amplitude A(k T ) increases while the halfwidth δk decreases as a function
of k. To do so we start from the noise-free population equation (7.13) that we
recall here for convenience

A(t) =

[
1 +

∂th + ∂t̂h

η′ − ∂t̂h

]
A(t− Tb(t)) (8.18)

where ∂th and ∂t̂h are the partial derivatives of the total postsynaptic potential
hPSP and Tb(t) is the backward interval; cf. Fig. 7.1.

As a first step, we calculate the potential hPSP(t|t̂). Given hPSP we can find
the period T from the threshold condition and also the derivatives ∂th and ∂t̂h
required for Eq. (7.13). In order to obtain hPSP, we substitute Eq. (8.11) in (6.8),
assume δk 
 T , and integrate. To first order in δk we obtain

hPSP(t|t̂) =
kmax∑
k=0

J0 ε(t− t̂, t + k T ) + O [
(δk)

2
]

, (8.19)

where −δ0 ≤ t̂ ≤ δ0 is the last firing time of the neuron under consideration. The
sum runs over all pulses back in the past. Since ε(t − t̂, s) as a function of s is



Chapter 9

Spatially Structured Networks

So far the discussion of network behavior in Chapters 6 – 8 was restricted to
homogeneous populations of neurons. In this chapter we turn to networks that
have a spatial structure. In doing so we emphasize two characteristic features
of the cerebral cortex, namely the high density of neurons and its virtually two-
dimensional architecture.

Each cubic millimeter of cortical tissue contains about 105 neurons. This
impressive number suggests that a description of neuronal dynamics in terms of
an averaged population activity is more appropriate than a description on the
single-neuron level. Furthermore, the cerebral cortex is huge. More precisely, the
unfolded cerebral cortex of humans covers a surface of 2200–2400 cm2, but its
thickness amounts on average to only 2.5–3.0 mm2. If we do not look too closely,
the cerebral cortex can hence be treated as a continuous two-dimensional sheet of
neurons. Neurons will no longer be labeled by discrete indices but by continuous
variables that give their spatial position on the sheet. The coupling of two neurons
i and j is replaced by the average coupling strength between neurons at position x
and those at position y, or, even more radically simplified, by the average coupling
strength of two neurons being separated by the distance |x− y|. Similarly to the
notion of an average coupling strength we will also introduce the average activity
of neurons located at position x and describe the dynamics of the network in terms
of these averaged quantities only. The details of how these average quantities are
defined, are fairly involved and often disputable. In Sect. 9.1 we will – without a
formal justification – introduce field equations for the spatial activity A(x, t) in
a spatially extended, but otherwise homogeneous population of neurons. These
field equations are particularly interesting because they have solutions in the form
of complex stationary patterns of activity, traveling waves, and rotating spirals –
a phenomenology that is closely related to pattern formation in certain nonlinear
systems that are collectively termed excitable media. Some examples of these
solutions are discussed in Sect. 9.1. In Sect. 9.2 we generalize the formalism
so as to account for several distinct neuronal populations, such as those formed

323
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by excitatory and inhibitory neurons. The rest of this chapter is dedicated to
models that describe neuronal activity in terms of individual action potentials.
The propagation of spikes through a locally connected network of SRM neurons
is considered in Section 9.3. The last section, finally, deals with the transmission
of a sharp pulse packet of action potentials in a layered feed-forward structure.
It turns out that there is a stable wave form of the packet so that temporal
information can be faithfully transmitted through several brain areas despite the
presence of noise.

9.1 Stationary patterns of neuronal activity

We start with a generic example of pattern formation in a neural network with
‘Mexican-hat’ shaped lateral coupling, i.e., local excitation and long-range inhi-
bition. In order to keep the notation as simple as possible, we will use the field
equation derived in Chapter 6; cf. Eq. (6.129). As we have seen in Fig. 6.8, this
equation neglects rapid transients and oscillations that could be captured by the
full integral equations. On the other hand, in the limit of high noise and short
refractoriness the approximation of population dynamics by differential equations
is good; cf. Chapter 7. Exact solutions in the low-noise limit will be discussed in
Section 9.3.

Consider a single sheet of densely packed neurons. We assume that all neu-
rons are alike and that the connectivity is homogeneous and isotropic, i.e., that
the coupling strength of two neurons is a function of their distance only. We
loosely define a quantity u(x, t) as the average membrane potential of the group
of neurons located at position x at time t. We have seen in Chapter 6 that in
the stationary state the ‘activity’ of a population of neurons is strictly given by
the single-neuron gain function A0(x) = g[u0(x)]; cf. Fig. 9.1. If we assume that
changes of the input potential are slow enough so that the population always
remains in a state of incoherent firing, then we can set

A(x, t) = g[u(x, t)] , (9.1)

even for time-dependent situations. According to Eq. (9.1), the activity A(x, t)
of the population around location x is a function of the potential at that location.

The synaptic input current to a given neuron depends on the level of activity
of its presynaptic neurons and on the strength of the synaptic couplings. We
assume that the amplitude of the input current is simply the presynaptic activity
scaled by the average coupling strength of these neurons. The total input current
Isyn(x, t) to a neuron at position x is therefore

Isyn(x, t) =

∫
dy w (|x− y|) A(y, t) . (9.2)
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Fig. 9.1: A. Generic form of the sigmoidal gain function g of graded response
neurons that describes the relation between the potential u and the ‘activity’
of the neural population. B. Typical ‘Mexican hat’-shaped function that is used
here as an ansatz for the coupling w of two neurons as a function of their distance
x.

Here, w is the average coupling strength of two neurons as a function of their
distance. We consider a connectivity pattern, that is excitatory for proximal
neurons and predominantly inhibitory for distal neurons. Figure 9.1B shows the
typical ‘Mexican-hat shape’ of the corresponding coupling function. Eq. (9.2)
assumes that synaptic interaction is instantaneous. In a more detailed model
we could include the axonal transmission delay and synaptic time constants.
In that case, A(y, t) on the right-hand side of Eq. (9.2) should be replaced by∫

α(s) A(y, t− s) ds where α(s) is the temporal interaction kernel.
In order to complete the definition of the model, we need to specify a relation

between the input current and the resulting membrane potential. In order to keep
things simple we treat each neuron as a leaky integrator. The input potential is
thus given by a differential equation of the form

τ
∂u

∂t
= −u + Isyn + Iext , (9.3)

with τ being the time constant of the integrator and I ext an additional external
input. If we put things together we obtain the field equation

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
dy w (|x− y|) g[u(y, t)] + Iext(x, t) ; (9.4)

cf. Wilson and Cowan (1973); Feldman and Cowan (1975); Amari (1977b); Kishi-
moto and Amari (1979). This is a nonlinear integro-differential equation for the
average membrane potential u(x, t).

9.1.1 Homogeneous solutions

Although we have kept the above model as simple as possible, the field equation
(9.4) is complicated enough to prevent comprehensive analytical treatment. We



326 CHAPTER 9. SPATIALLY STRUCTURED NETWORKS

therefore start our investigation by looking for a special type of solution, i.e., a
solution that is uniform over space, but not necessarily constant over time. We
call this the homogenous solution and write u(x, t) ≡ u(t). We expect that a
homogenous solution exists if the external input is homogeneous as well, i.e., if
Iext(x, t) ≡ Iext(t).

Substitution of the ansatz u(x, t) ≡ u(t) into Eq. (9.4) yields

τ
du(t)

dt
= −u(t) + w̄ g[u(t)] + Iext(t) . (9.5)

with w̄ =
∫

dy w (|y|). This is a nonlinear ordinary differential equation for the
average membrane potential u(t). We note that the equation for the homogeneous
solution is identical to that of a single population without spatial structure; cf.
Eq. (6.87) in Chapter 6.3.

The fixed points of the above equation with I ext = 0 are of particular interest
because they correspond to a resting state of the network. More generally, we
search for stationary solutions for a given constant external input I ext(x, t) ≡ Iext.
The fixed points of Eq. (9.5) are solutions of

g(u) =
u− Iext

w̄
, (9.6)

which is represented graphically in Fig. 9.2. Depending on the strength of the
external input three qualitatively different situations can be observed. For low
external stimulation there is a single fixed point at a very low level of neuronal
activity. This corresponds to a quiescent state where the activity of the whole
network has ceased. Large stimulation results in a fixed point at an almost
saturated level of activity which corresponds to a state where all neurons are firing
at their maximum rate. Intermediate values of external stimulation, however, may
result in a situation with more than one fixed point. Depending on the shape
of the output function and the mean synaptic coupling strength w̄ three fixed
points may appear. Two of them correspond to the quiescent and the highly
activated state, respectively, which are separated by the third fixed point at an
intermediate level of activity.

Any potential physical relevance of fixed points clearly depends on their sta-
bility. Stability under the dynamics defined by the ordinary differential equation
Eq. (9.5) is readily checked using standard analysis. Stability requires that at the
intersection

g′(u) < w̄−1 . (9.7)

Thus all fixed points corresponding to quiescent or highly activated states are
stable whereas the middle fixed point in case of multiple solutions is unstable; cf.
Fig. 9.2. This, however, is only half of the truth because Eq. (9.5) only describes
homogeneous solutions. Therefore, it may well be that the solutions are stable
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Chapter 10

Hebbian Models

In the neuron models discussed so far each synapse is characterized by a sin-
gle constant parameter wij that determines the amplitude of the postsynaptic
response to an incoming action potential. Electrophysiological experiments, how-
ever, show that the response amplitude is not fixed but can change over time.
Appropriate stimulation paradigms can systematically induce changes of the post-
synaptic response that last for hours or days. If the stimulation paradigm leads
to a persistent increase of the synaptic transmission efficacy, the effect is called
long-term potentiation of synapses, or LTP for short. If the result is a decrease
of the synaptic efficacy, it is called long-term depression (LTD). These persistent
changes are thought to be the neuronal correlate of ‘learning’ and ‘memory’.

In the formal theory of neural networks the weight wij of a connection from
neuron j to i is considered as a parameter that can be adjusted so as to optimize
the performance of a network for a given task. The process of parameter adap-
tation is called learning and the procedure for adjusting the weights is referred
to as a learning rule. Here learning is meant in its widest sense. It may refer
to synaptic changes during development just as well as to the specific changes
necessary to memorize a visual pattern or to learn a motor task. There are many
different learning rules that we cannot all cover in this book. In this chapter we
consider the simplest set of rules, viz., synaptic changes that are driven by corre-
lated activity of pre- and postsynaptic neurons. This class of learning rule can be
motivated by Hebb’s principle and is therefore often called ‘Hebbian learning’.

10.1 Synaptic Plasticity

Over the last 30 years, a large body of experimental results on synaptic plasticity
has been accumulated. Many of these experiments are inspired by Hebb’s postu-
late (Hebb, 1949) that describes how the connection from presynaptic neuron A
to a postsynaptic neuron B should be modified:

361
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Fig. 10.1: The change at synapse wij depends on the state of the presynaptic
neuron j and the postsynaptic neuron i and the present efficacy wij, but not on
the state of other neurons k.

When an axon of cell A is near enough to excite cell B or repeat-
edly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.

Today, 50 years later, this famous postulate is often rephrased in the sense
that modifications in the synaptic transmission efficacy are driven by correlations
in the firing activity of pre- and postsynaptic neurons. Even though the idea
of learning through correlations dates further back in the past (James, 1890),
correlation-based learning is now generally called Hebbian learning.

Hebb formulated his principle on purely theoretical grounds. He realized that
such a mechanism would help to stabilize specific neuronal activity patterns in
the brain. If neuronal activity patterns correspond to behavior, then stabilization
of specific patterns implies learning of specific types of behaviors (Hebb, 1949).

10.1.1 Long-Term Potentiation

When Hebb stated his principle in 1949, it was a mere postulate. More than 20
years later, long-lasting changes of synaptic efficacies were found experimentally
(Bliss and Lomo, 1973; Bliss and Gardner-Medwin, 1973). These changes can be
induced by the joint activity of presynaptic and postsynaptic neuron and resemble
the mechanism that Hebb had in mind (Kelso et al., 1986). In this subsection
we concentrate on long-term potentiation (LTP), viz., a persistent increase of
synaptic efficacies. Long-term depression (LTD) is mentioned in passing.

The basic paradigm of LTP induction is, very schematically, the following
(Brown et al., 1989; Bliss and Collingridge, 1993). A neuron is impaled by an
intracellular electrode to record the membrane potential while presynaptic fibers
are stimulated by means of a second extracellular electrode. Small pulses are
applied to the presynaptic fibers in order measure the strength of the postsynaptic
response (Fig. 10.2A). The amplitude of the test pulse is chosen so that the
stimulation evokes a postsynaptic potential, but no action potentials.
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A

B

C

Fig. 10.2: Schematic drawing of a paradigm of LTP induction. A. A weak test
pulse (left) evokes the postsynaptic response sketched on the right-hand side of
the figure. B. A strong stimulation sequence (left) triggers postsynaptic firing
(right, the peak of the action potential is out of bounds). C. A test pulse applied
some time later evokes a larger postsynaptic response (right; solid line) than the
initial response. The dashed line is a copy of the initial response in A (schematic
figure).

In a second step, the input fibers are strongly stimulated by a sequence of
high frequency pulses so as to evoke postsynaptic firing (Fig. 10.2B). After that
the strength of the postsynaptic response to small pulses is tested again and a
significantly increased amplitude of postsynaptic potentials is found (Fig. 10.2C).
This change in the synaptic strength persists over many hours and is thus called
long-term potentiation.

What can be learned from such an experiment? Obviously, the result is con-
sistent with Hebb’s postulate because the joint activity of pre- and postsynaptic
units has apparently lead to a strengthening of the synaptic efficacy. On the other
hand, the above experiment would also be consistent with a purely postsynaptic
explanation that claims that the strengthening is solely caused by postsynaptic
spike activity. In order to exclude this possibility, a more complicated experiment
has to be conducted (Brown et al., 1989; Bliss and Collingridge, 1993).

In an experiment as it is sketched in Fig. 10.3 a neuron is driven by two
separate input pathways labeled S (strong) and W (weak), respectively. Each
pathway projects to several synapses on the postsynaptic neuron i. Stimulating
of the S pathway excites postsynaptic firing but stimulation of the W channel
alone does not evoke spikes. The response to the W input is monitored in order
to detect changes of the synaptic efficacy. A 100 Hz input over 600 ms at the W
channel evokes no LTP at the W synapses. Similarly, a 100 Hz input (over 400 ms)
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S

W

Fig. 10.3: Cooperativity in the induction of LTP. Synapses at the W channel are
strengthened only if both the presynaptic site is stimulated via the W electrode
and the postsynaptic neuron is active due to a simultaneous stimulation of the S
pathway.

at the S channel alone does not produce LTP at the W synapses (although it
may evoke a change of the S synapses). However, if both stimulations occur
simultaneously, then the W synapses are strengthened. This feature of LTP
induction is known as cooperativity or associativity. It is consistent with the
picture that both presynaptic and postsynaptic activity is required to induce
LTP.

Experiments as the one sketched in Figs. 10.2 and 10.3 have shown that synap-
tic weights change as a function of pre- and postsynaptic activity. Many other
paradigms of LTP induction have been studied over the last twenty years. For
example, the state of the postsynaptic neuron can be manipulated by depolar-
izing or hyperpolarizing currents; synaptic channels can be blocked or activated
pharmacologically, etc. Nevertheless, the underlying subcellular processes that
lead to LTP are still not fully understood.

10.1.2 Temporal Aspects

The essential aspect of the experiments described in the previous section is the
AND condition that is at the heart of Hebb’s postulate: Both pre- and postsy-
naptic neuron have to be active in order to induce a strengthening of the synapse.
However, such a summary neglects the temporal requirements for weight changes.
When are two neurons considered as being active together?

In the experiment sketched in Fig. 10.3 inputs can be switched on and off with
some arbitrary timing. A large increase of the synaptic efficacy can be induced by
stimulating the W and the S pathway simultaneously. If there is a certain delay
in the stimulation of W and S then the synaptic efficacy is only slightly increased
or even reduced. Stimulating W and S alternatively with a long interval in be-
tween does not result in any change at all (Levy and Stewart, 1983; Gustafsson
et al., 1987; Debanne et al., 1994). With this setup, however, a precise mea-



10.1. SYNAPTIC PLASTICITY 365

t j
f

tf
i

t j
f

Δ w
wij

ij

0

1

−0.5

0 40−40

j

i

− tf
i

Fig. 10.4: Timing requirements between pre- and postsynaptic spikes. Synaptic
changes Δwij occur only if presynaptic firing at t

(f)
j and postsynaptic activity

at t
(f)
i occur sufficiently close to each other. Experimentally measured weight

changes (circles) as a function of t
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i in milliseconds overlayed on a schematic

two-phase learning window (solid line). A positive change (LTP) occurs if the
presynaptic spike precedes the postsynaptic one; for a reversed timing, synaptic
weights are decreased. Data points redrawn after the experiments of Bi and Poo
(1998).

surement of the timing conditions for synaptic changes is difficult, because pre-
and postsynaptic activity is generated by extracellular electrodes. With modern
patch-clamp techniques it is possible to stimulate or record from one or several
neurons intracellularly. Pairing experiments with multiple intracellular electrodes
in synaptically coupled neurons have opened the possibility to study synaptic
plasticity at an excellent spatial and temporal resolution (Markram et al., 1997;
Zhang et al., 1998; Magee and Johnston, 1997; Debanne et al., 1998; Bi and Poo,
1998, 1999); see Bi and Poo (2001) for a review.

Figure 10.4 illustrates a pairing experiment with cultured hippocampal neu-
rons where the presynaptic neuron (j) and the postsynaptic neuron (i) are forced

to fire spikes at time t
(f)
j and t

(f)
i , respectively (Bi and Poo, 1998). The resulting

change in the synaptic efficacy Δwij after several repetitions of the experiment

turns out to be a function of the spike time differences t
(f)
j − t

(f)
i (‘spike-time

dependent synaptic plasticity’). Most notably, the direction of the change de-
pends critically, i.e., on a millisecond time-scale, on the relative timing of pre-
and postsynaptic spikes. The synapse is strengthened if the presynaptic spike
occurs shortly before the postsynaptic neuron fires, but the synapse is weakened
if the sequence of spikes is reversed; cf. Fig. 10.4A. This observation is indeed
in agreement with Hebb’s postulate because presynaptic neurons that are active
slightly before the postsynaptic neuron are those which ‘take part in firing it’
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whereas those that fire later obviously did not contribute to the postsynaptic
action potential. An asymmetric learning window such as the one in Fig. 10.4,
is thus an implementation of the causality requirement that is implicit in Hebb’s
principle.

Similar results on spike-time dependent synaptic plasticity have been found
in various neuronal systems (Markram et al., 1997; Zhang et al., 1998; Debanne
et al., 1998; Bi and Poo, 1998, 1999; Egger et al., 1999), but there are also
characteristic differences. Synapses between parallel fibers and ‘Purkinje-cells’
in the cerebellar-like structure of electric fish, for example, show the opposite
dependence on the relative timing of presynaptic input and the (so-called ‘broad’)
postsynaptic spike. In this case the synapse is weakened if the presynaptic input
arrives shortly before the postsynaptic spike (anti-Hebbian plasticity). If the
timing is the other way round then the synapse is strengthened. A change in the
timing of less than 10 ms can change the effect from depression to potentiation
(Bell et al., 1997b).

10.2 Rate-Based Hebbian Learning

In order to prepare the ground for a thorough analysis of spike-based learning
rules in Section 10.3 we will first review the basic concepts of correlation-based
learning in a firing rate formalism.

10.2.1 A Mathematical Formulation of Hebb’s Rule

In order to find a mathematically formulated learning rule based on Hebb’s pos-
tulate we focus on a single synapse with efficacy wij that transmits signals from a
presynaptic neuron j to a postsynaptic neuron i. For the time being we content
ourselves with a description in terms of mean firing rates. In the following, the
activity of the presynaptic neuron is denoted by νj and that of the postsynaptic
neuron by νi.

There are two aspects in Hebb’s postulate that are particularly important,
viz. locality and cooperativity. Locality means that the change of the synaptic
efficacy can only depend on local variables, i.e., on information that is available at
the site of the synapse, such as pre- and postsynaptic firing rate, and the actual
value of the synaptic efficacy, but not on the activity of other neurons. Based
on the locality of Hebbian plasticity we can make a rather general ansatz for the
change of the synaptic efficacy,

d

dt
wij = F (wij; νi, νj) . (10.1)

Here, dwij/dt is the rate of change of the synaptic coupling strength and F is a
so far undetermined function (Brown et al., 1991; Sejnowski and Tesauro, 1989;
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Kohonen, 1984). We may wonder whether there are other local variables (e.g.,
the membrane potential ui) that should be included as additional arguments of
the function F . It turns out that in standard rate models this is not necessary,
since the membrane potential ui is uniquely determined by the postsynaptic firing
rate, νi = g(ui), with a monotone gain function g.

The second important aspect of Hebb’s postulate, cooperativity, implies that
pre- and postsynaptic neuron have to be active simultaneously for a synaptic
weight change to occur. We can use this property to learn something about the
function F . If F is sufficiently well-behaved, we can expand F in a Taylor series
about νi = νj = 0,

d

dt
wij = c0(wij) + cpost

1 (wij)νi + cpre
1 (wij) νj

+ cpre
2 (wij) ν2

j + cpost
2 (wij) ν2

i + ccorr
2 (wij) νi νj +O(ν3) . (10.2)

The term containing ccorr
2 on the right-hand side of (10.2) is bilinear in pre- and

postsynaptic activity. This term implements the AND condition for cooperativity
which makes Hebbian learning a useful concept.

The simplest choice for our function F is to fix ccorr
2 at a positive constant and

to set all other terms in the Taylor expansion to zero. The result is the prototype
of Hebbian learning,

d

dt
wij = ccorr

2 νi νj . (10.3)

We note in passing that a learning rule with ccorr
2 < 0 is usually called anti-

Hebbian because it weakens the synapse if pre- and postsynaptic neuron are
active simultaneously; a behavior that is just contrary to that postulated by
Hebb. A learning rule with only first-order terms gives rise to so-called non-
Hebbian plasticity, because pre- or postsynaptic activity alone induces a change
of the synaptic efficacy. More complicated learning rules can be constructed if
higher-order terms in the expansion of Eq. (10.2), such as νi ν

2
j , ν2

i νj , ν2
i ν2

j , etc.,
are included.

The dependence of F on the synaptic efficacy wij is a natural consequence
of the fact that wij is bounded. If F was independent of wij then the synaptic
efficacy would grow without limit if the same potentiating stimulus is applied over
and over again. A saturation of synaptic weights can be achieved, for example,
if the parameter ccorr

2 in Eq. (10.2) tends to zero as wij approaches its maximum
value, say wmax = 1, e.g.,

ccorr
2 (wij) = γ2 (1− wij) (10.4)

with a positive constant γ2.
Hebb’s original proposal does not contain a rule for a decrease of synaptic

weights. In a system where synapses can only be strengthened, all efficacies
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will finally saturate at their upper maximum value. An option of decreasing the
weights (synaptic depression) is therefore a necessary requirement for any useful
learning rule. This can, for example, be achieved by weight decay, which can be
implemented in Eq. (10.2) by setting

c0(wij) = −γ0 wij . (10.5)

Here, γ0 is (small) positive constant that describes the rate by which wij decays
back to zero in the absence of stimulation. Our formulation (10.2) is hence suffi-
ciently general to allow for a combination of synaptic potentiation and depression.
If we combine Eq. (10.4) and Eq. (10.5) we obtain the learning rule

d

dt
wij = γ2 (1− wij) νi νj − γ0 wij . (10.6)

The factors (1− wij) and wij that lead to a saturation at wij = 1 for continued
stimulation and an exponential decay to wij = 0 in the absence of stimulation, re-
spectively, are one possibility to implement ‘soft’ bounds for the synaptic weight.
In simulations, ‘hard’ bounds are often used to restrict the synaptic weights to
a finite interval, i.e., a learning rule with weight-independent parameters is only
applied as long as the weight stays within its limits.

Another interesting aspect of learning rules is competition. The idea is that
synaptic weights can only grow at the expense of others so that if a certain sub-
group of synapses is strengthened, other synapses to the same postsynaptic neuron
have to be weakened. Competition is essential for any form of self-organization
and pattern formation. Practically, competition can be implemented in simula-
tions by normalizing the sum of all weights converging onto the same postsynaptic
neuron (Miller and MacKay, 1994); cf. Section 11.1.3. Though this can be moti-
vated by a limitation of common synaptic resources such a learning rule violates
locality of synaptic plasticity. On the other hand, competition of synaptic weight
changes can also be achieved with purely local learning rules (Oja, 1982; Kistler
and van Hemmen, 2000a; Song et al., 2000; Kempter et al., 2001).

Example: Postsynaptic gating versus presynaptic gating

Equation (10.6) is just one possibility to specify rules for the growth and de-
cay of synaptic weights. In the framework of Eq. (10.2), other formulations are
conceivable; cf. Table 10.1. For example, we can define a learning rule of the form

d

dt
wij = γ νi [νj − νθ(wij)] , (10.7)

where γ is a positive constant and νθ is some reference value that may depend on
the current value of wij . A weight change occurs only if the postsynaptic neuron is
active, νi > 0. We say that weight changes are ‘gated’ by the postsynaptic neuron.
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Fig. 10.7: Two-phase learning window W as a function of the time difference s =
t
(f)
j −t

(f)
i between presynaptic spike arrival and postsynaptic firing; cf. Eq. (10.16)

with A+ = −A− = 1, τ1 = 10 ms, and τ2 = 20ms (Zhang et al., 1998).

Example: Exponential learning windows

A simple choice for the learning window – and thus for the kernels apost,pre
2 and

apre,post
2 – inspired by Fig. 10.4 is

W (s) =

{
A+ exp[s/τ1] for s < 0 ,

A− exp[−s/τ2] for s > 0 ,
(10.16)

with some constants A± and τ1,2. If A+ > 0 and A− < 0 then the synaptic
efficacy is increased if presynaptic spike arrives slightly before the postsynaptic
firing (W (s) > 0 for s < 0) and the synapse is weakened if presynaptic spikes
arrive a few milliseconds after the output spike (W (s) < 0); cf. Fig. 10.7.

In order to obtain a realistic description of synaptic plasticity we have to make
sure that the synaptic efficacy stays within certain bounds. Excitatory synapses,
for example, should have a positive weight and must not exceed a maximum value
of, say, wij = 1. We can implement these constraints in Eq. (10.16) by setting
A− = wij a− and A+ = (1− wij) a+. The remaining terms in Eq. (10.14) can be
treated analogously1. For each positive term (leading to a weight increase) we
assume a weight dependence ∝ (1−wij), while for each negative term (leading to
weight decrease) we assume a weight dependence ∝ wij. The synapse is thus no
longer strengthened (or weakened) if the weight reaches its upper (lower) bound
(Kistler and van Hemmen, 2000a; van Rossum et al., 2000).

10.3.2 Consolidation of Synaptic Efficacies

So far we have emphasized that the synaptic coupling strength is a dynamical
variable that is subject to rapid changes dependent on pre- and postsynaptic ac-

1Note that wij is a step function of time with discontinuities whenever a presynaptic spike
arrives or a postsynaptic action potential is triggered. In order to obtain a well-defined differen-
tial equation we specify that the amplitude of the step depends on the value of wij immediately
before the spike. In mathematical terms, we impose the condition that wij(t) is continuous from
left, i.e., that lims→0,s>0 wij(t(f) − s) = wij(t(f)).
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tivity. On the other hand, it is generally accepted that long-lasting modifications
of the synaptic efficacy form the basis of learning and memory. How can fast
dynamical properties be reconciled with long-lasting modifications?

Most learning theories dealing with artificial neural networks concentrate on
the induction of weight changes. As soon as the ‘learning session’ is over, synaptic
plasticity is ‘switched off’ and weights are taken as fixed parameters. In biological
systems, a similar mechanism can be observed during development. There are
critical periods in the early life time of an animal where certain synapses show
a form of plasticity that is ‘switched off’ after maturation (Crepel, 1982). The
majority of synapses, especially those involved in higher brain functions, however,
keep their plasticity throughout their life. At first glance there is thus the risk that
previously stored information is simply overwritten by new input (‘palimpsest
property’). Grossberg has coined the term ‘stability-plasticity dilemma’ for this
problem (Grossberg, 1987; Carpenter and Grossberg, 1987).

To address these questions, Fusi et al. (2000) have studied the problem of the
consolidation of synaptic weights. They argue that bistability of synaptic weights
can solve the stability-plasticity dilemma. More specifically, the dynamics of
synaptic efficacies is characterized by two stable fixed points at wij = 0 and wij =
1. In the absence of stimulation the synaptic weight will thus settle down at either
one of these values. Pre- or postsynaptic activity can lead to a transition from
one fixed point to the other, but only if the duration of the stimulus presentation
or its amplitude exceeds a certain threshold. In other words, synapses can be
switched on or off but this will happen only for those synapses where the learning
threshold is exceeded. Learning thus affects only a few synapses so that previously
stored information is mostly preserved.

In the framework of Eq. (10.14), such a dynamics for synaptic weights can be
implemented by setting

a0(wij) = −γ wij (1− wij) (wθ − wij) , (10.17)

where 0 < wθ < 1 and γ > 0. In the absence of stimulation, small weights
(wij < wθ) decay to zero whereas large weights (wij > wθ) increase towards one.
Spike activity thus has to drive the synaptic weight across the threshold wθ before
long-lasting changes take place. A combination of Eqs. (10.17) and (10.14) can
therefore be considered as a model of induction and consolidation of synaptic
plasticity.

10.3.3 General Framework (*)

In Eq. (10.14) weight changes occur instantaneously at the moment of presynaptic
spike arrival or postsynaptic firing. In this subsection we will develop a slightly
more general equation for the evolution of synaptic weights. The approach taken
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in this section can be seen as a generalization of the Taylor expansion in the rate
model of Section 10.2 to the case of spiking neurons.

We recall that we started our formulation of rate-based Hebbian learning from
a general formula

d

dt
wij = F (wij; νi, νj) (10.18)

where weight changes are given as a function of the weight wij as well as of the
pre- and postsynaptic rates νj , νi; cf. Eq. (10.1). The essential assumption was
that neuronal activity is characterized by firing rates that change slowly enough to
be considered as stationary. Hebbian rules followed then from a Taylor expansion
of Eq. (10.18). In the following, we keep the idea of an expansion, but drop the
simplifications that are inherent to a description in terms of a mean firing rate.

The internal state of spiking neurons (e.g., integrate-and-fire or Spike Re-
sponse Model neurons) is characterized by the membrane potential u which in
turn depends on the input and the last output spike. The generalization of
Eq. (10.18) to the case of spiking neurons is therefore

d

dt
wij(t) = F

(
wij(t); {upost

i (t′ < t)}, {upre
j (t′′ < t)}) , (10.19)

where F is now a functional of the time course of pre- and postsynaptic membrane
potential at the location of the synapse. Our notation with t′ and t′′ is intended
to indicate that the weight changes do not only depend on the momentary value
of the pre- and postsynaptic potential, but also on their history t′ < t and t′′ < t.
The weight value wij and the local value of pre- and postsynaptic membrane
potential are the essential variables that are available at the site of the synapse
to control the up- and down-regulation of synaptic weights. In detailed neuron
models, F would depend not only on the weight wij and membrane potentials,
but also on all other variables that are locally available at the site of the synapse.
In particular, there could be a dependence upon the local calcium concentration;
cf. Section 10.4.

In analogy to the approach taken in Section 10.2, we now expand the right-
hand side of Eq. (10.19) about the resting state upost

i = upre
j = urest in a Volterra

series (Volterra, 1959; Palm and Poggio, 1977; van Hemmen et al., 2000). For the
sake of simplicity we shift the voltage scale so that urest = 0. We find

dwij

dt
= a0(wij) +

∫ ∞

0

αpre
1 (wij ; s) upre

j (t− s) ds

+

∫ ∞

0

αpost
1 (wij ; s

′) upost
i (t− s′) ds′ (10.20)

+

∫ ∞

0

∫ ∞

0

αcorr
2 (wij ; s, s

′) upre
j (t− s) upost

i (t− s′) ds′ ds + . . . .

The next terms would be quadratic in upost
i or upre

j and have been neglected.
Equation (10.20) provides a framework for the formulation of spike-based learning
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rules and may be seen as the generalization of the general rate-based model that
we have derived in Section 10.2.

In order to establish a connection with various other formulations of spike-
based learning rules, we consider the time course of the pre- and postsynaptic
membrane potential in more detail. At the presynaptic terminal, the membrane
potential is most of the time at rest, except when an action potential arrives.
Since the duration of each action potential is short, the presynaptic membrane
potential can be approximated by a train of δ functions

upre
j (t) =

∑
f

δ(t− t
(f)
j ) (10.21)

where t
(f)
j denotes the spike arrival times at the presynaptic terminal.

The situation at the postsynaptic site is somewhat more complicated. For the
simple spike response model SRM0, the membrane potential can be written as

upost
i (t) = η(t− t̂i) + hi(t) , (10.22)

where t̂i is the last postsynaptic firing time. In contrast to the usual interpretation
of terms on the right-hand side of Eq. (10.22), the function η is now taken as the
time course of the back propagating action potential at the location of the synapse.
Similarly, hi(t) is the local postsynaptic potential at the synapse.

For a further simplification of Eq. (10.20), we need to make some approxi-
mations. Specifically we will explore two different approximation schemes. In
the first scheme, we suppose that the dominating term on the right-hand side of
Eq. (10.22) is the back propagating action potential, while in the second scheme
we neglect η and consider h as the dominant term. Let us discuss both approxi-
mations in turn.

(i) Sharply peaked back propagating action potential

We assume that the back propagating action potential is sharply peaked, i.e., it
has a large amplitude and short duration. In this case, the membrane potential
of the postsynaptic neuron is dominated by the back propagating action poten-
tial and the term h(t) in Eq. (10.22) can be neglected. Furthermore η can be
approximated by a δ function. The membrane potential at the postsynaptic site
reduces then to a train of pulses,

upost
i (t) =

∑
f

δ(t− t
(f)
i ) , (10.23)

where t
(f)
i denotes the postsynaptic firing times. Equation (10.23) is a sensible

approximation for synapses that are located on or close to the soma so that the
full somatic action potential is ‘felt’ by the postsynaptic neuron. For neurons with



10.3. SPIKE-TIME DEPENDENT PLASTICITY 379

active processes in the dendrite that keep the back propagating action potential
well focused, Eq. (10.23) is also a reasonable approximation for synapses that are
further away from the soma. A transmission delay for back propagation of the
spike from the soma to the site of the synapse can be incorporated at no extra
cost.

If we insert Eqs. (10.21) and (10.23) into Eq. (10.20) we find

dwij

dt
= a0 +

∑
f

αpre
1 (t− t

(f)
j ) +

∑
f

αpost
1 (t− t

(f)
i )

+
∑

f

∑
f

αcorr
2 (t− t

(f)
i , t− t

(f)
j ) + . . . , (10.24)

where we have omitted the wij dependence of the right-hand side terms. In
contrast to Eq. (10.14) weight changes are now continuous. A single presynaptic

spike at time t
(f)
j , for example, will cause a weight change that builds up during

some time after t
(f)
j . An example will be given below in Eq. (10.31).

In typical plasticity experiments, the synaptic weight is monitored every few
hundred milliseconds so that the exact time course of the functions, αpre

1 , αpost
1

and αcorr
2 is not measured. To establish the connection to Eq. (10.14), we now

assume that the weight changes are rapid compared to the time scale of weight
monitoring. In other words, we make the replacement

αpre
1 (t− t

(f)
j ) −→ apre

1 δ(t− t
(f)
j ) (10.25)

αpost
1 (t− t

(f)
i ) −→ apost

1 δ(t− t
(f)
i ) (10.26)

where apre
1 =

∫∞
0

αpre
1 (s) ds and apost

1 =
∫∞

0
αpost

1 (s) ds . For the correlation term
we exploit the invariance with respect to time translation, i.e., the final result
only depends on the time difference t

(f)
j − t

(f)
i . The weight update occurs at

the moment of the postsynaptic spike if t
(f)
j < t

(f)
i and at the moment of the

presynaptic spike if t
(f)
j > t

(f)
i . Hence, the assumption of instantaneous update

yields two terms

αcorr
2 (t−t

(f)
i , t−t

(f)
j ) −→

{
apre,post

2 (t
(f)
j − t

(f)
i ) δ(t− t

(f)
j ) if t

(f)
i < t

(f)
j

apost,pre
2 (t

(f)
i − t

(f)
j ) δ(t− t

(f)
i ) if t

(f)
i > t

(f)
j

(10.27)

Thus, for sharply peaked back propagating action potentials and rapid weight
changes, the general framework of Eq. (10.20) leads us back to the Eq. (10.14).

(ii) No back propagating action potential

In the second approximation scheme, we assume that the membrane potential at
the location of the synapse is dominated by the slowly varying potential hi(t).
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This is, for example, a valid assumption in voltage-clamp experiments where the
postsynaptic neuron is artificially kept at a constant membrane potential hpost.
This is also a good approximation for synapses that are located far away from
the soma on a passive dendrite, so that the back propagation of somatic action
potentials is negligible.

Let us consider a voltage clamp experiment where hi(t) is kept at a constant
level hpost. As before, we suppose that weight changes are rapid. If we insert
upre

j (t) =
∑

f δ(t− t
(f)
j ) and upost

i (t) = hpost into Eq. (10.20), we find

dwij

dt
= a0 +

∑
f

apre
1 δ(t− t

(f)
j )

+apost
1 hpost + acorr

2 hpost
∑

f

δ(t− t
(f)
j ) + . . . (10.28)

where apre
1 =

∫∞
0

αpre
1 (s) ds, apost

1 =
∫∞

0
αpost

1 (s) ds and acorr
2 =

∫∞
0

∫∞
0

acorr
2 (s, s′) ds ds′.

Equation (10.28) is the starting point of the theory of spike-based learning of Fusi
et al. (2000). Weight changes are triggered by presynaptic spikes. The direction
and value of the weight update depends on the postsynaptic membrane poten-
tial. In our framework, Eq. (10.28) is a special case of the slightly more general
Eq. (10.20).

10.4 Detailed Models of Synaptic Plasticity

In the previous section we have introduced a purely phenomenological model
for spike-time dependent synaptic plasticity which is at least qualitatively in
agreement with experimental results. In this section we take a slightly different
approach and discuss how the core idea of this model, the learning window,
arises from elementary kinetic processes. We start in Section 10.4.1 with a simple
mechanistic model and turn then, in Section 10.4.2 to a more detailed model
with saturation. A calcium-based model is the topic of Section 10.4.3. All three
models give a qualitative explanation for the learning dynamics on the level of
individual spikes.

10.4.1 A Simple Mechanistic Model

The AND condition in Hebb’s postulate suggests that two biochemical compo-
nents are involved in the induction of LTP. We do not wish to speculate on the
nature of these components, but simply call them a and b. We assume that the
first component is generated by a chemical reaction chain triggered by presynap-
tic spike arrival. In the absence of further input, the concentration [a] decays
with a time constant τa back to its resting level [a] = 0. A simple way to describe
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this process is
d

dt
[a] = − [a]

τa
+ da

∑
f

δ(t− t
(f)
j ) , (10.29)

where the sum runs over all presynaptic firing times t
(f)
j . Equation (10.29) states

that [a] is increased at each arrival of a presynaptic spike by an amount da. A
high level of [a] sets the synapse in a state where it is susceptible to changes in its
weight. The variable [a] by itself, however, does not yet trigger a weight change.

To generate the synaptic change, another substance b is needed. The produc-
tion of b is controlled by a second process triggered by postsynaptic spikes,

d

dt
[b] = − [b]

τb

+ db

∑
f

δ(t− t
(f)
i ) , (10.30)

where τb is another time constant. The sum runs over all postsynaptic spikes t
(f)
i .

Note that the second variable [b] does not need to be a biochemical quantity; it
could, for example, be the electrical potential caused by the postsynaptic spike
itself.

Hebbian learning needs both ‘substances’ to be present at the same time, thus

d

dt
wcorr

ij = γ [a(t)] [b(t)] , (10.31)

with some rate constant γ. The upper index corr is intended to remind us that
we are dealing only with the correlation term on the right-hand side of Eq. (10.14)
or Eq. (10.24).

Let us now consider the synaptic change caused by a single presynaptic spike
at t

(f)
j ≥ 0 and a postsynaptic spike a t

(f)
i = t

(f)
j − s. Integration of Eqs. (10.29)

and (10.30) yields

[a(t)] = da exp[−(t− t
(f)
j )/τa] Θ(t− t

(f)
j )

[b(t)] = db exp[−(t− t
(f)
i )/τb] Θ(t− t

(f)
i ) , (10.32)

where Θ(.) denotes the Heaviside step function as usual. The change caused by

the pair of pulses (t
(f)
i , t

(f)
j ), measured after a time T , is

∫ T

0

(
d

dt
wcorr

ij

)
dt = γ da db

∫ T

max{t(f)
j ,t

(f)
i }

exp

[
−t− t

(f)
j

τa
− t− t

(f)
i

τb

]
dt . (10.33)

The integral over t can be calculated explicitely. The total weight change that is
obtained for T � τa, τb can be identified with the learning window. Thus we find

W (s) =

{
A exp[s/τa] for s < 0

A exp[−s/τb] for s > 0
(10.34)
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Fig. 10.8: Exponential learning window W as a function of the time difference
s = t

(f)
j − t

(f)
i between presynaptic spike arrival and postsynaptic firing. The

time constants for exponential decay are τ1 = 20ms for s < 0 and τ2 = 10ms for
s > 0.

with s = t
(f)
j − t

(f)
i and A = γ da db τaτb/(τa + τb). As expected, the change

of the synaptic efficacy depends only on the time difference between pre- and
postsynaptic spike (Gerstner et al., 1998); cf. Fig. 10.8.

Equation (10.34) describes the change caused by a single pair of spikes. Given
a train of presynaptic input spikes and a set of postsynaptic output spikes, many
combinations of firing times (t

(f)
i , t

(f)
j ) exist. Due to the linearity of the learning

equation (10.31), the total change is additive, which is consistent with Eq. (10.14).
The combination of two kinetic processes a and b thus yields an exponential

learning window as in Eq. (10.16) but with A+ = A−. The learning window either
describes LTP (γ > 0) or LTD (γ < 0), but not both. If we want to have an
anti-symmetric learning window with LTP and LTD we need additional processes
as detailed below.

Example: LTP and LTD

For a learning window incorporating both LTP and LTD, we need more micro-
scopic variables. Let us suppose that, as before, we have variables [a] and [b] that
contribute to LTP according to (10.31), viz.,

d

dt
wLTP

ij = γLTP [a(t)] [b(t)] . (10.35)

Similarly, we assume that there is a second set of variables [c] and [d], that initiate
LTD according to

d

dt
wLTD

ij = −γLTD [c(t)] [d(t)] . (10.36)

The variables [c] and [d] have a dynamics analogous to Eq. (10.29) and Eq. (10.30)
with amplitudes dc and dd, and time constants τc and τd. The total weight change
is the sum of both contributions,

wcorr
ij = wLTP

ij + wLTD
ij , (10.37)
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and so is the learning window, i.e.,

W (s) =

{
A+ exp[s/τa]−A− exp[s/τc] for s < 0

A+ exp[−s/τb]− A− exp[−s/τd] for s > 0
(10.38)

with A+ = γLTP da db τaτb/(τa + τb) and A− = γLTD dc dd τcτd/(τc + τd) (Gerstner
et al., 1996a, 1998).

We now set db = 1/τb and dc = 1/τc. In the limit of τb → 0 and τc → 0,
we find the asymmetric two-phase learning window introduced in Eq. (10.16).
Weight changes are now instantaneous. A postsynaptic spike that is triggered
after a presynaptic spike arrival reads out the current value of [a] and induces
LTP by an amount

W (t
(f)
j − t

(f)
i ) = γLTP da exp

(
−t

(f)
i − t

(f)
j

τa

)
for t

(f)
j < t

(f)
i . (10.39)

A presynaptic spike t
(f)
j that arrives after a postsynaptic spike reads out the

current value of [d] and induces LTD by an amount

W (t
(f)
j − t

(f)
i ) = −γ LTDdd exp

(
−t

(f)
j − t

(f)
i

τd

)
for t

(f)
j > t

(f)
i . (10.40)

10.4.2 A Kinetic Model based on NMDA Receptors

A model for LTP and LTD that is slightly more elaborate than the simplistic
model discussed in the previous section has been developed by Senn et al. (1997,
2001b). This model is based on the assumption that NMDA receptors can be in
one of three different states, a resting state, an ‘up’ and a ‘down’ state. Tran-
sitions between these states are triggered by presynaptic spike arrival (‘rest’→
‘up’) and postsynaptic firing (‘rest’→ ‘down’). The actual induction of LTP or
LTD, however, requires another step, namely the activation of so-called second-
messengers. The model assumes two types of second-messenger, one for LTP and
one for LTD. If a presynaptic spike arrives before a postsynaptic spike, the up-
regulation of the NMDA receptors in combination with the activitation S1 → Sup

of the first second-messenger triggers synaptic changes that lead to LTP. On the
other hand, if the presynaptic spike arrives after postsynaptic firing, the NMDA
receptors are downregulated and the activation S2 → Sdn of the other second-
messenger triggers LTD; cf. Fig. 10.9

The variables Nup, Ndn, and N rest describe the portion of NMDA receptors
that are in one of the three possible states (Nup+Ndn+N rest = 1). In the absence
of pre- and postsynaptic spikes, all receptors return to the rest state,

d

dt
N rest =

Nup

τNup

+
Ndn

τNdn

. (10.41)
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Fig. 10.9: Upper part of panel: A presynaptic spike shifts NMDA receptors from
the rest state N rest to the up-regulated state Nup. If a postsynaptic spike arrives
shortly afterwards, a second messenger S1 will be activated (Sup). Depending
on the amount of activated second messengers Sup, postsynaptic spikes lead to
LTP. Lower part: Postsynaptic spikes down-regulate NMDA receptors (N dn). In
the presence of Ndn, presynaptic spikes activate another second messenger (Sdn)
leading to LTD.

Nup and Ndn decay with time constants τNup and τNdn , respectively. Whenever
a presynaptic spike arrives, NMDA receptors are up-regulated from rest to the
‘up’-state according to

d

dt
Nup(t) = rup N rest(t)

∑
f

δ(t− t
(f)
j )− Nup(t)

τNup

, (10.42)

where t
(f)
j is the arrival time of a presynaptic spike and rup is the proportion of

receptors in the ‘rest’ state that are up-regulated. Since presynaptic spike arrival
triggers release of the neurotransmitter glutamate, which is then bound to the
NMDA receptors, the ‘up’-state can be identified with a state where the receptor
is saturated with glutamate.

Firing of a postsynaptic spike at time t
(f)
i leads to a down-regulation of NMDA

receptors via

d

dt
Ndn(t) = rdn N rest(t)

∑
f

δ(t− t
(f)
i )− Ndn(t)

τNdn

. (10.43)

Senn et al. (2001b) suggest that down-regulation of the NMDA receptor is me-
diated by the intracellular calcium concentration that changes with each postsy-
naptic spike. Note that, since N rest = 1 − Nup − Ndn, Eqs. (10.42) and (10.43)
account for saturation effects due to a limited number of NMDA-receptors.

The secondary messenger Sup, which finally leads to LTP, is activated by
postsynaptic spikes, but only if up-regulated NMDA channels are available. In
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the absence of postsynaptic spikes the concentration of second messengers decays
with time constant τSup . Thus

d

dt
Sup(t) = −Sup(t)

τSup

+ rS Nup(t) [1− Sup(t)]
∑

f

δ(t− t
(f)
i ) , (10.44)

where rS is a rate constant. Since Nup(t) > 0 requires that a presynaptic spike
has occurred before t, the activation of Sup effectively depends on the specific
timing of pre- and postsynaptic spikes (‘first pre, then post’).

Similarly, the other second messenger Sdn is activated by a presynaptic spike
provided that there are receptors in their down regulated state, i.e.,

d

dt
Sdn(t) = −Sdn(t)

τSdn

+ rS Ndn(t) [1− Sdn(t)]
∑

f

δ(t− t
(f)
j ) , (10.45)

where τSdn is another decay time constant. The second messenger Sdn is therefore
triggered by the sequence ‘first post, then pre’. The factors [1−Sup] in Eq. (10.44)
and [1−Sdn] in Eq. (10.45) account for the limited amount of second messengers
available at the synapse.

Long-term potentiation (weight increase) depends on the presence of Sup,
long-term depression (weight decrease) on Sdn. This is described by

d

dt
wij = γLTP (1− wij) [Sup − θup]+

∑
f

δ(t− t
(f)
i −Δ)

−γLTD wij [Sdn − θd]+
∑

f

δ(t− t
(f)
j −Δ) (10.46)

with certain parameters γLTP/D and θup/dn. Here, [x]+ = x Θ(x) denotes a piece-
wise linear function with [x]+ = x for x > 0 and zero otherwise. The delay
0 < Δ 
 1 ensures that the actual weight change occurs after the update of
Sup, Sdn. Note that this is a third-order model. The variable Sup > 0, for exam-
ple, is already second-order, because it depends on presynaptic spikes followed
by postsynaptic action potentials. In Eq. (10.46) the postsynaptic spike is then
used again in order to trigger the weight change.

Example: Low Rates

For low pre- and postsynaptic firing rates, saturation effects can be neglected and
Eq. (10.46) is equivalent to the elementary model discussed in Section 10.4.1. Let
us assume that a single spike induces a small change (rdn, rup 
 1) so that we
can use N rest ≈ 1 in Eqs. (10.42) and (10.43). The equations for Nup and Ndn

are then identical to those for the ‘substances’ [a] and [d] in Eqs. (10.29), (10.35),
and (10.36).
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Let us furthermore assume that interspike intervals are long compared to the
decay time constants τSup , τSdn in Eqs. (10.44) and (10.45). Then Sup is negligible
except during and shortly after a postsynaptic action potential. At the moment
of postsynaptic firing, Sup ‘reads out’ the current value of Nup; cf. Eq. (10.44). If
this value is large than Θup, it triggers a positive weight change; cf. Eq. (10.46).
Similarly, at the moment of presynaptic spike arrival Sdn ‘reads out’ the value of
Ndn and triggers a weight decrease. Thus, in this limit, the model of Senn et al.
corresponds to an exponential time window

W (s) =

{
A+(wij) exp[+s/τNup ] for s < 0
A−(wij) exp[−s/τNdn ] for s > 0

(10.47)

with A+(wij) = rup rS (1− wij) and A−(wij) = −rdn rS wij .

Example: High Rates

If we assume that all decay time constants are much longer than typical interspike
intervals then the variables Nup/dn and Sup/dn will finally reach a steady state. If
we neglect correlations between pre- and postsynaptic neuron by replacing spike
trains by rates, we can solve for these stationary states,

Nup
∞ =

τNup rup νj

1 + τNup rup νj + τNdnrdnνi

(10.48)

Sup
∞ =

τSup rS Nup νi

1 + τSuprS Nup νi
(10.49)

and similar equations for Ndn and Sdn. Note that Sup
∞ is a function of νi and νj .

If we put the equations for Sup
∞ and Sdn

∞ in Eq. (10.46) we get an expression of
the form

d

dt
wij = γLTP (1− wij) fLTP(νi, νj) νi − γLTD wij fLTD(νi, νj) νj (10.50)

with functions fLTP and fLTD. We linearize fLTP with respect to νj about a
reference value ν > 0 and evaluate fLTD at νj = ν in order to make the right-
hand side of Eq. (10.50) linear in the input νj . The result is

d

dt
wij = φ(wij; νi) νj (10.51)

with φ(wij; 0) = φ(wij; νθ) = 0 for some value νθ and dφ/dνi < 0 at νi = 0.
Equation (10.51) is a generalized Bienenstock-Cooper-Monroe rule where φ does
not only depend on the postsynaptic rate νi but also on the individual synaptic
weight; cf. Eq. (10.12). For details see Senn et al. (2001b); Bienenstock et al.
(1982).
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10.4.3 A Calcium-Based Model

It has been recognized for a long time that calcium ions are an important sec-
ond messenger for the induction of LTP and LTD in Hippocampus (Malenka
et al., 1988; Malinow et al., 1989; Lisman, 1989) and cerebellum (Konnerth and
Eilers, 1994; Lev-Ram et al., 1997). Particularly well investigated are ‘NMDA
synapses’ in the hippocampus (Collingridge et al., 1983; Dudek and Bear, 1992;
Bliss and Collingridge, 1993; Bindman et al., 1991) where calcium ions can en-
ter the cell through channels that are controlled by a glutamate receptor subtype
called NMDA (N-methyl-D-aspartic acid) receptor; cf. Section 2.4.2. These chan-
nels are involved in transmission of action potentials in glutamatergic (excitatory)
synapses. If an action potential arrives at the presynaptic terminal, glutamate,
the most common excitatory neurotransmitter, is released into the synaptic cleft
and diffuses to the postsynaptic membrane where it binds to NMDA and AMPA
receptors. The binding to AMPA receptors results in the opening of the associ-
ated ion channels and hence to a depolarization of the postsynaptic membrane.
Channels controlled by NMDA receptors, however, are blocked by magnesium
ions and do not open unless the membrane is sufficiently depolarized so as to re-
move the block. Therefore, calcium ions can enter the cell only if glutamate has
been released by presynaptic activity and if the postsynaptic membrane is suffi-
ciently depolarized. The calcium influx is the first step in a complex bio-chemical
pathway that leads ultimately to a modification of the glutamate-sensitivity of
the postsynaptic membrane.

Biophysical models of Hebbian plasticity (Lisman, 1989; Zador et al., 1990;
Holmes and Levy, 1990; Gold and Bear, 1994; Schiegg et al., 1995; Shouval et al.,
2001) contain two essential components, viz. a description of intracellular cal-
cium dynamics, in particular a model of calcium entry through NMDA synapses;
and a hypothesis of how the concentration of intracellular calcium influences the
change of synaptic efficacy. In this section we give a simplified account of both
components. We start with a model of NMDA synapses and turn then to the
so-called calcium control hypothesis of Shouval et al. (2001).

NMDA receptor as a coincidence detector

We have emphasized in Sections 10.1–10.3 that all Hebbian learning rules contain
a term that depends on the correlation between the firings of pre- and postsy-
naptic neurons. The signaling chain that leads to a weight change therefore has
to contain a nonlinear processing step that requires that pre- and postsynaptic
neurons are active within some short time window. Synaptic channels controlled
by NMDA receptors are an excellent candidate for a biophysical implementation
of this condition of ‘coincidence’ because the opening of the channel requires
both the presence of glutamate which reflects presynaptic activity and, in order
to remove the magnesium block, a depolarization of the postsynaptic membrane
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Fig. 10.10: NMDA-synapse. A. Vesicles in the presynaptic terminal contain glu-
tamate as a neurotransmitter (filled triangles). At resting potential, the NMDA
receptor mediated channel (hatched) is blocked by magnesium (filled circle). B.
If an action potential (AP) arrives at the presynaptic terminal the vesicle merges
with the cell membrane, glutamate diffuses into the synaptic cleft, and binds to
NMDA and non-NMDA receptors on the postsynaptic membrane. At resting
potential, the NMDA receptor mediated channel remains blocked by magnesium
whereas the non-NMDA channel opens (bottom). C. If the membrane of the
postsynaptic neuron is depolarized, the magnesium block is removed and calcium
ions can enter into the cell. D. The depolarization of the postsynaptic membrane
can be caused by a back propagating action potential (BPAP).

(Mayer et al., 1984; Nowak et al., 1984). A strong depolarization of the post-
synaptic membrane does occur, for example, during the back propagation of an
action potential into the dendritic tree (Stuart and Sakmann, 1994; Linden, 1999),
which is a signature for postsynaptic activity.

In a simple model of NMDA-receptor controlled channels, the calcium current
through the channel is described by

ICa(t) = gCa α(t− t
(f)
j ) [u(t)−ECa] B[u(t)] ; (10.52)

cf. Chapter 2.4. Here gCa is the maximal conductance of the channel and ECa

is the reversal potential of calcium. The time course of NMDA binding at the
receptors is described by α(t− t

(f)
j ) where t

(f)
j is the time of spike arrival at the

presynaptic terminal. The function

B(u) =
1

1 + 0.28 e−0.062u
(10.53)
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describes the unblocking of the channel at depolarized levels of membrane poten-
tial.

The time course of α is taken as a sum of two exponentials with the time
constant of the slow component in the range of 100ms. If there are several
presynaptic spikes within 100ms, calcium accumulates inside the cell. The change
of the intracellular calcium concentration [Ca2+] can be described by

d

dt
[Ca2+](t) = ICa(t)− [Ca2+](t)

τCa

, (10.54)

where τCa = 125 ms is a phenomenological time constant of decay. Without any
further presynaptic stimulus, the calcium concentration returns to a resting value
of zero. More sophisticated models can take calcium buffers, calcium stores, and
ion pumps into account (Gamble and Koch, 1987; Zador et al., 1990; Schiegg
et al., 1995).

The calcium control hypothesis

While the dynamics of NMDA synapses is fairly well understood in terms of the
biophysical processes that control receptor binding and channel opening, much
less is known about the complex signaling chain that is triggered by calcium
and finally leads to a regulation of the synaptic efficacy (Lisman, 1989). Instead
of a developing a detailed model, we adopt a phenomenological approach and
assume that the change of the synaptic efficacy wij is fully determined by the
intracellular calcium concentration [Ca2+]; an assumption that has been called
‘calcium control hypothesis’ (Shouval et al., 2001). More specifically, we write
the weight change as

d

dt
wij =

Ω([Ca2+])− wij

τ([Ca2+])
. (10.55)

For constant calcium concentration, the weight wij reaches an asymptotic value
Ω([Ca2+]) with time constant τ([Ca2+]).

Figure 10.11 shows the graph of the function Ω([Ca2+]) as it is used in the
model of Shouval et al. (2001). For a calcium concentration below θ0, the weight
assumes a resting value of w0 = 0.5. For calcium concentrations in the range
θ0 < [Ca2+] < θm, the weight tends to decrease, for [Ca2+] > θm it increases.
Qualitatively, the curve Ω([Ca2+]) reproduces experimental results that suggest
that a high level of calcium leads to an increase whereas an intermediate level of
calcium leads to a decrease of synaptic weights. We will see below that the BCM
rule of Eq. (10.12) is closely related to the function Ω[Ca2+].

The time constant τ([Ca2+]) in the model equation (10.55) decreases rapidly
with increasing calcium concentration; cf. Fig. 10.11B. The specific dependence
has been taken as

τ([Ca2+]) =
τ0

[Ca2+]3 + 10−4
(10.56)
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Fig. 10.11: Calcium control hypothesis. The asymptotic weight value wij =
Ω([Ca2+]) (A) and the time constant τ([Ca2+]) of weight changes (B) as a function
of the calcium concentration; cf. Eq. (10.55) [adapted from Shouval et al. (2001)].

where τ0 = 500ms and [Ca2+] is the calcium concentration in μmol/l. At a low
level of intracellular calcium ([Ca2+]→ 0), the response time of the weight wij is
in the range of hours while for [Ca2+]→ 1 the weight changes rapidly with a time
constant of 500 ms. In particular, the effective time constant for the induction of
LTP is shorter than that for LTD.

Dynamics of the postsynaptic neuron

In order to complete the definition of the model, we need to introduce a descrip-
tion of the membrane potential ui of the postsynaptic neuron. As in the simple
spiking neuron model SRM0 (cf. Chapter 4), the total membrane potential is
described as

ui(t) = η(t− t̂i) +
∑

f

ε(t− t
(f)
j ) . (10.57)

Here ε(t − t
(f)
j ) is the time course of the postsynaptic potential generated by a

presynaptic action potential at time t
(f)
j . It is modeled as a double exponential

with a rise time of about 5ms and a duration of about 50ms. The action potential
of the postsynaptic neuron is described as

η(s) = uAP

(
0.75 e−s/τfast + 0.25 e−s/τslow

)
. (10.58)

Here uAP = 100 mV is the amplitude of the action potential and t̂i is the firing
time of the last spike of the postsynaptic neuron. In contrast to the model SRM0,
η does not describe the reset of the membrane potential at the soma, but the form
of the back propagating action potential (BPAP) at the site of the synapse. It is
assumed that the BPAP has a slow component with a time constant τslow = 35ms.
The fast component has the same rapid time constant (about 1 ms) as the somatic
action potential. The somatic action potential is not described explicitly.
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Fig. 10.12: Spike-time dependent plasticity in a calcium-based model. A. Cal-
cium transient generated by a presynaptic spike in the absence of postsynaptic
firing (bottom) and in the presence of a postsynaptic spike 10ms before (middle)
or 10ms after (top) presynaptic spike arrival. Only for the sequence ‘pre-before-
post’ the threshold θm for LTP can be reached. B. The final weights obtained
after several thousands pre- and postsynaptic spikes that are generated at a rate
of 1 Hz (solid line) or 3 Hz (dashed line). The weights are given as a function of

the time difference between presynaptic spikes t
(f)
j and postsynaptic spikes t

(f)
i .

C. Pairing of presynaptic spikes with postsynaptic depolarization. The weights
wij that are obtained after several hundreds of presynaptic spikes (at a rate of
νj = 0.5 Hz) as a function of the depolarization of the postsynaptic membrane.
[Adapted from Shouval et al. (2001)].

Results

Given the above components of the model, we can understand intuitively how
calcium influx at NMDA synapses leads to spike-time dependent plasticity. Let us
analyze the behavior by comparing the calcium-based model with the elementary
model of Section 10.4.1; cf. Eqs. (10.29)–(10.31). Binding of glutamate at NMDA
receptors plays the role of the component a that is triggered by presynaptic firing;
the back propagating action potential plays the role of the component b that is
triggered by postsynaptic firing. As a result of the depolarization caused by
the BPAP, the magnesium block is removed and calcium ions enter the cell. The
calcium influx is proportional to the product of the NMDA-binding, i.e., the factor
α in Eq. (10.52), and the unblocking, i.e., the factor B(u). Finally, the increase
in the calcium concentration leads to a weight change according to Eq. (10.55).

A single presynaptic spike (without a simultaneous postsynaptic action po-
tential) leads to a calcium transient that stays below the induction threshold θ0;
cf. Fig. 10.12A. If a postsynaptic spike occurs 10ms before the presynaptic spike
arrival, the calcium transient has a somewhat larger amplitude that attains a
level above θ0. As a consequence, the weight wij is reduced. If, however, the
postsynaptic spike occurs one or a few milliseconds after the presynaptic one, the
calcium transient is much larger. The reason is that the blocking of the NMDA
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synapse is removed during the time when the NMDA receptors are almost com-
pletely saturated by glutamate. In this case, the calcium concentration is well
above θm so that weights increase. Since the time constant τ([Ca2+]) is shorter
in the regime of LTP induction than in the regime of LTD induction, the positive
weight change is dominant even though the calcium concentration must neces-
sarily pass through the regime of LTD in order to reach the threshold θm. The
resulting time window of learning is shown in Fig. 10.12B. It exhibits LTP if the
presynaptic spike precedes the postsynaptic one by less than 40ms. If the order
of spiking is inverted LTD occurs. LTD can also be induced by a sequence of ‘pre-
before-post’ if the spike time difference is larger than about 40ms. The reason
is that in this case the removal of the magnesium block (induced by the BPAP)
occurs at a moment when the probability of glutamate binding is reduced; cf. the
factor α in Eq. (10.52). As a consequence less calcium enters the cell – enough
to surpass the threshold θ0, but not sufficient to reach the threshold θ1 of LTP.
We emphasize that the form of the learning window is not fixed but depends on
the frequency of pre- and postsynaptic spike firing; cf. Fig. 10.12B.

LTP and LTD can also be induced in the absence of postsynaptic spikes if
the membrane potential of the postsynaptic neuron is clamped to a constant
value. A pure spike-time dependent learning rule defined by a learning window
W (t

(f)
j − t

(f)
i ) is obviously not a suitable description of such an experiment. The

calcium-based model of Shouval et al. (2001), however, can reproduce voltage-
clamp experiments; cf. Fig. 10.12C. Presynaptic spike arrival at low frequency
(νj = 0.5 Hz) is ‘paired’ with a depolarization of the membrane potential of the
postsynaptic neuron to a fixed value u0. If u0 is below -70mV, no significant
weight change occurs. For −70 mV < u0 < −50 mV LTD is induced, while for
u0 > −50mV LTP is triggered. These results are a direct consequence of the
removal of the magnesium block at the NMDA synapses with increasing voltage.
The mean calcium concentration – and hence the asymptotic weight value – is
therefore a monotonously increasing function of u0.

Finally, we would like to emphasized the close relation between Fig. 10.12C
and the function φ of the BCM learning rule as illustrated in Fig. 10.5. In a
simple rate model, the postsynaptic firing rate νi is a sigmoidal function of the
potential, i.e., νi = g(ui). Thus, the mapping between the two figures is given by
a non-linear transformation of the horizontal axis.

10.5 Summary

Correlation-based learning is, as a whole, often called Hebbian learning. The
Hebb rule (10.2) is a special case of a local learning rule because it only depends
on pre- and postsynaptic firing rates and the present state wij of the synapse,
i.e., information that is easily ‘available’ at the location of the synapse.



10.5. SUMMARY 393

Recent experiments have shown that the relative timing of pre- and postsy-
naptic spikes critically determines the amplitude and even the direction of changes
of the synaptic efficacy. In order to account for these effects, learning rules on
the level of individual spikes are formulated with a learning window that con-
sists of two parts: If the presynaptic spike arrives before a postsynaptic output
spike, the synaptic change is positive. If the timing is the other way round, the
synaptic change is negative (Markram et al., 1997; Zhang et al., 1998; Debanne
et al., 1998; Bi and Poo, 1998, 1999). For some synapses, the learning window is
reversed (Bell et al., 1997b), for others it contains only a single component (Egger
et al., 1999).

Hebbian learning is considered to be a major principle of neuronal organi-
zation during development. The first modeling studies of cortical organization
development (Willshaw and von der Malsburg, 1976; Swindale, 1982) have in-
cited a long line of research, e.g., Kohonen (1984); Linsker (1986c,b,a); MacKay
and Miller (1990); Miller et al. (1989); Obermayer et al. (1992). Most of these
models use in some way or another an unsupervised correlation-based learning
rule similar to the general Hebb rule of Eq. (10.2); see Erwin et al. (1995) for a
recent review.

Literature

Correlation-based learning can be traced back to Aristoteles 2 and has been dis-
cussed extensively by James (1890) who formulated a learning principle on the
level of ‘brain processes’ rather than neurons:

When two elementary brain-processes have been active together or
in immediate succession, one of them, on re-occurring, tends to
propagate its excitement into the other.

A chapter of James’ book is reprinted in volume 1 of Anderson and Rosenfeld’s col-
lection on Neurocomputing (Anderson and Rosenfeld, 1988). More than 50 years
later, Hebb’s book (Hebb, 1949) of which two interesting sections are reprinted
in the collection of Anderson and Rosenfeld (1988) was published. The historical
context of Hebb’s postulate is discussed in the review of Sejnowski (1999). In the
reprint volume of Anderson and Rosenfeld (1988), articles of Grossberg (1976)
and Bienenstock et al. (1982) illustrate the use of the rate-based learning rules
discussed in Section 10.2. Kohonen’s book gives an overview of some mathemat-
ical results for several generic rate-based learning rules (Kohonen, 1984).

2Aristoteles, ”De memoria et reminiscentia”: There is no need to consider how we remember
what is distant, but only what is neighboring, for clearly the method is the same. For the changes
follow each other by habit, one after another. And thus, whenever someone wishes to recollect
he will do the following: He will seek to get a starting point for a change after which will be
the change in question.
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For reviews on (hippocampal) LTP, see the book of Byrne and Berry (1989),
in particular the articles of Sejnowski and Tesauro (1989) and Brown et al. (1989).
Cerebellar LTD has been reviewed by Daniel et al. (1996, 1998) and Linden and
Connor (1995). Further references and a classification of different forms of LTP
and LTD can be found in the nice review of Bliss and Collingridge (1993). For the
relation of LTP and LTD, consult Artola and Singer (1993). A modern and highly
recommendable review with a focus on recent results, in particular on spike-time
dependent plasticity has been written by Bi and Poo (2001). The theoretical
context of spike-time dependent plasticity has been discussed by Abbott (2000).



Chapter 11

Learning Equations

Neurons in the central nervous system form a complex network with a high degree
of plasticity. In the previous chapter we have discussed synaptic plasticity from a
phenomenological point of view. We now ask ‘What are the consequences for the
connectivity between neurons if synapses are plastic?’. To do so we consider a
scenario known as unsupervised learning. We assume that some of the neurons in
the network are stimulated by input with certain statistical properties. Synaptic
plasticity generates changes in the connectivity pattern that reflect the statistical
structure of the input. The relation between the input statistics and the synaptic
weights that evolve due to Hebbian plasticity is the topic of this chapter. We start
in Section 11.1 with a review of unsupervised learning in a rate-coding paradigm.
The extension of the analysis to spike-time dependent synaptic plasticity is made
in Section 11.2. We will see that spike-based learning naturally accounts for
spatial and temporal correlations in the input and can overcome some of the
problems of a simple rate-based learning rule.

11.1 Learning in Rate Models

We would like to understand how activity-dependent learning rules influence the
formation of connections between neurons in the brain. We will see that plasticity
is controlled by the statistical properties of the presynaptic input that is impinging
on the postsynaptic neuron. Before we delve into the analysis of the elementary
Hebb rule we therefore need to recapitulate a few results from statistics and linear
algebra.

11.1.1 Correlation Matrix and Principal Components

A principal component analysis (PCA) is a standard technique to describe statis-
tical properties of a set of high-dimensional data points and is usually performed
in order to find those components of the data that show the highest variability

395
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Fig. 11.1: Ellipsoid approximating the shape of a cloud of data points. The first
principal component e1 corresponds to the principal axis of the ellipsoid.

within the set. If we think of the input data set as of a cloud of points in a
high-dimensional vector space centered around the origin, then the first principal
component is the direction of the longest axis of the ellipsoid that encompasses
the cloud; cf. Fig. 11.1. If the data points consisted of, say, two separate clouds
then the first principal component would give the direction of a line that connects
the center points of the two clouds. A PCA can thus be used to break a large
data set into separate clusters. In the following, we will quickly explain the basic
idea and show that the first principal component gives the direction where the
variance of the data is maximal.

Let us consider an ensemble of data points {ξ1, . . . , ξp} drawn from a (high-
dimensional) vector space, for example ξμ ∈ R

N . For this set of data points we
define the correlation matrix Cij as

Cij =
1

p

p∑
μ=1

ξμ
i ξμ

j =
〈
ξμ
i ξμ

j

〉
μ

. (11.1)

Angular brackets 〈·〉μ denote an average over the whole set of data points. Similar
to the variance of a single random variable we can also define the covariance
matrix Vij of our data set,

Vij =
〈
(ξμ

i − 〈ξμ
i 〉μ) (ξμ

j − 〈ξμ
j 〉μ)

〉
μ

. (11.2)

In the following we will assume that the coordinate system is chosen so that the
center of mass of the set of data points is located at the origin, i.e., 〈ξi〉μ = 〈ξj〉μ =
0. In this case, correlation matrix and covariance matrix are identical.

The principal components of the set {ξ1, . . . , ξp} are defined as the eigenvec-
tors of the covariance matrix V . Note that V is symmetric, i.e., Vij = Vji. The
eigenvalues of V are thus real-valued and different eigenvectors are orthogonal
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(Horn and Johnson, 1985). Furthermore, V is positive semi-definite since

yT V y =
∑
ij

yi

〈
ξμ
i ξμ

j

〉
μ

yj =

〈[∑
i

yi ξ
μ
i

]2
〉

μ

≥ 0 (11.3)

for any vector y ∈ R
N . Therefore, all eigenvalues of V are non-negative.

We can sort the eigenvectors ei according to the size of the corresponding
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. The eigenvector with the largest eigenvalue is
called the first principal component. It points in the direction where the variance
of the data is maximal. To see this we calculate the variance of the projection of
ξμ onto an arbitrary direction y that we write as y =

∑
i ai ei with

∑
i a

2
i = 1 so

that ‖y‖ = 1. The variance σ2
y along y is

σ2
y =

〈
[xμ · y]2

〉
μ

= yT V y =
∑

i

λi a
2
i . (11.4)

The right-hand side is maximal under the constraint
∑

i a
2
i = 1 if a1 = 1 and

ai = 0 for i = 2, 3, . . . , N , that is, if y = e1.

11.1.2 Evolution of synaptic weights

In the following we analyze the evolution of synaptic weights using the Hebbian
learning rules that have been described in Chapter 10. To do so, we consider
a highly simplified scenario consisting of an analog neuron that receives input
from N presynaptic neurons with firing rates νpre

i via synapses with weights wi;
cf. Fig. 11.2A. We think of the presynaptic neurons as ‘input neurons’, which,
however, do not have to be sensory neurons. The input layer could, for example,
consist of neurons in the lateral geniculate nucleus (LGN) that project to neurons
in the visual cortex. We will see that the statistical properties of the input control
the evolution of synaptic weights.

For the sake of simplicity, we model the presynaptic input as a set of static
patterns. Let us suppose that we have a total of p patterns {ξμ; 1 < μ < p}.
At each time step one of the patterns ξμ is selected at random and presented
to the network by fixing the presynaptic rates at νpre

i = ξμ
i . We call this the

static-pattern scenario. The presynaptic activity drives the postsynaptic neuron
and the joint activity of pre- and postsynaptic neurons triggers changes of the
synaptic weights. The synaptic weights are modified according to a Hebbian
learning rule, i.e., according to the correlation of pre- and postsynaptic activity;
cf. Eq. (10.3). Before the next input pattern is chosen, the weights are changed
by an amount

Δwi = γ νpost νpre
i (11.5)

Here, 0 < γ 
 1 is a small constant called ‘learning rate’. The learning rate in
the static-pattern scenario is closely linked to the correlation coefficient ccorr

2 in
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Fig. 11.2: Elementary model. A. Patterns ξμ are applied as a set of presynaptic
firing rates νj, i.e., ξμ

j = νpre
j for 1 ≤ j ≤ N . B. The gain function of the postsy-

naptic neuron is taken as linear, i.e., νpost = h. It can be seen as a linearization
of the sigmoidal gain function g(h).

the continuous-time Hebb rule introduced in Eq. (10.3). In order to highlight the
relation, let us assume that each pattern ξμ is applied during an interval Δt. For
Δt sufficiently small, we have γ = ccorr

2 Δt.
In a general rate model, the firing rate νpost of the postsynaptic neuron is

given by a nonlinear function of the total input

νpost = g

(∑
i

wi ν
pre
i

)
; (11.6)

cf. Fig. 11.2B. For the sake of simplicity, we restrict our discussion in the following
to a linear rate model with

νpost =
∑

i

wi ν
pre
i . (11.7)

Obviously, this is a highly simplified neuron model, but it will serve our purpose
of gaining some insights in the evolution of synaptic weights.

If we combine the learning rule (11.5) with the linear rate model of Eq. (11.7)
we find after the presentation of pattern ξμ

Δwi = γ
∑

j

wj νpre
j νpre

i = γ
∑

j

wj ξμ
j ξμ

i . (11.8)

The evolution of the weight vector w = (w1, . . . , wN) is thus determined by the
iteration

wi(n + 1) = wi(n) + γ
∑

j

wj ξμn

j ξμn

i , (11.9)

where μn denotes the pattern that is presented during the nth time step.
We are interested in the long-term behavior of the synaptic weights. To this

end we assume that the weight vector evolves along a more or less deterministic
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trajectory with only small stochastic deviations that result from the randomness
at which new input patterns are chosen. This is, for example, the case if the
learning rate is small so that a large number of patterns has to be presented in
order to induce a substantial weight change. In such a situation it is sensible to
consider the expectation value of the weight vector, i.e., the weight vector 〈w(n)〉
averaged over the sequence (ξμ1 , ξμ2 , . . . , ξμn) of all patterns that so far have been
presented to the network. From Eq. (11.9) we find

〈wi(n + 1)〉 = 〈wi(n)〉+ γ
∑

j

〈
wj(n) ξ

μn+1

j ξ
μn+1

i

〉
= 〈wi(n)〉+ γ

∑
j

〈wj(n)〉 〈ξμn+1

j ξ
μn+1

i

〉
= 〈wi(n)〉+ γ

∑
j

Cij 〈wj(n)〉 . (11.10)

The angular brackets denote an ensemble average over the whole sequence of input
patterns (ξμ1 , ξμ2 , . . . ). The second equality is due to the fact that input patterns
are chosen independently in each time step, so that the average over wj(n) and
(ξ

μn+1

j ξ
μn+1

i ) can be factorized. In the final expression we have introduced the
correlation matrix Cij,

Cij =
1

p

p∑
μ=1

ξμ
i ξμ

j =
〈
ξμ
i ξμ

j

〉
μ

. (11.11)

Expression (11.10) can be written in a more compact form using matrix notation,

〈w(n + 1)〉 = (1I + γ C) 〈w(n)〉 = (1I + γ C)n+1 〈w(0)〉 , (11.12)

where w(n) = (w1(n), . . . , wN(n)) is the weight vector and 1I is the identity
matrix.

If we express the weight vector in terms of the eigenvectors ek of C,

〈w(n)〉 =
∑

k

ak(n) ek , (11.13)

we obtain an explicit expression for 〈w(n)〉 for any given initial condition ak(0),
viz.,

〈w(n)〉 =
∑

k

(1 + λk)
n ak(0) ek . (11.14)

Since the correlation matrix is positive semi-definite all eigenvalues λk are real and
positive. Therefore, the weight vector is growing exponentially, but the growth
will soon be dominated by the eigenvector with the largest eigenvalue, i.e., the
first principal component,

〈w(n)〉 n→∞−−−→ (1 + λ1)
n a1(0) e1 ; (11.15)



400 CHAPTER 11. LEARNING EQUATIONS

A B

−2 −1 0 1 2 3
−2

−1

0

1

2

3

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Fig. 11.3: Weight changes induced by the standard Hebb rule. Input patterns
ξμ ∈ R

2 are marked as circles. The sequence of weight vectors w(1), w(2), . . . ,
is indicated by crosses connected by a solid line. A. The weight vector evolves in
the direction of the dominant eigenvector (arrow) of the correlation matrix. B.
If the input patterns are normalized so that their center of mass is at the origin,
then the dominant eigenvector of the correlation matrix coincides with the first
principal component e1 of the data set.

cf. Section 11.1.1. Recall that the output of the linear neuron model (11.7) is
proportional to the projection of the current input pattern ξμ on the direction
w. For w ∝ e1, the output is therefore proportional to the projection on the first
principal component of the input distribution. A Hebbian learning rule such as
Eq. (11.8) is thus able to extract the first principal component of the input data.

From a data-processing point of view, the extraction of the first principle
component of the input data set by a biologically inspired learning rule seems
to be very compelling. There are, however, a few drawbacks and pitfalls. First,
the above statement about the Hebbian learning rule is limited to the expecta-
tion value of the weight vector. We will see below that, if the learning rate is
sufficiently low, then the actual weight vector is in fact very close to the expected
one.

Second, while the direction of the weight vector moves in the direction of the
principal component, the norm of the weight vector grows without bounds. We
will see below in Section 11.1.3 that suitable variants of Hebbian learning allow
us to control the length of the weight vector without changing its direction.

Third, principal components are only meaningful if the input data is normal-
ized, i.e., distributed around the origin. This requirement is not consistent with a
rate interpretation because rates are usually positive. This problem, however, can
be overcome by learning rules such as the covariance rule of Eq. (10.10) that are
based on the deviation of the rates from a certain mean firing rate. We will see
in Section 11.2.4 that a spike-based learning rule can be devised that is sensitive
only to deviations from the mean firing rate and can thus find the first principal
component even if the input is not properly normalized.
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Self-averaging (*)

So far, we have derived the behavior of the expected weight vector, 〈w〉. Here
we show that explicit averaging is not necessary provided that learning is slow
enough. In this case, the weight vector is the sum of a large number of small
changes. The weight dynamics is thus ‘self-averaging’ and the weight vector w
can be well approximated by its expectation value 〈w〉.

We start from the formulation of Hebbian plasticity in continuous time,

d

dt
wi = ccorr

2 νpost νpre
i ; (11.16)

cf. Eq. (10.3). Each pattern ξμ is presented for a short period of duration Δt.
We assume that the weights change during the presentation by a small amount
only, i.e.,

∫ t+Δt

t
[dwj(t

′)/dt′] dt′ 
 wj(t). This condition can be met either by a
short presentation time Δt or by a small learning coefficient ccorr

2 . Under this
condition, we can take the postsynaptic firing rate νpost(t) =

∑
j wj(t) νpre

i as
constant for the duration of one presentation. The total weight change induced
by the presentation of pattern ξμ to first order in Δt is thus

Δwi(t) = wi(t + Δt)− wi(t) = γ
∑

j

wj(t) ξμ
j ξμ

i +O(Δt2) . (11.17)

with γ = ccorr
2 Δt; cf. Eq. (11.8).

In the next time step a new pattern ξν is presented so that the weight is
changed to

wi(t + 2Δt) = wi(t + Δt) + ccorr
2 Δt

∑
j

wj(t + Δt) ξν
j ξν

i +O(Δt2) . (11.18)

Since we keep only terms to first order in Δt, we may set wj(t + Δt) = wj(t) in
the sum on the right-hand side of Eq. (11.18). Let us suppose that in the interval
[t, t + p Δt] each of the p patterns has been applied exactly once. Then, to first
order in Δt,

wi(t + p Δt)− wi(t) = ccorr
2 Δt

∑
j

wj(t)

p∑
μ=1

ξμ
i ξμ

j +O(Δt2) . (11.19)

For ccorr
2 Δt 
 1, all higher-order terms can be neglected. Division by p Δt yields

wi(t + p Δt)− wi(t)

p Δt
= ccorr

2

∑
j

wj(t) Cij . (11.20)

The left-hand side can be approximated by a differential operator dw/dt,

d

dt
wi(t) = ccorr

2

∑
j

wj(t) Cij . (11.21)
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Fig. 11.4: Weight vector normalization. A. Normalization of the summed weights∑
j wij = 1 constrains the weight vector w to a hyper-plane perpendicular to the

diagonal vector n = (1, 1, . . . , 1)T . Hard bounds 0 ≤ wij ≤ 1 force the the weight
vector to stay inside the shaded region. B. Normalization of the quadratic norm
‖w‖2 = 1. The weight change Δw(n) is perpendicular to the current weight
vector w(n) so that the length of w remains constant (Oja’s learning rule).

We thus recover our previous result that weights are driven by the correlations
in the input but with the additional vantage that no explicit averaging step is
necessary (Sanders and Verhulst, 1985).

11.1.3 Weight Normalization

We have seen in Section 11.1.2 that the simple learning rule (10.3) leads to ex-
ponentially growing weights. Since this is biologically not plausible, we must use
a modified Hebbian learning rule that includes weight decrease and saturation;
cf. Chapter 10.2. Particularly interesting are learning rules that lead to a nor-
malized weight vector. Normalization is a desirable property since it leads to a
competition between synaptic weights wij that converge on the same postsynap-
tic neuron i. Competition means that if a synaptic efficacy increases, it does so
at the expense of other synapses that must decrease.

For a discussion of weight vector normalization two aspects are important,
namely what is normalized and how the normalization is achieved. Learning
rules can be designed to normalize either the sum of weights,

∑
j wij, or the

quadratic norm, ‖w‖2 =
∑

j w2
ij (or any other norm on R

N). In the first case,
the weight vector is constrained to a plane perpendicular to the diagonal vector
n = (1, . . . , 1); in the second case it is constrained to a hyper-sphere; cf. Fig. 11.4.

Second, the normalization of the weight vector can either be multiplicative
or subtractive. In the former case all weights are multiplied by a common factor
so that large weights wij are corrected by a larger amount than smaller ones.
In the latter case a common constant is subtracted from each weight. Usually,
subtractive normalization is combined with hard bounds 0 ≤ wij ≤ wmax in order
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to avoid runaway of individual weights. Finally, learning rules may or may not
fall into the class of local learning rules that we have considered in Chapter 10.2.

A systematic classification of various learning rules according to the above
three criteria has been proposed by Miller and MacKay (1994). Here we restrict
ourselves to two instances of learning with normalization properties which we
illustrate in the examples below. We start with the subtractive normalization
of the summed weights

∑
j wij and turn then to a discussion of Oja’s rule as an

instance of a multiplicative normalization of
∑

j w2
ij.

Example: Subtractive Normalization of
∑

i wi

In a subtractive normalization scheme the sum over all weights,
∑

i wi, can be
kept constant by subtracting the average total weight change, N−1

∑
i Δw̃i, from

each synapse after the weights have been updated according to a Hebbian learning
rule with Δw̃i = γ

∑
j wj ξμ

j ξμ
i . Altogether, the learning rule is of the form

Δwi = Δw̃i −N−1
∑

j

Δw̃j

= γ
(∑

j

wj ξμ
j ξμ

i −N−1
∑

k

∑
j

wj ξμ
j ξμ

k

)
, (11.22)

where Δw̃i denotes the weight change that is due to the pure Hebbian learning
rule without the normalization. It can easily be verified that

∑
i Δwi = 0 so that∑

i wi = const. The temporal evolution of the weight vector w is thus restricted
to a hyperplane perpendicular to (1, . . . , 1) ∈ R

N . Note that this learning rule is
non-local because the change of weight depends on the activity of all presynaptic
neurons.

In a similar way as in the previous section, we calculate the expectation of the
weight vector 〈w(n)〉, averaged over the sequence of input patterns (ξμ1 , ξμ2 , . . . ),

〈wi(n + 1)〉 = 〈wi(n)〉+γ
(∑

j

Cij 〈wj(n)〉−N−1
∑

k

∑
j

Ckj 〈wj(n)〉
)

, (11.23)

or explicitly, using matrix notation

〈w(n)〉 = [1 + γ (C − C̄)]n 〈w(0)〉 , (11.24)

with C̄ij = N−1
∑

k Ckj. The evolution of the weight vector is thus determined by
eigenvectors of the matrix (C − C̄) that are in general different from those of the
correlation matrix C. Hebbian learning with subtractive normalization is driven
by the correlations of the input in the subspace orthogonal to the diagonal vector
(1, . . . , 1). Though the sum of the weights stays constant individual weights keep
growing. It is thus necessary to adopt an additional criterion to stop the learning
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Fig. 11.5: Similar plots as in Fig. 11.3 but with weight vector normalization.
A. With subtractive normalization, the weight vector evolves along a line that is
perpendicular to the diagonal vector (1, 1). Without additional constraints, the
length of the weight vector grows without bounds. B. Oja’s learning rule results in
a quick convergence of the weight vector to the first principal component (arrow)
of data set.

process and to prevent that some components of the weight vector grow beyond
all bounds. A subtractive weight normalization is usually combined with hard
boundaries for the weights; cf. Section 10.2.1. With these constraints, the weight
vector converges to a final state where (almost) all weights are saturated at the
upper or lower bound (Miller and MacKay, 1994); cf. Fig. 11.5A.

Example: Multiplicative Normalization of ‖w‖
Normalization of the sum of the weights,

∑
i wi, needs an additional criterion

to prevent individual weights from perpetual growth. A more elegant way is
to require that the sum of the squared weights, i.e., the length of the weight
vector,

∑
i w

2
i , remains constant. This restricts the evolution of the weight vector

to a sphere in the N dimensional weight space. In addition, we can employ a
multiplicative normalization scheme where all weights all multiplied by a common
factor instead of subtracting a common constant. The advantage of multiplicative
compared to subtractive normalization is that small weights will not change their
sign during the normalization step.

In order to formalize the above idea we first calculate the ‘näıve’ weight change
w̃(n) in time step n according to the common Hebbian learning rule,

Δw̃(n) = γ [w(n) · ξμ] ξμ . (11.25)

The update of the weights is accompanied by a normalization of the norm of the
weight vector to unity, i.e.,

w(n + 1) =
w(n) + Δw̃(n)

‖w(n) + Δw̃(n)‖ (11.26)
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If we assume that the weights are changed only by a very small amount during
each step (γ 
 1), we can calculate the new weights w(n + 1) to first order in γ,

w(n + 1) = w(n) + Δw̃(n)−w(n) [w(n) ·Δw̃(n)] +O(γ2) . (11.27)

The ‘effective’ weight change Δw(n) including normalization to leading order in
γ is thus

Δw(n) = Δw̃(n)−w(n) [w(n) ·Δw̃(n)] , (11.28)

which corresponds to the vector component of Δw̃ that is orthogonal to the
current weight vector w. This is exactly what we would have expected because
the length of the weight vector must stay constant; cf. Fig. 11.4B.

We may wonder whether Eq. (11.28) is a local learning rule. In order to
answer this question, we recall that the ‘näıve’ weight change Δw̃j = γ νpost νpre

j

uses only pre- and postsynaptic information. Hence, we can rewrite Eq. (11.28)
in terms of the firing rates,

Δwj = γ νpost νj − γ wj(n)
(
νpost

)2
. (11.29)

In the second term on the right-hand side we have made use of the linear neuron
model, i.e., νpost =

∑
k wk νpre

k . Since the weight change depends only on pre-
and postsynaptic rates, Eq. (11.29), which is known as Oja’s learning rule (Oja,
1982), is indeed local; cf. Eq. (10.11).

In order to see that Oja’s learning rule selects the first principal component we
show that the eigenvectors {e1, . . . , eN} of C are fixed points of the dynamics but
that only the eigenvector e1 with the largest eigenvalue is stable. For any fixed
weight vector w we can calculate the expectation of the weight change in the next
time step by averaging over the whole ensemble of input patterns {ξ1, ξ2, . . . }.
With 〈Δw̃(n)〉 = γ C w we find from Eq. (11.28)

〈Δw〉 = γ C w − γ w [w · C w] , (11.30)

We claim that any eigenvector ei of the correlation matrix C is a fixed point of
Eq. (11.30). Indeed, if we substitute w = ei in the above equation we find that
〈Δw〉 = 0. In order to investigate the stability of this fixed point we consider
a small perturbation w = ei + c ej in the direction of ej . Here, |c| 
 1 is the
amplitude of the perturbation. If we substitute w = ei + c ej into Eq. (11.30) we
find

〈Δw〉 = c γ (λj − λi) ej +O(c2) . (11.31)

The weight vector will thus evolve in the direction of the perturbation ej if
λj > λi so that initial perturbation will increase. In this case, ei is unstable.
On the other hand, if λj < λi the averaged weight change tends to decrease the
perturbation and ei is stable. Consequently, the eigenvector of C with the largest
eigenvalue, viz., the first principle component, is the sole stable fixed point of the
dynamics generated by the learning rule of Eq. (11.26). Figure 11.5B shows a
simple example.
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11.1.4 Receptive Field Development

Most neurons of the visual system respond only to stimulation from a narrow
region within the visual field. This region is called the receptive field of that
neuron. Depending on the precise position of a narrow bright spot within the
receptive field the corresponding neuron can either show an increase or a decrease
of the firing rate relative to its spontaneous activity at rest. The receptive field
is subdivided accordingly into ‘ON’ and ‘OFF’ regions in order to further char-
acterize neuronal response properties. Bright spots in an ON region increase the
firing rate whereas bright spots in an OFF region inhibit the neuron.

Different neurons have different receptive fields, but as a general rule, neigh-
boring neurons have receptive fields that ‘look’ at about the same region of the
visual field. This is what is usually called the retinotopic organization of the
neuronal projections – neighboring points in the visual field are mapped to neigh-
boring neurons of the visual system.

The visual system forms a complicated hierarchy of interconnected cortical
areas where neurons show increasingly complex response properties from one
layer to the next. Neurons from the lateral geniculate nucleus (LGN), which is
the first neuronal relay of visual information after the retina, are characterized by
so-called center-surround receptive fields. These are receptive fields that consist
of two concentric parts, an ON region and an OFF region. LGN neurons come in
two flavors, as ON-center and OFF-center cells. ON-center cells have a ON-region
in the center of their receptive field that is surrounded by a circular OFF-region.
In OFF-center cells the arrangement is the other way round; a central OFF-region
is surrounded by an ON-region; cf. Fig. 11.6.

Neurons from the LGN project to the primary visual cortex (V1), which is
the first cortical area involved in the processing of visual information. In this
area neurons can be divided into ‘simple cells’ and ’complex cells’. In contrast
to LGN neurons, simple cells have asymmetric receptive fields which results in
a selectivity with respect to the orientation of a visual stimulus. The optimal
stimulus for a neuron with a receptive field such as that shown in Fig. 11.6D, for
example, is a light bar tilted by about 45 degrees. Any other orientation would
also stimulate the OFF region of the receptive field leading to a reduction of the
neuronal response. Complex cells have even more intriguing properties and show
responses that are, for example, selective for movements with a certain velocity
and direction (Hubel, 1995).

It is still a matter of debate how the response properties of simple cells arise.
The original proposal by Hubel and Wiesel (1962) was that orientation selec-
tivity is a consequence of the specific wiring between LGN and V1. Several
center-surround cells with slightly shifted receptive fields should converge on a
single V1 neuron so as to produce the asymmetric receptive field of simple cells.
Alternatively (or additionally), the intra-cortical dynamics can generate orienta-
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Fig. 11.6: Receptive fields (schematic). A, B. Circularly symmetric receptive
field as typical for neurons in the LGN. ON-center cells (A) are excited by light
spots (gray) falling into the center of the receptive field. In OFF-center cells
(B) the arrangement of excitatory and inhibitory regions in the receptive field is
reversed. C, D. Two examples of asymmetric receptive fields of simple cells in
the primary visual cortex. The cells are best stimulated by a light bar oriented
as indicated by the grey rectangle.

tion selectivity by enhancing small asymmetries in neuronal responses; cf. Sec-
tion 9.1.3. In the following, we pursue the first possibility and try to understand
how activity-dependent processes during development can lead to the required
fine-tuning of the synaptic organization of projections from the LGN to the pri-
mary visual cortex (Linsker, 1986c,b,a; Miller et al., 1989; MacKay and Miller,
1990; Miller, 1994, 1995; Wimbauer et al., 1997a,b).

Model architecture

We are studying a model that consists of a two-dimensional layer of cortical
neurons (V1 cells) and two layers of LGN neurons, namely one layer of ON-center
cells and one layer of OFF-center cells; cf. Fig. 11.7A. In each layer, neurons are
labeled by their position and projections between the neurons are given as a
function of their positions. Intra-cortical projections, i.e., projections between
cortical neurons, are denoted by wV1,V1(x1, x2), where x1 and x2 are the position
of the pre- and the postsynaptic neuron, respectively. Projections from ON-center
and OFF-center LGN neurons to the cortex are denoted by wV1,ON(x1, x2) and
wV1,OFF(x1, x2), respectively.

In the following we are interested in the evolution of the weight distribu-
tion of projections from the LGN to the primary visual cortex. We thus take
wV1,ON(x, x′) and wV1,OFF(x, x′) as the dynamic variables of the model. Intra-
cortical projections are supposed be constant and dominated by short-range ex-
citation, e.g.,

wV1,V1(x1, x2) ∝ exp

(
−‖x1 − x2‖

σ2
V1,V1

)
. (11.32)

As in the previous section we consider – for the sake of simplicity – neurons
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Fig. 11.7: A. Wiring diagram between LGN and cortex (schematic). B. Axons
from LGN cells project only to a small region of cortex. Synaptic contacts are
therefore limited to a localized cluster of cortical neurons.

with a linear gain function. The firing rate νV1(x) of a cortical neuron at position
x is thus given by

νV1(x) =
∑
x′

wV1,ON(x, x′) νON(x′) +
∑
x′

wV1,OFF(x, x′) νOFF(x′)

+
∑
x′

(x′ �=x)

wV1,V1(x, x′) νV1(x
′) , (11.33)

where νON/OFF(x′) is the firing rate of a neuron in the ON/OFF layer of the LGN.
Due to the intra-cortical interaction the cortical activity νV1 shows up on both

sides of the equation. Since this is a linear equation it can easily be solved for
νV1. To do so we write νV1(x) =

∑
x′ δx,x′νV1(x

′), where δx,x′ is the Kronecker
δ that is one for x = x′ and vanishes otherwise. Equation (11.33) can thus be
rewritten as∑

x′
[δx,x′ − wV1,V1(x, x′)] νV1(x

′)

=
∑
x′

wV1,ON(x, x′) νON(x′) +
∑
x′

wV1,OFF(x, x′) νOFF(x′) . (11.34)

If we read the left-hand side as a multiplication of the matrix M(x, x′) ≡ [δx,x′−
wV1,V1(x, x′)] and the vector νV1(x

′) we can define the inverse I of M by∑
x

I(x′′, x) M(x, x′) = δx′′,x′ (11.35)

and solve Eq. (11.34) for νV1(x
′). We find

νV1(x
′′) =

∑
x′

w̄V1,ON(x′′, x′) νON(x′) +
∑
x′

w̄V1,OFF(x′′, x′) νOFF(x′) , (11.36)
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which relates the input νON/OFF to the output via the ‘effective’ weights

w̄V1,ON/OFF(x′′, x′) ≡
∑
x

I(x′′, x) wV1,ON/OFF(x, x′) . (11.37)

Plasticity

We expect that the formation of synapses between LGN and V1 is driven by
correlations in the input. In the present case, these correlations are due to the
retinotopic organization of projections from the retina to the LGN. Neighboring
LGN neurons receiving stimulation from similar regions of the visual field are thus
correlated to a higher degree than neurons that are more separated. If we assume
that the activity of individual photoreceptors on the retina is uncorrelated and
that each LGN neuron integrates the input from many of these receptors then the
correlation of two LGN neurons can be calculated from the form of their receptive
fields. For center-surround cells the correlation is a Mexican hat-shaped function
of their distance (Miller, 1994; Wimbauer et al., 1997a), e.g.,

CON,ON(x, x′) = CON,ON(‖x− x′‖)
= exp

(
−‖x − x′‖2

σ2

)
− 1

c2
exp

(
−‖x− x′‖2

c2 σ2

)
, (11.38)

where c is a form factor that describes the depth of the modulation. CON,ON is the
correlation between two ON-center type LGN neurons. For the sake of simplicity
we assume that OFF-center cells have the same correlation, COFF,OFF = CON,ON.
Correlations between ON-center and OFF-center cells, however, have the opposite
sign, CON,OFF = COFF,ON = −CON,ON.

In the present formulation of the model each LGN cell can contact every
neuron in the primary visual cortex. In reality, each LGN cell sends one axon
to the cortex. Though this axon may split into several branches its synaptic
contacts are restricted to small region of the cortex; cf. Fig. 11.7B. We take this
limitation into account by defining an arborization function A(x, x′) that gives
the a priori probability that a connection between a LGN cell at location x and
a cortical cell at x′ is formed (Miller et al., 1989). The arborization is a rapidly
decaying function of the distance, e.g.,

A(x, x′) = exp

(
−‖x − x′‖2

σ2
V1,LGN

)
. (11.39)

To describe the dynamics of the weight distribution we adopt a modified form
of Hebb’s learning rule that is completed by the arborization function,

d

dt
wV1,ON/OFF(x, x′) = γ A(x, x′) νV1(x) νON/OFF(x′) . (11.40)
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If we use Eq. (11.34) and assume that learning is slow enough so that we can
rely on the correlation functions to describe the evolution of the weights, we find

d

dt
wV1,ON(x1, x2) = γ A(x1, x2)

∑
x′,x′′

I(x1, x
′)

× [
wV1,ON(x′, x′′) − wV1,OFF(x′, x′′)

]
CON,ON(x′′, x2) (11.41)

and a similar equation for wV1,OFF.

Expression (11.41) is still a linear equation for the weights and nothing excit-
ing can be expected. A prerequisite for pattern formation is competition between
the synaptic weights. Therefore, the above learning rule is extended by a term
wV1,ON/OFF(x, x′) νV1(x)2 that leads to weight vector normalization and compe-
tition; cf. Oja’s rule, Eq. (10.11).

Simulation results

Many of the standard techniques for nonlinear systems that we have already
encountered in the context of neuronal pattern formation in Chapter 9 can also
be applied to the present model (MacKay and Miller, 1990; Wimbauer et al.,
1998). Here, however, we will just summarize some results from a computer
simulation consisting of an array of 8× 8 cortical neurons and two times 20× 20
LGN neurons. Figure 11.8 shows a typical outcome of such a simulation. Each
of the small rectangles shows the receptive field of the corresponding cortical
neuron. A bright color means that the neuron responds with an increased firing
rate to a bright spot at that particular position within its receptive field; dark
colors indicate inhibition.

There are two interesting aspects. First, the evolution of the synaptic weights
has lead to asymmetric receptive fields, which give rise to orientation selectivity.
Second, the structure of the receptive fields of neighboring cortical neurons are
similar; neuronal response properties thus vary continuously across the cortex.
The neurons are said to form a map for, e.g., orientation.

The first observation, the breaking of the symmetry of LGN receptive fields,
is characteristic for all pattern formation phenomena. It results from the insta-
bility of the homogeneous initial state and the competition between individual
synaptic weights. The second observation, the smooth variation of the receptive
fields across the cortex, is a consequence of the excitatory intra-cortical couplings.
During the development, neighboring cortical neurons tend to be either simulta-
neously active or quiescent and due to the activity dependent learning rule similar
receptive fields are formed.
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Fig. 11.8: Receptive fields (small squares) of 64 cortical neurons (large grid).
Each small square shows the distribution of weights wV1,ON(x, x + Δx) −
wV1,OFF(x, x + Δx), where x is the position of the cortical neuron and Δx the
position of the white or black spot within the small rectangle [adapted from
Wimbauer et al. (1998)].
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11.2 Learning in Spiking Models

In the previous section we have seen that the evolution of synaptic weights under
a rate-based learning rule depends on correlations in the input. What happens,
if the rate-based learning rule is replaced by a spike-time dependent one?

In Section 11.2.1 we will derive an equation that relates the expectation value
of the weight vector to statistical properties of pre- and postsynaptic spike trains.
We will see that spike-time dependent plasticity is sensitive to spatial and tem-
poral correlations in the input. In certain particularly simple cases spike-spike
correlations can be calculated explicitly. This is demonstrated in Section 11.2.2
in the context of a linear Poisson neuron. This neuron model is also used in Sec-
tion 11.2.3 for a comparison of spike-based and rate-based learning rules as well
as in Section 11.2.4 where we revisit the static-pattern scenario of Section 11.1.2.
Finally, in Section 11.2.5, we discuss the impact of stochastic spike arrival on the
synaptic weights and derive a Fokker-Planck equation that describes the temporal
evolution of the weight distribution.

11.2.1 Learning Equation

We will generalize the analysis of Hebbian learning that has been developed in
Section 11.1 to spike-based learning rules based on the phenomenological model
of Section 10.3.1. In this model the synaptic weight wij(t) is a piecewise contin-
uous function of time with steps whenever a presynaptic spike arrives or when a
postsynaptic action potential is triggered, i.e.,

d

dt
wij(t) = a0 + apre

1 Sj(t) + apost
1 Si(t)

+ Sj(t)

∫ ∞

0

W (s) Si(t− s) ds + Si(t)

∫ ∞

0

W (−s) Sj(t− s) ds , (11.42)

cf. Eqs. (10.14)–(10.15). As before we want to relate the synaptic weight change
to the statistical properties of the input. Given the increased level of complexity,
a few remarks about the underlying statistical ensemble are in order.

In the previous section we have considered presynaptic firing rates νj as ran-
dom variables drawn from an ensemble of input patterns ξμ

j . The output rate,
however, was a deterministic function of the neuronal input. In the context of
spike-time dependent plasticity, we consider the set of presynaptic spike arrival
times (t1j , t

2
j , . . . ) as a random variable. The underlying ‘randomness’ may have

several reasons. For example, different stimulation paradigms may be selected
one by one in very much the same way as we have selected a new input pattern
in the previous section. In contrast to the rate model, we do not want to restrict
ourselves to deterministic neuron models. Hence, the randomness can also be
produced by a stochastic neuron model that is used in order account for noise;
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cf. Chapter 5. In this case, the output spike train can be a random variable even
if the input spike trains are fixed. A simple example is the Poisson neuron model
that generates output spikes via an inhomogeneous Poisson process with an inten-
sity that is a function of the membrane potential. In any case, we consider the set
of spike trains (S1, . . . , Si, Sj, . . . , SN), i.e., pre- and postsynaptic trains, to be
drawn from a stochastic ensemble. The specific properties of the chosen neuron
model are thus implicitly described by the association of pre- and postsynaptic
trains within the ensemble. Note that this formalism includes deterministic mod-
els as a special case, if the ensemble contains only a single postsynaptic spike
train for any given set of presynaptic spike trains. In the following, all averages
denoted by 〈·〉E are to be taken relative to this ensemble.

For the time being we are interested only in the long-term behavior of the
synaptic weights and not in the fluctuations that are caused by individual spikes.
As in Section 11.1.2 we therefore calculate the expectation value of the weight
change over a certain interval of time,

〈wij(t + T )− wij(t)〉E =

〈∫ t+T

t

d

dt
wij(t

′)dt′
〉

E

. (11.43)

With the abbreviation

〈f(t)〉T ≡ T−1

∫ t+T

t

f(t′) dt′ (11.44)

we obtain from Eq. (11.42)

〈wij(t + T )− wij(t)〉E
T

= a0 + apre
1

〈〈
Sj(t)

〉
T

〉
E

+ apost
1

〈〈
Si(t)

〉
T

〉
E

+

∫ ∞

0

W (s)
〈〈

Si(t− s) Sj(t)
〉

T

〉
E

ds

+

∫ 0

−∞
W (s)

〈〈
Si(t) Sj(t + s)

〉
T

〉
E

ds . (11.45)

If the time interval T is long as compared to typical interspike intervals then the
time average is taken over many pre- or postsynaptic spikes. We can thus assume
that the average

〈〈
Si(t) Sj(t + s)

〉
T

〉
E

does not change if we replace t by t− s as
long as s 
 T . Furthermore, if W (s) decays to zero sufficiently fast as |s| → ∞
then the integration over s in the last term of Eq. (11.45) can be restricted to a
finite interval determined by the width of the learning window W . In this case it
is possible to replace

〈〈
Si(t) Sj(t+ s)

〉
T

〉
E

by
〈〈

Si(t− s) Sj(t)
〉

T

〉
E

and to collect
the last two terms of Eq. (11.45) into a single integral, provided that the width
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of learning window is small as compared to T . With this approximation we find

〈wij(t + T )− wij(t)〉E
T

= a0 + apre
1

〈〈
Sj(t)

〉
T

〉
E

+ apost
1

〈〈
Si(t)

〉
T

〉
E

+

∫ ∞

−∞
W (s)

〈〈
Si(t− s) Sj(t)

〉
T

〉
E

ds . (11.46)

The instantaneous firing rate νi(t) of neuron i is the ensemble average of its
spike train,

νi(t) ≡
〈
Si(t)

〉
E

. (11.47)

Similarly, we define the joint firing rate νij of neuron i and j as

νij(t, t
′) ≡ 〈

Si(t) Sj(t
′)
〉

E
, (11.48)

which is the joint probability density to find both a spike at time t and at time
t′ in neuron i and j, respectively. Note that νij(t, t

′) is a probability density both
in t and t′ and thus has units of one over time squared.

Since averaging is a linear operations we can exchange ensemble average and
time average. We obtain the following expression for the expected weight change
in the interval from t to t + T as a function of the statistical properties of the
spike trains,

〈wij(t + T )− wij(t)〉E
T

= a0 + apre
1

〈
νj(t)

〉
T

+ apost
1

〈
νi(t)

〉
T

+

∫ ∞

−∞
W (s)

〈
νij(t− s, t)

〉
T

ds . (11.49)

The time average 〈νij(t − s, t)〉T is the correlation function of pre- and post-
synaptic spike train on the interval [t, t + T ]. This function clearly depends on
the actual value of the weight vector. In deriving Eq. (11.49) we already had to
assume that the correlations are a slowly varying function of time. For the sake of
consistency we thus have the requirement that the weight vector itself is a slowly
varying function of time. If this is the case then we can exploit the self-averaging
property of the weight vector and argue that fluctuations around the expectation
value are negligible and that Eq. (11.49) is a good approximation for the actual
value of the weight vector. We thus drop the ensemble average on the left-hand
side of Eq. (11.49) and find for the time-averaged change of the synaptic weight
the following learning equation,

d

dt

〈
wij(t)

〉
T

= a0 + apre
1

〈
νj(t)

〉
T

+ apost
1

〈
νi(t)

〉
T

+

∫ ∞

−∞
W (s)

〈
νij(t− s, t)

〉
T

ds ; (11.50)
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cf. (Kempter et al., 1999; Kistler and van Hemmen, 2000a). As expected, the
long-term dynamics of the synaptic weights depends on the correlation of pre-
and postsynaptic spike train on the time scale of the learning window. In the
following we will always use the smooth time-averaged weight vector 〈wij(t)〉T ,
but for the sake of brevity we shall drop the angular brackets.

11.2.2 Spike-Spike Correlations

It is tempting to rewrite the correlation term 〈νij(t− s, t)〉T that appears on the
right-hand side of Eq. (11.50) in terms of the instantaneous firing rates 〈νi(t −
s) νj(t)〉T . This, however, is only allowed, if the spike trains of neuron i and j were
independent, i.e., if 〈Si(t− s) Sj(t)〉E = 〈Si(t− s)〉E 〈Sj(t)〉E. Such an approach
would therefore neglect the specific spike-spike correlations that are induced by
presynaptic action potentials.

Correlations between pre- and postsynaptic spike trains do not only depend
on the input statistics but also on the dynamics of the neuron model and the
way new output spikes are generated. The influence of a single presynaptic spike
on the postsynaptic activity can be measured by a peri-stimulus time histogram
(PSTH) triggered on the time of presynaptic spike arrival; cf. Section 7.4.1. The
form of the PSTH characterizes the spike-spike correlations between presynaptic
spike arrival and postsynaptic action potential. For high noise, the spike-spike
correlations contain a term that is proportional to the time-course of the postsy-
naptic potential ε, while for low noise this term is proportional to its derivative
ε′; cf. Figs. 7.12.

In the following, we will calculate the spike-spike correlations in a particularly
simple case, the linear Poisson neuron model. As we will see, the spike-spike
correlations contain in this case a term proportional to the postsynaptic potential
ε. The linear Poisson neuron model can therefore be considered as a reasonable
approximation to spiking neuron models in the high-noise limit.

Example: Linear Poisson neuron model

As a generalization of the analog neuron with linear gain function discussed in
Section 11.1.2 we consider here a linear Poisson neuron. The input to the neuron
consists of N Poisson spike trains with time-dependent intensities νj(t). Similar
to the SRM0 neuron the membrane potential ui of neuron i is a superposition of
postsynaptic potentials ε with

∫∞
0

ε(s) ds = 1,

ui(t) =
∑

j

wij

∫ ∞

0

ε(s) Sj(t− s) ds . (11.51)

In contrast to Section 4.2.3 we neglect refractoriness and external input.
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Postsynaptic spikes are generated by an inhomogeneous Poisson process with
an intensity νpost

i that is a (semi-)linear function of the membrane potential,

νpost
i (t|u) = [ui(t)]+ . (11.52)

Here, [·]+ denotes the positive part of the argument in order to avoid negative
rates. In the following, however, we will always assume that ui(t) ≥ 0. The
notation νpost

i (t|u) indicates that the output rate depends on the actual value of
the membrane potential.

We thus have a doubly stochastic process (Cox, 1955; Bartlett, 1963) in the
sense that in a first step, a set of input spike trains is drawn from an ensemble
characterized by Poisson rates νpre

j . This realization of input spike trains then
determines the membrane potential which produces in a second step a specific
realization of the output spike train according to νpost

i (t|u). It can be shown that,
because of the finite duration of the postsynaptic potential ε, the output spike
trains generated by this composite process are no longer Poisson spike trains;
their expectation value 〈Si(t)〉E ≡ νpost

i (t), however, is simply equivalent to the
expectation value of the output rate, νpost

i (t) = 〈νpost
i (t|u)〉E (Kistler and van

Hemmen, 2000a). Due to the linearity of the neuron model the output rate is
given by a convolution of the input rates with the response kernel ε,

νpost
i (t) =

∑
j

wij

∫ ∞

0

ε(s) νpre
j (t− s) ds . (11.53)

The joint firing rate νpost,pre
ij (t, t′) = 〈Si(t) Sj(t

′)〉E of pre- and postsynaptic
neuron is the joint probability density to find an input spike at synapse j at time
t′ and an output spike of neuron i at time t. According to Bayes’ Theorem this
probability equals the probability of observing an input spike at time t′ times
the conditional probability of observing an output spike at time t given the input
spike at time t′, i.e.,

νpost,pre
ij (t, t′) = 〈Si(t)|input spike at t′〉E 〈Sj(t

′)〉E . (11.54)

In the framework of a linear Poisson neuron, the term 〈Si(t)|input spike at t′〉E
equals the sum of the expected output rate (11.53) and the specific contribution
wij ε(t− t′) of a single (additional) input spike at time t′. Altogether we obtain

νpost,pre
ij (t, t′) = νpost

i (t) νpre
j (t′) + wij ε(t− t′) νpre

j (t′) . (11.55)

The first term on the right-hand side is the ‘chance level’ to find two spikes at
t and t′, respectively, if the neurons were firing independently at rates νpost

i (t)
and νpre

j (t′). The second term describes the correlation that is due to synaptic
coupling. If the presynaptic neuron has fired a spike at t′ then the chance for the
postsynaptic neuron to fire an spike at time t > t′ is increased by wij ε(t−t′). Note
that this expression respects causality: The probability to find first a postsynaptic
spike and then a presynaptic spike is just chance level because ε(t − t′) = 0 for
t < t′.
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Example: Learning equation for a linear Poisson neuron

If we use the result from Eq. (11.55) in the learning equation (11.50) we obtain

d

dt
wij(t) = a0 + apre

1 〈νpre
j (t)〉T + apost

1 〈νpost
i (t)〉T

+

∫ ∞

−∞
W (s) 〈νpost

i (t− s) νpre
j (t)〉T ds + wij(t) 〈νpre

j (t)〉T W− , (11.56)

with W− =
∫∞

0
W (−s) ε(s)ds.

In linear Poisson neurons, the correlation between pre- and postsynaptic ac-
tivity that drives synaptic weight changes consists of two contributions. The
integral over the learning window in Eq. (11.56) describes correlations in the in-
stantaneous firing rate. The last term on the right-hand side of Eq. (11.56) finally
accounts for spike-spike correlations of pre- and postsynaptic neuron.

If we express the instantaneous firing rates νi(t) in terms of their fluctuations
Δνi(t) around the mean 〈νi(t)〉T ,

νi(t) = Δνi(t) + 〈νi(t)〉T , (11.57)

then we can rewrite Eq. (11.56) together with Eq. (11.53) as

d

dt
wij(t) = a0 + apre

1 〈νpre
j (t)〉T + apost

1 〈νpost
i (t)〉T

+ W̄ 〈νpre
j (t)〉T 〈νpost

i (t)〉T +
∑

k

wik Qkj(t) + wij(t) 〈νpre
j (t)〉T W− (11.58)

with

Qkj(t) =

∫ ∞

−∞
W (s)

∫ ∞

0

ε(s′) 〈Δνpre
k (t− s− s′) Δνpre

j (t)〉T ds′ ds . (11.59)

Here we have implicitly assumed that the temporal averaging interval T is much
longer than the length of the learning window, the duration of a postsynaptic
potential, or a typical interspike interval, so that 〈νpost

i (t− s)〉T ≈ 〈νpost
i (t)〉T and

〈νpre
j (t− s′)〉T ≈ 〈νpre

j (t)〉T .
The term containing Qkj(t) on the right-hand side of Eq. (11.58) shows how

spatio-temporal correlations 〈Δνpost
k (t′) Δνpre

j (t)〉T in the input influence the evo-
lution of synaptic weights. What matters are correlations on the time scale of
the learning window and the postsynaptic potential.

11.2.3 Relation of spike-based to rate-based learning

In Section 11.1.2 we have investigated the weight dynamics in the context of an
analog neuron where the postsynaptic firing rate is an instantaneous function of
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the input rates. We have seen that learning is driven by (spatial) correlations
within the set of input patterns. The learning equation (11.56) goes one step
further in the sense that it explicitly includes time. Consequently, learning is
driven by spatio-temporal correlations in the input.

In order to compare the rate-based learning paradigm of Section 11.1.2 with
the spike-based formulation of Eq. (11.56) we thus have to disregard temporal
correlations for the time being. We thus consider a linear Poisson neuron with
stationary input rates, 〈νj(t)〉T = νj(t) = νj , and assume that the synaptic
weight is changing slowly as compared to the width of the learning window and
the postsynaptic potential. The weight dynamics is given by Eq. (11.56),

d

dt
wij(t) = a0 + apre

1 νj + apost
1 νi + W̄ νi νj + W− wij(t) νj , (11.60)

with W̄ =
∫∞
−∞W (s) ds and W− =

∫∞
0

W (−s) ε(s)ds. If we identify

c0(wij) = a0 , cpre
1 (wij) = apre

1 + wij(t) W− , cpost
1 (wij) = apost

1 , (11.61)

and
ccorr
2 (wij) = W̄ , (11.62)

we recover the general expression for synaptic plasticity based on the rate descrip-
tion given in Eq. (10.2). The total area under the learning window thus plays
the role of the correlation parameter ccorr

2 that is responsible for Hebbian or anti-
Hebbian plasticity in a rate formulation. The spike-spike correlations simply give
rise to an additional weight-dependent term wij(t) W− in the parameter cpre

1 (wij)
that describes presynaptically triggered weight changes.

We may wonder what happens if we relax the requirement of strictly stationary
rates. In the linear Poisson model, the output rate depends via Eq. (11.53) on
the input rates and changes in the input rate translate into changes in the output
rate. If the rate of change is small, we can expand the output rate

νpost
i (t− s) ≈ νpost

i (t)− s
d

dt
νpost

i (t) +O(s2) (11.63)

on the right-hand side of Eq. (11.56),

d

dt
wij(t) = a0 + apre

1 νpre
j (t) + apost

1 νpost
i (t) + W̄ νpost

i (t) νpre
j (t)

+W−wij(t) νpre
j (t) − νpre

j (t)
d

dt
νpost

i (t)

∞∫
−∞

s W (s) ds . (11.64)

Here, we have dropped the temporal averages because rates are assumed to change
slowly relative to T .
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As compared to Eq. (11.60) we encounter an additional term that is pro-
portional to the first moment

∫
s W (s) ds of the learning window. This term

has been termed differential -Hebbian (Roberts, 1999; Xie and Seung, 2000) and
plays a certain role in the context of conditioning and reinforcement learning
(Montague et al., 1995; Rao and Sejnowski, 2001).

Stabilization of Postsynaptic Rates

Another interesting property of a learning rule of the form (10.2) or (11.60) is
that it can lead to a normalization of the postsynaptic firing rate and hence to
a normalization of the sum of the synaptic weights. This can be achieved even
without including higher order terms in the learning equation or postulating a
dependence of the parameters a0, a

pre/post
1 , etc., on the actual value of the synaptic

efficacy.

Consider a linear Poisson neuron that receives input from N presynaptic neu-
rons with spike activity described by independent Poisson processes with rate
νpre. The postsynaptic neuron is thus firing at a rate νpost

i (t) = νpre
∑N

j=1 wij(t).
From Eq. (11.56) we obtain the corresponding dynamics for the synaptic weights,
i.e.,

d

dt
wij(t) = a0 + apre

1 νpre + apost
1 νpre

N∑
k=1

wik(t)

+ (νpre)2 W̄

N∑
k=1

wik(t) + wij(t) νpre W− , (11.65)

with W̄ =
∫∞
−∞W (s) ds and W− =

∫∞
0

ε(s) W (−s) ds. In this particularly simple
case the weight dynamics is characterized by a fixed point for the sum of the
synaptic weights,

∑
j wij, and, hence, for the postsynaptic firing rate, νpost

i = νFP,

νFP = − a0 + apre
1 νpre

apost
1 + νpre W̄ + N−1 W−

. (11.66)

This fixed point is attractive if the denominator is negative. Since νpost
i is a

firing rate we have the additional requirement that νFP ≥ 0. Altogether we thus
have two conditions for the parameters of the learning rule, i.e., apost

1 + νpre W̄ +
N−1 W− < 0 and a0 + apre

1 νpre ≥ 0. Note that we would obtain a – apart from
the term (N−1 W−) – completely analogous result from the rate formulation in
Eq. (10.2) if we identify ccorr

2 = W̄ ; cf. Eq. (11.62). Note further, that the linearity
is not essential for the stabilization of the postsynaptic rate. Any model where
the output rate is a monotonous function of the sum of the synaptic weights yields
qualitatively the same result.
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11.2.4 Static-Pattern Scenario

In order to illustrate the above results with a concrete example we revisit the
static-pattern scenario that we have already studied in the context of analog neu-
rons in Section 11.1.2. We consider a set of static patterns {ξμ; 1 < μ < p}
that are presented to the network in a random sequence (μ1, μ2, . . . ) during time
steps of length Δt. Presynaptic spike trains are described by an inhomogeneous
Poisson process with a firing intensity that is determined by the pattern that is
currently presented. Hence, the instantaneous presynaptic firing rates are piece-
wise constant functions of time,

νpre
j (t) =

∑
k

ξμk
j Θ[t− (k − 1) Δt] Θ[k Δt− t] . (11.67)

Due to the randomness by which the patterns are presented the input does not
contain any no non-trivial temporal correlations. We thus expect to obtain the
very same result as in Section 11.1.2, i.e., that the evolution of synaptic weights
is determined by the correlation matrix of the input pattern set.

For linear Poisson neurons the joint firing rate of pre- and postsynaptic neuron
is given by Eq. (11.55),

νij(t− s, t) = νpost
i (t− s) νpre

j (t) + wij(t) ε(−s) νpre
j (t) . (11.68)

The postsynaptic firing rate is

νpost
i (t) =

∑
j

∫ ∞

0

wij(t− s) ε(s) νpre
j (t− s) ds

≈
∑

j

wij(t)

∫ ∞

0

ε(s) νpre
j (t− s) ds , (11.69)

where we have assumed implicitly that the synaptic weights are approximately
constant on the time scale defined by the duration of the postsynaptic potential
ε so that we can pull wij in front of the integral.

As usual, we are interested in the long-term behavior of the synaptic weights
given by Eq. (11.56). We thus need the time-average of νi(t − s) νj(t) over the
interval T ,

〈νpost
i (t− s) νpre

j (t)〉T =
∑

k

wik(t)

∫ ∞

0

ε(s′)
〈
νpre

k (t− s− s′) νpre
j (t)

〉
T

ds′ .

(11.70)

Due to the linearity of the neuron model, the correlation of input and output is a
linear combination of the correlations 〈νpre

k (t−s) νpre
j (t)〉T in the input firing rates,
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which are independent from the specific neuron model. We assume that all pat-
terns are presented once during the time interval T that defines the time scale on
which we are investigating the weight dynamics. For s = 0 the time average cor-
responds to an ensemble average over the input patterns and the input correlation
functions equals the correlation of the input pattern, 〈νpre

k (t) νpre
j (t)〉T = 〈ξμ

k ξμ
j 〉μ.

Here, 〈·〉μ denotes an ensemble average over the set of input patterns. Since we
have assumed that input patterns are presented randomly for time steps of length
Δt the correlation 〈νpre

k (t − s) νpre
j (t)〉T will be computed from two independent

input patterns if |s| > Δt, i.e., 〈νpre
k (t−s) νpre

j (t)〉T = 〈ξμ
k 〉μ 〈ξμ

j 〉μ. For 0 < s < Δt
the input correlation is a linear function of s. Altogether we obtain〈

νpre
k (t− s) νpre

j (t)
〉

T
= 〈ξμ

k 〉μ 〈ξμ
j 〉μ +

(〈ξμ
k ξμ

j 〉μ − 〈ξμ
k 〉μ 〈ξμ

j 〉μ
)

Λ(s/Δt) . (11.71)

Here, Λ is the triangular function

Λ(s) = (1− |s|) Θ(1− |s|) ; (11.72)

cf. Fig. 11.9A. If we use this result in the learning equation (11.56) we find

d

dt
w̄ij(t) =

∑
k

wik(t) 〈ξμ
k 〉μ 〈ξμ

j 〉μ W̄ +
∑

k

wik(t) Qkj + wij(t) 〈ξμ
j 〉μ W− , (11.73)

with W̄ =
∫∞
−∞W (s) ds, W− =

∫∞
0

ε(s) W (−s) ds, and

Qkj =
(〈ξμ

k ξμ
j 〉μ − 〈ξμ

k 〉μ 〈ξμ
j 〉μ

) ∫ ∞

−∞
W (s)

∫ ∞

0

ε(s′) Λ

(
s + s′

Δt

)
ds′ ds . (11.74)

Here we have used
∫∞

0
ε(s)ds = 1 and dropped all non-Hebbian terms (a0 =

apre
1 = apost

1 = 0).
In order to understand this result let us first consider the case where both

the width of the learning window and the postsynaptic potential is small as
compared to the duration Δt of one pattern presentation. The integral over s′ in
the definition of the matrix Qkj is the convolution of ε with a triangular function
centered around s = 0 that has a maximum value of unity. Since ε is normalized,
the convolution yields a smoothed version of the originally triangular function
that is approximately equal to unity in a neighborhood of s = 0; cf. Fig. 11.9B.
If the learning window is different from zero only in this neighborhood, then the
integral over s in Eq. (11.74) is just W̄ , the area under the learning window. We
can thus collect the first two terms on the right-hand side of Eq. (11.73) and
obtain

d

dt
wij(t) =

∑
k

wik(t) 〈ξμ
k ξμ

j 〉μW̄ + wij(t) 〈ξμ
j 〉μ W− . (11.75)
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Fig. 11.9: Static-pattern scenario. A. Temporal correlations in the firing rate of
presynaptic neurons have a triangular shape Λ(s/Δt) (solid line). The correlation
between pre- and postsynaptic neurons involves a convolution with the response
kernel ε(s) (dashed line). B. The definition of the matrix Qkj in Eq. (11.74) con-
tains the overlap of the learning window W (s) (dashed line) and the convolution∫

ε(s′) Λ[(s − s′)/Δt] ds′ (solid line). If the duration of one presentation is long
as compared to the width of the learning window and the response kernel ε the
the overlap equals approximately the area below the learning window W̄ . If the
presentation is short, as shown here, then the overlap may be different from zero,
even if W̄ = 0.

Apart from the non-Hebbian term wij(t) 〈ξμ
j 〉μ W− the weight dynamics is deter-

mined by the correlation matrix 〈ξμ
k ξμ

j 〉μ of the (unnormalized) input patterns.
This is exactly what we would have expected from the comparison of rate-based
and spike based learning; cf. Eq. (11.60).

More interesting is the case where the time scale of the learning window is of
the same order of magnitude as the presentation of an input pattern. In this case,
the integral over s in Eq. (11.74) is different from W̄ and we can choose a time
window with W̄ = 0 so that the first term on the right-hand side of Eq. (11.73)
vanishes. In this case, the weight dynamics is no longer determined by 〈ξμ

k ξμ
j 〉μ

but by the matrix Qjk,

d

dt
wij(t) =

∑
k

wik(t) Qkj + wij(t) 〈ξμ
j 〉μ W− , (11.76)

which is proportional to the properly normalized covariance matrix of the input
patterns,

Qkj ∝ 〈ξμ
k ξμ

j 〉μ − 〈ξμ
k 〉μ 〈ξμ

j 〉μ = 〈(ξμ
k − 〈ξμ

k 〉μ) (ξμ
j − 〈ξμ

j 〉μ)〉μ . (11.77)

If we assume that all presynaptic neurons have the same mean activity, 〈ξμ
k 〉μ =

〈ξμ
j 〉μ ≡ 〈ξμ〉μ then we can rewrite Eq. (11.76) as

d

dt
wij(t) =

∑
k

wik(t) [Qkj + δkj 〈ξμ〉μ W−] . (11.78)
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Fig. 11.10: Transitions of weight values due to synaptic plasticity. The proba-
bility density P (w, t) increases if small weights increase, w′ −→ w′ + A+(w), or
if large weights decrease, w′′ −→ w′′ −A−(w).

The eigenvectors and the eigenvalues of the matrix in square brackets are (apart
from a common additive constant 〈ξμ〉μ W− for the eigenvalues) the same as those
of the matrix Q. We have already seen that this matrix is proportional to the
properly normalized covariance matrix of the input patterns. If the proportion-
ality constant is positive, i.e., if the integral over s in Eq. (11.74) is positive, then
the dynamics of the weight vector is determined by the principal component of
the set of input patterns.

11.2.5 Distribution of Synaptic Weights

If spike arrival times are described as a stochastic process, the weight vector
itself is also a random variable that evolves along a fluctuating trajectory. In
Section 11.2.1, we have analyzed the expectation value of the synaptic weights
smoothed over a certain interval of time. In the limit where the synaptic weights
evolve much slower than typical pre- or postsynaptic interspike intervals, an ap-
proximation of the weight vector by its expectation values is justified. However, if
the synaptic efficacy can be changed substantially by only a few pre- or postsynap-
tic spikes then the fluctuations of the weights have to be taken into account. Here,
we are investigate the resulting distribution of synaptic weights in the framework
of a Fokker-Planck equation (van Rossum et al., 2000; Rubin et al., 2001).

We consider a single neuron i that receives input from several hundreds of
presynaptic neurons. All presynaptic neurons fire independently at a common
constant rate νpre. We are interested in the probability density P (w, t) for the
synaptic weight of a given synapse. We assume that all weights are restricted
to the interval [0, wmax] so that the normalization

∫ wmax

0
P (w, t) dw = 1 holds.

Weight changes due to potentiation or depression of synapses induce changes in
the density function P (w, t). The Fokker-Planck equation that we will derive
below describes the evolution of the distribution P (w, t) as a function of time; cf.
Fig. 11.10.

For the sake of simplicity, we adopt a learning window with two rectangular
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Fig. 11.11: A. Rectangular learning window W (t
(f)
j − t

(f)
i ). LTP occurs if the

presynaptic spike arrives before the postsynaptic one whereas LTD occurs if the
order of timing is reversed. B. Whether LTP or LTD is dominant depends on
the overlap between the learning window W (s) (dashed line) and the correlations
(solid line) between pre- and postsynaptic spike firing. The correlations consist of
a constant bias term and a time-dependent term with a peak at negative values
of s; cf. Eq. (11.71).

phases, i.e.,

W (s) =

⎧⎪⎨
⎪⎩

A+(wij) for − d < s < 0

A−(wij) for 0 < s < d

0 else

(11.79)

cf. Fig. 11.11A. Synapses are potentiated if the presynaptic spike shortly precedes
the postsynaptic one. If the order of spike firing is reversed, the synapse is
depressed.

There are basically two possibilities to restrict the synaptic weights to the
interval [0, wmax]; we can either impose hard or soft bounds to the weight dynam-
ics; cf. Section 10.2.1. Hard bounds means that the weights are simply no longer
increased (decreased) if the upper (lower) bound is reached. Soft bounds, on the
other hand, gradually slow down the evolution if the weight approaches one of
its bounds. A simple way to implement soft bounds in our formalism is to define
(Kistler and van Hemmen, 2000a)

A+(wij) = (wmax − wij) a+ , (11.80)

A−(wij) = −wij a− , (11.81)

with constants a+ and a−. The choice of how the bounds are implemented turns
out to have an important influence on the weight distribution P (w, t) (van Rossum
et al., 2000; Rubin et al., 2001).

In order to derive the evolution of the distribution P (w, t) we consider tran-
sitions in the ‘weight space’ induced by pre- and postsynaptic spike firing. The
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evolution is described by a master equation of the form

∂

∂t
P (w, t) = −p+(w) P (w, t)− p−(w) P (w, t) (11.82)

+

∫ wmax

0

δ[w − w′ − A+(w′)] p+(w′, t) P (w′, t) dw′

+

∫ wmax

0

δ[w − w′ + A−(w′)] p−(w′, t) P (w′, t) dw′ ;

cf. Fig. 11.10. Here p+ (or p−) is the probability that a presynaptic spike falls in
the positive (or negative) phase of the learning window. Using the definition of
the joint firing rate of pre- and postsynaptic neuron

νpost,pre(t, t′) = 〈Spost(t) Spre(t′)〉E (11.83)

we have

p+(w, t) =

∫ 0

−d

νpost,pre(t, t− s) ds (11.84)

p−(w, t) =

∫ d

0

νpost,pre(t, t− s) ds ; (11.85)

cf. Fig. 11.11B.

Equation (11.82) can be rewritten in the form of a Fokker-Planck equation if
we expand the right-hand side to second order in the transition amplitudes A+

and A− (van Kampen, 1992),

∂

∂t
P (w, t) = − ∂

∂w
[A(w) P (w, t)] +

∂2

∂w2
[B(w) P (w, t)] (11.86)

with

A(w, t) = p+(w, t) A+(w)− p−(w, t) A−(w) , (11.87)

B(w, t) = p+(w, t) A2
+(w)− p−(w, t) A2

−(w) . (11.88)

The Fokker-Planck equation (11.86) can be solved numerically to find station-
ary solutions. It turns out that the qualitative form of the distribution depends
critically on how the bounds for the weights are implemented; cf. van Rossum
et al. (2000); Rubin et al. (2001) for details. With soft bounds the distribution is
unimodal whereas with hard bounds it peaks at both borders of the interval; cf.
Fig. 11.12. Experimental data suggests a unimodal distribution, consistent with
soft bounds (van Rossum et al., 2000).
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Fig. 11.12: Stationary distribution of synaptic weights. A. With soft bounds,
the distribution of weights P0(w) has a single peak. B. With hard bounds, the
distribution peaks at the two boundaries w = 0 and w = wmax; (schematic figure)

11.3 Summary

The synaptic weight dynamics can be studied analytically if weights are changing
slowly as compared to the time scale of the neuronal activity. We have seen that
weight changes are driven by correlations between pre- and postsynaptic activ-
ity. More specifically, simple Hebbian learning rules can find the first principal
component of a normalized input data set. If non-Hebbian terms are included
then both spike-based and rate-based learning rules can be constructed that are
characterized by a stable fixed point for the sum of the synaptic weights. This
fixed point leads to an intrinsic normalization of the output firing rate.

The interesting aspect of spike-time dependent plasticity is that it naturally
accounts for temporal correlations in the input by means of a learning window.
Explicit expressions for temporal spike-spike correlations can be obtained for cer-
tain simple types of neuron model such as the linear Poisson model. In this case,
correlations between pre- and postsynaptic neurons can be formulated in terms of
the correlations in the input. It can be shown that, under certain circumstances,
the weight vector evolves in the direction of the principal component of the input
pattern set, even if the input is not normalized.

Spike-based and rate-based rules of plasticity are equivalent as long as tempo-
ral correlations are disregarded. The integral over the learning window

∫∞
−∞W (s) ds

plays the role of the Hebbian correlation term ccorr
2 . If rates vary rapidly, i.e. on

the time scale of the learning window, then spike-time dependent plasticity is
distinct from a rate-based formulation.

In addition to an analysis of the expectation value of the synaptic weight
vector the distribution of weights can be described by means of a Fokker-Planck
equation. The stationary distribution depends on the details of the learning rule.
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Chapter 12

Plasticity and Coding

In Chapters 10 and 11 we have explored the principle of Hebbian synaptic plas-
ticity. In this final chapter we would like to close the chain of arguments that
we have followed across the book and establish a link between synaptic plasticity
and the problems of neuronal coding and signal transmission. We will start the
chapter with the question of rapid and reliable signal transmission, a question
that we have encountered on several occasions in this book. In Section 12.1 we
will see that an asymmetric spike-time dependent learning rule is capable of de-
tecting early events that may serve as predictors for others. Such a mechanism
can speed up signal processing and, hence, the reaction time. In Section 12.2
we show that spike-time dependent plasticity can enhance signal transmission
by selectively stregthening synaptic connections that transmit precisely timed
spikes at the expense of those synapses that transmit poorly timed spikes. In
Section 12.3 we turn to sequence learning and explore whether spike-time depen-
dent plasticity can support coding schemes that are based on spatio-temporal
spike patterns with a millisecond resolution. The last two sections study coding
properties of specific neuronal systems. In Section 12.4 we will illustrate the role
of an inverted (or anti-)Hebb rule for the subtraction of expectations - which has
been hypothesized as an important component of signal processing in electric fish.
Finally, in Section 12.5 we will see that a spike-time dependent Hebbian rule can
play an important role in the developmental tuning of signal transmission in the
auditory system of barn owls.

12.1 Learning to be Fast

In many real-world situations we must react rapidly to the earliest signs that
could warn us about harmful stimuli. If an obstacle blocks our way, we want to
avoid it before a painful contact occurs. If we ride a bicycle, we should make
correcting steering movements already at small inclination angles of the bicycle,
well before we fall down. Spike-time dependent learning rules with a temporally

429
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Fig. 12.1: A. A postsynaptic neuron receives inputs from twenty presynaptic cells
at intervals of 3ms. All synapses have the same weight. The neuron emits two
output spikes at about 31 and 58ms after stimulus onset. B. After 5 repetitions
of the same stimulus the neuron fires after 10ms (dashed line); after a total of 100
repetitions the neuron fires already after about 5ms (solid line). C. The reason
is that synapses that have been active slightly before the postsynaptic spikes
are strengthened while others are depressed. To illustrate this point, the learning
window W (t

(f)
j −t

(f)
i ) is shown twice, each time centered at the postsynaptic firing

time t
(f)
i of the first trial (shown in part A). D. The sequence of presynaptic spikes

could be generated by a stimulus that moves from top to bottom.

asymmetric learning window provide a hint of how a simple predictive coding
could be implemented on the neuronal level.

Let us consider a single neuron that receives inputs from, say, twenty presy-
naptic cells which are stimulated one after the other; cf. Fig. 12.1. Initially, all
synapses wij have the same weight w0. The postsynaptic neuron fires two spikes;
cf. Fig. 12.1A. All synapses that have been activated before the postsynaptic
spike are strengthened while synapses that have been activated immediately af-
terwards are depressed; cf. Fig. 12.1C. In subsequent trials the threshold is
therefore reached earlier; cf. Fig. 12.1B. After many trials, those presynaptic
neurons that fire first have developed strong connections while other connections
are depressed. Thus a temporally asymmetric learning rule favors connections
that can serve as ‘earliest predictors’ of other spike events (Mehta et al., 2000;
Song et al., 2000).

This theoretical observation predicts a shift in so-called place fields of hip-
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Fig. 12.2: A The place fields of neurons in regions CA3 of hippocampus are
indicated as cones along the track that extends from S to T . The place field
of the neuron in CA1 shown with solid lines has its center at c and extends
from l to r. B. After the rat has made several movements from left to right,
some connections are increased (thick lines) others decreased (dotted lines). As
a result, the place field center c has moved to the left.

pocampal neurons that seems to be in agreement with experiment observations
(Mehta et al., 2000). More generally, early predictors play a central role in the
theory of conditioning and reinforcement learning (Rescorla and Wagner, 1972;
Sutton and Barto, 1981; Schultz et al., 1997; Montague et al., 1995).

Example: Hippocampal place fields

Place cells are neurons in rodent hippocampus that are sensitive to the spatial
location of the animal in an environment. The sensitive area is called the place
field of the cell. If, for example, a rat runs on a linear track from a starting point
S to a target point T , this movement would first activate cells with a place fields
close to S, then those with a place field in the middle of the track, and finally
those with a place field close to T ; cf. Fig. 12.2. In a simple feedforward model of
the hippocampus (Mehta et al., 2000), a first set of place cells is identified with
neurons in region CA3 of rat hippocampus. A cell further down the processing
stream (i.e., a cell in hippocampal region CA1) receives input from several cells
in CA1. If we assume that initially all connections have the same weight, the
place field of a CA1 cell is therefore broader than that of a CA3 cell.

During the experiment, the rat moves repeatedly from left to right. During
each movement, the same sequence of CA3 cells is activated. This has conse-
quences for the connections from CA3 cells to CA1 cells. Hebbian plasticity with
an asymmetric learning window strengthens those connections where the presy-
naptic neuron fires early in the sequence. Connections from neurons that fire later
in the sequence are weakened. As a result the center of the place field of a cell
in CA3 is shifted to the left; cf. Fig. 12.2B. The shift of place fields predicted by
asymmetric Hebbian learning has been confirmed experimentally (Mehta et al.,
2000).
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Fig. 12.3: A. Conditioning paradigm. A response neuron r can receive input
from two neuronal populations, representing the stimuli s1 and s2. B. Mem-
brane potential of the postsynaptic neuron. Before learning, stimulation of the
presynaptic population s1 which occurs at about t = 10 ms leads to subthreshold
excitation of the postsynaptic neuron whereas stimulation of group s2 40 mil-
liseconds later evokes postsynaptic firing. C. After learning postsynaptic firing
is already triggered by the stimulus s1.

Example: Conditioning

The shift of responses towards early predictors plays a central role in condition-
ing. The basic idea is best explained by the paradigm of Pavlovian conditioning
(Pavlov, 1927). Tasting or smelling food (stimulus s2) evokes an immediate re-
sponse r. During the conditioning experiment, a bell (stimulus s1) rings always
at a fixed time interval ΔT before the food stimulus. After several repetitions
of the experiment, it is found that the response now occurs already after the
first stimulus (s1). Thus the reaction has moved from stimulus s2 to stimulus s1
which reliably predicts s2.

Spike-time dependent plasticity with an asymmetric learning window allows
to replicate this result, if the time difference ΔT between the two stimuli is less
than the width of the learning window. The mechanism is identical to that of the
previous example with the only difference that the input spikes are now clustered
into two groups corresponding to the stimuli s1 and s2; cf. Fig. 12.3.

In behavioral experiments with monkeys, conditioning is possible with time
intervals that span several seconds (Schultz et al., 1997) whereas typical learning
windows extend over 50-100 milliseconds (Markram et al., 1997; Zhang et al.,
1998; Magee and Johnston, 1997; Debanne et al., 1998; Bi and Poo, 1998, 1999).
In order to explain conditioning with time windows longer than 100 milliseconds,
additional assumptions regarding neuronal architecture and dynamics have to be
made; see, e.g., Fiala et al. (1996); Brown et al. (1999); Suri and Schutz (2001).
A potential solution could be provided by delayed reverberating loops; cf. Chap-
ter 8.3. As an aside we note that, traditionally, conditioning experiments have
been discussed on the level of rate coding. For slowly changing firing rates, spike-
time dependent rules learning rules with an asymmetric learning window yield a
differential Hebbian term [cf. Eq. (11.64)] that is proportional to the derivative
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Hüning, Glünder, and Palm, G. (1998). Synaptic delay learning in pulse-coupled
neurons. Neural Comput., 10:555–565. 450, 457

Ito, M. (1984). The Cerebellum and Neural Control. Raven Press, New York. 72

Izhikevich, E. (1999). Class 1 neural excitability, conventional synapses, weakly
connected networks, and mathematical foundations of pulse-coupled models.
IEEE Trans. Neural Netw., 10:499–507. 301

Izhikevich, E. (2000). Neural excitability, spiking, and bursting. Int. J. Bifurcat.
Chaos, 10:1171–1266. 20

Izhikevich, E. (2001). Resonate-and-fire neurons. Neural Networks, 14:883–894.
127

Jackson, J. D. (1962). Classical Electrodynamics. Wiley. 68

Jahnsen, H. (1986). Electrophysiological characteristics of neurones in the guinea-
pig deep cerebellar nuclei in vitro. J. Physiol. (Lond.), 372:129–147. 56

James, W. (1890). Psychology (Briefer Course), ch. 16. Holt, New York. 362,
393

Jeffress, L. A. (1948). A place theory of sound localisation. J. Comp. Physiol.
Psychol., 41:35–39. 450



BIBLIOGRAPHY 479

Jensen, O. and Lisman, J. E. (1996). Hippocampal ca3 region predicts memory
sequences: accounting for the phase precession of place cells. Learn. Mem.,
3:279–287. 31

Johannesma, P. I. M. (1968). Diffusion models of the stochastic acticity of neu-
rons. In Neural Networks, pages 116–144, Berlin. Springer. 188, 193, 209

Kandel, E. C. and Schwartz, J. H. (1991). Principles of Neural Science. Elsevier,
New York, 3rd edition. 25, 38, 213

Kass, R. E. and Ventura, V. (2001). A spike-train probability model. Neural
Comput., 13:1713–1720. 161

Keener, J. and Sneyd, J. (1998). Mathematical Physiology, volume 8 of Interdis-
ciplinary Applied Mathematics. Springer, New York. 357

Kelso, S. R., Ganong, A. H., and Brown, T. H. (1986). Hebbian synapses in
hippocampus. Proc. Natl. Acad. Sci. USA, 83:5326–5330. 362

Kempter, R. (1997). Hebbsches Lernen zeitlicher Codierung: Theorie der Schal-
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Koch, C., Ö. Bernander, and Douglas, R. J. (1995). Do neurons have a voltage
or a current threshold for action potential initiation? J. Comput. Neurosci.,
2:63–82. 48, 127

Koch, C. and Segev, I. (2000). The role of single neurons in information process-
ing. Nat. Neurosci., 3(Supp):1160–1211. 75

Kohonen, T. (1984). Self-organization and associative memory. Springer, Berlin
Heidelberg New York. 367, 369, 393, 427

Konishi, M. (1986). Centrally synthesized maps of sensory space. Trends Neu-
rosci., 9:163–168. 372, 450, 452, 462

Konishi, M. (1993). Listening with two ears. Sci. Am., pages 34–41. 372, 452,
462

Konnerth, A. and Eilers, J. (1994). Synaptic plasticity and calcium dynamics in
cerebellar Purkinje neurons. Biomed. Res., 15:73–77. Supplement 1. 387

Kopell, N. (1986). Symmetry and phase locking in chains of weakly coupled
oscillators. Commun. Pure Appl. Math., 39:623–660. 301

König, P., Engel, A. K., and Singer, W. (1996). Integrator or coincidence detec-
tor? The role of the cortical neuron revisited. Trends Neurosci., 19(4):130–137.
194, 195, 209

König, P. and Schillen, T. B. (1991). Stimulus-dependent assembly formation of
oscillatory responses: I. synchronization. Neural Comput., 3:155–166. 32, 293



482 BIBLIOGRAPHY

Kree, R. and Zippelius, A. (1991). Asymmetrically diluted neural networks. In
Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of Neural
Networks. Springer, Berlin. 246, 247, 314, 315

Kreiter, A. K. and Singer, W. (1992). Oscillatory neuronal responses in the visual
cortex of the awake macaque monkey. Eur. J. Neurosci., 4:369–375. 32
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