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Abstract. How reliably can a population of spiking neurons transmit a continuous-time signal?
We study the noise spectrum of a fully connected population of spiking neurons with relative
and absolute refractoriness. Spikes are generated stochastically with a rate that depends on the
postsynaptic potential. The analytical solution of the noise spectrum of the population activity is
compared with simulations. We find that strong inhibitory couplings can considerably reduce the
noise level in a certain frequency band. This allows the population to reliably transmit signals at
frequencies close to or even above the single-neuron firing rate.

1. Introduction

Reaction time experiments [27] have shown that humans can visually recognize objects in a few
hundreds of milliseconds. Considering that the signal has to pass through different processing
stages, the neurons at each processing stage must transmit the signal in tens of milliseconds.
Cortical neurons fire with a rate that does not exceed a few hundred spikes per second. This
means that, at each processing stage, a neuron has the time to emit one or two spikes only. A
code based on the temporal average of input spikes cannot correctly describe fast information
transmission.

The presence of noise renders information transmission even more complicated. Spike
patterns of cortical neurons are highly variable and in most cases are not reproducible from trial
totrial. Inmany cortical areas, the interspike interval is close to a Poisson distribution [26]. The
origin of noise in neuronal spiking is not yet clear. Experiments have shown that neurons have
a low intrinsic noise level [7,20]. Most probably, noise is due to the stochastic arrival times of
the input spikes which may arise in a network with balanced excitation and inhibition [6, 32].
Thus, the irregular spiking is an emergent property of the network rather than an intrinsic
property of the single neuron. It has been shown, however, that noise in the spike arrival time
can be approximated by intrinsic neuronal noise [14, 23]. The advantage of intrinsic noise is
that it facilitates the analysis of the population dynamics. Theoretical studies [2,13] have also
shown that the presence of noise may be useful for a network to stabilize its asynchronous
activity.

Thus, the brain seems to use a coding principle that (i) allows fast transmission and
(i) is noise resistant. The spatially averaged population activity (which corresponds to a
population rate) seems to be such a natural coding principle. A population activity based
code has two advantages. First, the population activity can react very fast to changes in the
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input [14, 18, 30, 32]. Second, noise in the system can be averaged out among redundant
neurons.

Inmany areas ofthe brain, neurons are organized in pools of neurons with similar properties
(i.e columns in the visual cortex or pools of motor neurons). Averaging &veancoupled
neurons improves the signal-to-noise ratio (SNR) by a factor/¢fX. Biological neurons,
however, are connected to each other. How does spatial averaging change if neurons are
not independent but interconnected? Here, we study the influence of network parameters
(coupling strength, delay, refractory period, etc) on the signal transmission reliability. We
present a theory that describes the noise properties of a network of stochastic spiking neurons
in a fully connected network. An analytical expression of the noise power and the SNR is
given for each frequency and as a function of the network parameters.

We find that anticorrelations in the firing shift the noise from low frequency to high
frequency. This phenomenon, called spectral noise shaping, is well known in the technology
of A/D converters and has been proposed by Adams as a potential neuronal coding principle
[4,21]. Noise power is moved from the frequency band used for signal transmission to
a different frequency range through appropriate feedback. We show here that inhibitory
connections can produce significant noise shaping over a bandwidth that, for a low level
of activity (1-10 Hz), extends to frequencies above the mean firing rate of a single neuron.

2. Theory

2.1. The spike response model

The state of a neuraris described by a variablg which represents the membrane potential of
neuroni. If u; reaches the thresholt] a spike is emitted. The moment of threshold crossing

defines the firing timei(f). After the spike, the neuron undergoes a refractory period that is

mathematically represented by a negative contribujion— 7’”) to the membrane potential

u;. Each presynaptic spike induces, after an axonal dalgy a change in the membrane
depolarization. The effect of spike arrival is an excitatory or inhibitory postsynaptic potential
(EPSP or IPSP). The time course of such a postsynaptic potential (PSP) is represented by the
kernele(t — tj(.f) — A wheretj(.f’ is the presynaptic firing time. The total PS#X1), is a

linear superposition of the PSPs summed over all neurons and over all firing times, weighted
by a coupling factow;;

N
i) = > wyelt — 1) — Ay + hex(1). €N
j=140

The second term of the rhs of equation (1) is the PSP produced by some externaljfput
filtered by the kernetey::

oo
hex(t) = Jext/ eext(5) Zext(t — 5) ds. 2
0
The membrane potential can be written as
wi(tlf) = ni(t — &) + hi (¢) 3)

where/; is the last firing of neuron, i.e.7; = maxt”|:") < t}. The functionn, (r — 7)
describes the effect of the last firiggon the membrane potential.
We consider a simplified neuronal network. All neurons are similar so we can drop the
indicesi on the kernel and the synaptic strength is identical for all neurons:
J
u),'j = N (4)
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The interaction strength scales with the reciprocaNgfthe number of neurons, so that the
total input remains finite foN — oo.

The kemelse(r — 1) — Ay, gex(s) andy (s — 7;) can be chosen arbitrarily. For the
simulations, we take:

- Sabs

n(s) = —no eXp(—S ) H(s — dabs) + KH(Saps— ) ®)

m

1 K
Eoxi(s) = — exp(—%) H(s) 6)

m m

L foo( )2
Ty — Tm T Tm

wherez, andt,, are, respectively, the synaptic and the membrane time constaptis
the absolute refractory period aidis a large negative constant. We ggt= 1. To ensure
causality, we have added the Heaviside functifip) with H(s) = 1 fors > 0and 0 elsewhere.
The spike response model with kernels (5)—(7) is, at least for low firing rates, equivalent to the
integrate-and-fire model [13, 15].

Fort, = 1, = 7, equation (7) reduces to

e(s) =

S S
£6) = exp(—;) H(s). 8)

2.2. Noise model

We assume that a neuron can fire even though the formal threshold has not been reached. To
do so we introduce an escape ratthat depends on the difference between the present value
of the membrane potential|7) and the threshold:

on (t15) = flu@i) — 9] = fIn@ — ) + hi(1) — 9. 9)

The second equality follows from (3Y- is an arbitrary function. Here we use either a piecewise
linear functionp = pg- (u — ¥)H(u — ) or a Gaussian distribution = o - exp[(u — ¥)2/282]
foru < ¢ andp = a foru > ¥, wherepg, « andg are parameters. In most of our simulations,
the potentiak rests slightly below threshold so that the definition of the Gaussian escape rate
p for u > 9 (which is somewhat arbitrary) is not important. For a motivation of escape rate
models see [23] where different choices of escape function are discussed.

One of the advantages of this noise model (equation (9)) is that we can calculate explicitly
the distribution of interspike intervals. Let us suppose that neubas emitted its last spike
atf;. If we know the external input,,, and the firing times|”” < ¢ of presynaptic neurons
we can calculate the input potentialz) from equation (1) and hence the membrane potential
u; (t)f;) from equation (3). What is the probability that the neuron, after having emitted a
spike atf;, doesnot emit a spike up to time? The probability is given by the ‘survivor
function Sy, (¢17;) = exp{— |} on, (s|7:) ds}, wherepy, (t15) = fln(t — &) + hi(t) — 9] [16].
The survivor function obviously depends rthe last firing time of neuroh The lower index
h; in the survivor function is intended to remind the reader tat |;) alsodepends on the
input potentiak; (¢). The probability density?, (¢|#;) that thenextspike of neuror occurs at
tis pu, (t]5;) - Sy, (t]7;). Hence

Py, (t5:) = pu, (t]F:) exp[ - / on; (s15;) ds}- (10)
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Given the last spike a} and an input potentidl; () for ¢ > #;, the probability that the
nextspike occurs betweenands + At is P, (t|f;) - At. We note that

d A A
A ——8, (| for >
Py (el = | o om0 - (1)
0 otherwise.
2.3. Population activity
The population activity is defined as
. 1 nact(t; t + At) 1 X
@) AIITO At N N Za(t £ (12)

1N

whereN is the size of the populationg(z; r + Ar) is the number of neurons that fire during

the intervalA¢, and:") is the firing time of a pulse. The sum runs over all firings of all
neurons in the population. The activity (12) corresponds to a spatially averaged population
rate. In contrast to a temporally averaged mean firing rate, the population rate can, in principle,
respond quickly to changes in the input [14, 18, 30, 32]. Using the activity (12) in the form
A(t) = N7 ) 8(t — 1), we can rewrite equation (1) as

h(t)y =1J /00 e(s)A(t — s) ds + hexi(t). (13)
0

Note that, compared with equation (1), the lower indaas been suppressed since all neurons
receive thesametotal PSP.

3. Theoretical results

3.1. Noise spectrum

The population activity dynamics in a homogeneous network of spiking neurons can be written
as [13,14]:

t
A(t) = f Py (t|t)A(f) df (14)
where the kerneP,(¢|7) is the probability density that a neuron that has spiked at fime
and that is subject to a potentiair) will produce another spike at tinre see equation (10).
The present activityd (r) depends on the past activity(? ) for f < ¢, since the number of
neurons that have fired arouni proportional taA (7 ). For the sake of clarity, we rewrite the
probability densityP, (¢]7 ), expressed as a function of the escape patelf ):

Ph(tlf)=ph(llf)exp[—[ ph(SIf)dS} (15)

wherep, (t|f) = f[n(t —t) + h(t) — #]. The only difference to (10) is that we have omitted,
in (15), the index sinceh(t) is independent af; cf (13).

We calculate the activity and the noise spectrum for a constant externahitt = /..
For N — oo and sufficiently high noise, the activig(r) tends to a fixed pointy. The value
of Ag has to be determined self-consistently fratg = (/;° ds exp[— [, ds’ ps,(s'10])~*
wherehg = J Ag + he is the constant term of the PSP (see [13, 14]). Due to the finite number
of neurons A(¢) will fluctuate aroundd,. Each of theV neurons fires stochastically with its



Noise spectrum and signal transmission 261

momentary rate;, (z|7 ). We replace thev stochastic processes by a single one and introduce
a coherent fluctuation of th¥ escape rates:

on(tli) = pp(t)D)[L+0&(1)] (16)

whereé is a Gaussian white noise with zero mean and autocorrel&i@ye (1)) = 5 —t').
Equation (16) is somewhat ‘ad hoc’ and would be difficult to justify rigorously. Qualitatively,
the idea is that, in each intervalz, the expected number of active neurongvis Ag - At.
Due to finite size, fluctuations will be of ordefN AgAt. Hence, the relative fluctuations can
be approximated by setting = 1//N Ag in equation (16). For larg®, the parametes is
small.

We linearize the activity around its fixed poindt(r) = Ap + AA(¢). Expansion of
equation (14) to first order in A ando gives the following equation:

AA(t):/ dfPhomf)AA(f)+A05[foodxc(x)(h(t—x)—ho)]
o 0

+aA0%|:/OOO dx F(x)&(t — x)j|. a7

The first term represents the influence of past perturbations. The second term describes the
variations in the activity due to the fluctuations in the P8P). The last term is the noise due

to the finite population size. A more detailed derivation of equation (17) is presented in the
appendix. The functiong () andL(¢) are defined as

fm=Hm/ Pras — 1)Spo(s) ds (18)

©rd
£m=Hm/ h%%m—ﬂ&mmx (19)

Forh(r) = ho, the escape rate(z|7 ) and hence the survivor functicf(z|7 ) depend only on
the time difference — . We setoy,,(t — ) = pp, (¢t ) and Sy, (t — ) = Sp, (¢]f).

Taking the Fourier transform of equation (17) and using (11) gives an expression of noise
spectrum:

o? A F ()]

[Sho (@) — J AoL(w)E(w)|?
wheres? = (1/AgN). For finite A7, we uselé (w)|2 = 1/Ar. The tilde denotes the Fourier
transform.

| Anoise@)|* = & (w)]? (20)

3.2. Absolute refractoriness only

For absolute refractoriness of lenditys and without any relative refractory period, namely
no = 0 in equation (5), the noise spectrum reduces to

(Ao/N)
11— [1 — Aodand 0" JE(@) + P1o 110,509 (@) 2
where the tilde denotes the Fourier transform &pd, y denotes the indicator function which
is unity on the interval [0§;pd and vanishes otherwise! is the derivative of the escape rate
with respect to the membrane potential evaluatethatFor finite N and in the absence of
coupling ¢/ = 0), the spectrum shows the effect of refractoriness. In this case, it reduces to the

spectrum calculated in [12]. In the limit of no refractorinegg{= 0), equation (21) reduces
to the Hawkes formula for coupled point processes [10]. For fiite& (w)|? = 1/ At.

| Anoise(@)|* = HOE (21)
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3.3. Signal spectrum

Let us consider the case when the neuronal population receives an external Giyérihat
varies over time. The output signal spectrum can be derived from equation (17) by taking the
Fourier transform of the first two terms (see [14]):

Ao?|L(w)|?
|Sho (@) — J Ao L (@) (w)]?

The SNR is thus given by the ratio between the output signal (equation (22)) and the noise
term (equation (20)):

|Asignal(w)|2 = Jezxt|§ext(w) iext(w)|2‘ (22)

|L(w)?

ISNR)|? = ———————
02| F()|?|€ (w)|?

Jezxt|§ext(w) iext(a)) |2~ (23)

4. Simulation results

4.1. The theory compared with simulations

In order to validate our theory, we simulate a network of 1000 neurons described by the
model presented in section 2.1. Each neuron receives the same constant exterhalangut
positive or negative feedback from the other neurons in the network, with a synaptic efficiency
J/N. Neurons have an absolute and a relative refractory period described by therkernel
(equation (5)). The activity is measured for 10 s with a time stefrof 0.1 ms. At each time
step, neurons fire with a spiking probability - f[u(z|f ) — ©], where f is either a piecewise
linear function or the Gaussian function introduced in section 2.2. Note that there is no free
parameter, since? = (1/AgN); Ag = [ s Pyy(s]0) ds and Py, (t|7) is given by equation (15).
Figure 1 compares the theoretical spectrum for a linear escape rate with the one obtained
from a simulation in the absence of connectioal énd in the case of a fully connected
network with inhibitory connectionsf. In both cases the theory is in excellent agreement
with the simulations. The theory, which has been elaborated for a fully connected network,
also describes very well the noise spectrum for a partially connected network. In this case,
the coupling strength is adjusted so that the total synaptic weight received by each neuron,
Zj Jij = J, is identical for each neuron(figure 1€)). The good agreement between the
theory and the simulations remains valid if the linear spiking probability is replaced by a
Gaussian distribution (figuresd)-(f)).

4.2. Effects of the network parameters on the noise spectrum

We have investigated how the different network parameters influence the noise characteristics
of a population of spiking neurons. The effect of the axonal delay and the PSP time constants
on the noise spectrum are briefly described in the discussion. For the sake of simplicity, below
we present the theoretical noise spectrum using a linear escape rate. For Gaussian escape rates,
the effects would be similar.

4.2.1. Refractory period. In the absence of coupling and of refractoriness, the noise spectrum
is completely flat as one would expect for a Poisson process. Adding a refractory period
causes a dip in the power spectra in the low-frequency range. Recorded spike trains from
cortical neurons also present this manifestation of refractoriness in the frequency content [5,17].
Increasing the refractory period reduces the noise amplitude at low frequency and shifts the
first peak of the spectrum towards lower frequency (figuag)2(The location of the peaks
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Figure 1. Theoretical noise spectrum (solid curves) and noise spectrum obtained from simulations
of a network with 1000 neurons (points)a)€(c) Linear escape rate with slopg = 1. (d)—(f)
Gaussian escape rate with variare= 0.05 and parameter = 1. (a), (d) Network without
coupling ¢¢ = 0). (b), (€) Inhibitory coupling ¢ = —5). (c), (f) simulations (points) with a
partially connected network and inhibitory coupling strength = —1/200. Each neuron is
connected to 200 out of 1000 neurons in the network. The theoretical spectrum (solid curve) of
a fully connected network that reproduces the spectrum of the partially connected network has a
coupling strength of = —1. The following network parameters are the same for all the figures:
the axonal delay and the absolute refractory period are equal to 1 ms, the mean activity is 100 Hz
and the membrane and synaptic time constants are equal to 4 ms.
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Figure 2. (a) Theoretical noise spectrum for different values of the absolute refractory pésiads

and in the absence of coupling & 0). The transmission delay is equal to 1 ms. The escape rate
p(t) depends linearly on the input. The synaptic and membrane time constants are equal to 4 ms.
(b) Theoretical noise spectrum in the absence of coupling for two types of refractory periods. The
solid curve corresponds to an absolute refractory petiggd= 6.7 ms and no relative refractory
period and the dashed curve to arelative refractory periodwyyita 4 ms and no absolute refractory
period. The other parameter values are the same a.inr( all cases, the background input

was adjusted so that the mean activity is alwdys= 100 Hz.

varies inversely with the refractory period. In figurdoP{ve compare the noise spectra in

two cases: neurons having only an absolute refractory period, and neurons having a relative
refractory period with a time constant of 4 ms. We use the absolute refractory period as a
free parameter to optimize the noise spectrum in the low-frequency band (up to 100 Hz). The
optimization gives an absolute refractory period of 6.7 ms. Figusgstows that replacing

the absolute refractory period by relative refractoriness reduces the peak amplitudes. Thus,
for the same mean activity, the relative refractoriness contributes to the stability the network.

The spectra of uncoupled neurons can also be calculated directly from renewal theory [9].

4.2.2. Coupling strength. In order to compare results performed with different coupling
strengths/, we adjust the external inpit so as to fix the mean activity at a value of 100 Hz.

This value corresponds to a mean interspike interval of 10 ms. We see from figytea(for

J large and positive, the asynchronous state would become instable (large peaks in the power
density). Inhibitory connections/(< 0) shifts the noise from the low to the high-frequency
band (figure 3)). For large inhibitory connectiond (= —10), the noise level for frequencies

<10 Hz can be reduced by a factor of 100, compared with the one at high frequency.

4.2.3. Mean activity. Different neuronal populations in the brain have different mean
spontaneous activities. Here, we study the effect of the mean activity on the noise power.
For a homogeneous population, the mean activity corresponds to the mean firing rate of a
single neuron. We compatre this firing rate with the bandwidth of the low-noise regime. In
figure 3p), we plot the noise spectrum for different mean activities. The arrows represent the
mean firing rate of a single neuron. For high levels of activith Q0 Hz), the bandwidth of

noise reduction does not extend to the firing rate of a single neuron. On the other hand, at low
activity level (1-10 Hz), the noise reduction extends beyond the single-neuron frequency. As
a consequence, anticorrelations in the firings can allow signals, faster than the single neuron
frequency, to be transmitted with high SNR.
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Figure 3. (a) Theoretical noise spectra for different coupling strengthsThe membrane time
constantr,, and the synaptic time constantare equal to 5 ms. The mean activity is 100 Hz

and the transmission delay is equal to 1 ms. The escape tatelepends linearly on the input.

The refractory period is composed of an absolute refractory period of 1 ms and a relative refractory
period. @) Theoretical noise spectra for different mean activitigs The arrows represent the
mean firing rate of a single neuron. The time constantstare= 4 ms andr; = 4 ms. The
transmission delay is equal to 1 ms. The escape gatedepends linearly on the input. The
absolute refractory period is equal to 2 ms and there is no relative refractoriness. The coupling
factorJ = —2.

4.3. Noisy input model

The model that we have used is an oversimplification of biological neurons. To show that
the main characteristics of the spectrum are not dependent on this model, we have performed
additional simulations with a different noise model that is more closely related to biology. In
cortical neurons, noise probably results primarily from the variability in the spike arrival times.
The membrane potential is close to the threshold most of the time and spikes are triggered by
random fluctuations in the input [6, 29, 32]. Using the spike response model to describe the
neuronal state, the membrane potential of a nedyenbject to stochastic spike arrival, can

be written as

J J )
ui(t) =it — )+ = ;Zsa 17— M) + 25 et — 1 — A (24)

t;f) t'eM;

where the seM; of firing timest’ is generated by a Poisson process and is different for each
neuron. The last term corresponds to some stochastic external input. When the membrane
potential reaches the threshalda spike is emitted.

We consider the noise spectrum of the noisy input model defined by equation (24).
Figure 4@) shows the noise spectrum resulting from the simulations of such a network without
connectiongJ = 0) and with inhibitory connectiong/ = —5). Inhibitory coupling with
strengthJ = —5 reduces the noise, approximatively, by a factor of two in the low-frequency
band. The theory elaborated for stochastic neurons with noisy threshold (escape rate model)
is compared with the noise spectrum of the noisy input model (figung.4tor the theory, we
use a linear escape rate and adjust the pararmgterobtain a good fit at low frequency. At
high frequency, the noise level depends on the mean activity which is the same for the theory
and simulations. The results show a significant shift between the theoretical spectrum and the
simulation with the noisy input model (figurel}]. However, the main features of the noisy
input spectrum are reproduced by the theory.
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Figure 4. (a) Noise spectra for two coupling strengths with the noisy input model. Inhibitory
couplings ¢ = —5) reduce the noise at low frequency. The network has 100 neurons with an
absolute refractory period and an axonal delay of 1 ms. Each neuron receives a different Poissonian
spike train with a mean rate of 1 kHz. The external input strength is adjusted in order to produce a
mean activity of 23 Hz in both case(; = 80 for the network with no couplings anldx; = 89

for the network with inhibitory couplings).bf Noise spectrum from the simulations of the noisy
input model (points) and theoretical noise spectrum with the escape rate model (solid curve). The
internal coupling strength is equalfo= —5 and the axonal delay is equal to 1 ms. The membrane
and synaptic time constant are, respectively= 5 ms andr; = 2 ms. Each neuron receives a
different Poissonian external spike train with a 10 kHz mean rate and synaptic effigaey7.3.

In both cases (theory and simulations) the mean activity is equal to 22.5 Hz and the payameter

of the linear escape rate has been adjusted to best fit the simulations.

5. Signal transmission

5.1. SNR

The reliability of signal transmission may be characterized by the SNR. Equation (23) gives the
ratio between the output signal and the output noise for a given frequency. The ratio does not
depend explicitly on the internal coupling strength. In order to compare the SNR for different
coupling strengths, it is reasonable to keep the output smmnalitudeconstant. To achieve
this, the external coupling strengtli.{;) has been adjusted. Indeed, let us suppose that the
neuronal population receives an external input that oscillates with a certain frequency. To
transmit the signal in the most reliable manner, the input signal should be amplified as much
as possible (by means dfy;). However, there is a limit in the amplification of the signal in
order to maintain the system in a stable and, possibly, linear regime. This limit depends on the
internal structure (or parameters) of the network.

Figure 5 illustrates the above argument. A sinusoidal input (figus ¥ applied to a
network without connections (figurelj and a fully connected inhibitory networl{ (= —5)
(figure 5¢)). For the same amplification (sanig;), the system is, in the absence of coupling,
clearly in a nonlinear regime, whereas, fbr= —5, the activity exhibits nice oscillations at
the input frequency. In order to have the same signal amplitude in the output, we should rather
compare figure ) with figure 5@) which shows a network without connections £ 0) but
with a reduced/eyt.

Another way of looking at these results (figure 5) is in terms of the effects of inhibition
on the dynamic range of the network activity. Figureb)%nd €) show that, for the same
SNR, the dynamic range is improved when inhibition is present. This means that, due to
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Figure 5. Neuronal population activity produced by a varying external signa). S{nusoidal
external input at 10 Hz frequencyb)(Population activity in the absence of coupling£ 0 and

Jext = 0.1). (c) Population activity for inhibitory couplings/(= —5) with the same amplification
(sameJext) as in ). (d) Population activity in the absence of coupling with the same amplitude
modulation as in) (Jex; = 0.05).
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Figure 6. (a) Output signal power (solid line) in response to a 10 Hz input signal and noise power
in the absence of couplings (dotted curve) and with inhibitory couplings (dashed cunyvBatio
between the SNR for a given internal coupling strendffand the SNR without couplingd (= 0)
plotted as a function of the internal coupling strengih. (In the framework of the linear theory,

the ratio does not depend on the input amplitude.

anticorrelations, signals with broad range of input amplitudes can be transmitted without large
distortions.

5.2. Information transmission

If we assume that the system responds linearly to the input, the output signal power is given
by equation (22) and does not depend on the noise level. Figa)epkits the output
signal spectrum and the noise spectrum for two different coupling strengths Q0 and
J = —5). The noise spectrum has been calculated from equation (20). The output signal
spectrum corresponds to the population activity spectrum of a network receiving a delta pulse
in frequency at 10 Hz in the limit oV — oo (equation (22)). The external coupling strength
(Jext) has been adjusted to obtain the same output signal amplitude in both cases. Inhibitory
couplings increase the SNR at the input frequency, because the noise level is reduced at this
frequency (figure 6). With aninternal coupling strength at —5, the SNR is approximatively
3.5 times higher than in the absence of couplisig 0).

From the SNR, we can estimate the amount of information transmitted at a given frequency
by the system. In the linear regime, if the noise has a Gaussian distribution, the mutual
information between the input signal and the output activity is always less than [11, 24, 25]:

I () < 3log,[1 + SNRw)]. (25)

If, in addition, the input signal is chosen from a Gaussian distribution, equation (25) becomes
an equality. Thus, anticorrelations in the firings due to lateral inhibition increase the amount
of information transmitted at low frequency.

6. Discussion

We have presented a theoretical analysis that describes the noise properties and the SNR in the
frequency domain for a fully connected and homogeneous network. Neurons are described
by the spike response model, which is a variant of the integrate-and-fire model. Noise is
represented by an escape rate. Spectral noise shaping [4] due to coupling has previously been
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studied for fully connected homogeneous networks with absolute refractoriness [19] and also
for networks of integrate-and-fire neurons with heterogeneous driving current [21].

The theory presented here also fits the noise spectrum of a partially connected network
to a high degree of accuracy. We have searched for network parameters that modify the noise
profile in the frequency domain. We have found that refractoriness and anticorrelations in the
firings move noise from low to high frequencies. The same characteristics are also present in
other noise models, like the noisy input model (see section 4.3). Moreover, similar results are
found ininhomogeneous networks or networks with a noisy reset model [14] (data not shown).
Thus, noise shaping seems to be a rather general property of neuronal networks.

Refractoriness reduces the noise at the low-frequency band by producing more regular
spike trains. Indeed, if the mean firing rate is kept constant, refractoriness decreases the
variance of the interspike interval. To understand why this produces a reduction of noise at
low frequency, let us take the situation of a large refractory period. For large refractory periods,
the network will tend to oscillate at the frequency given by the mean firing rate. The noise
spectrum therefore exhibits peaks at this frequency and at its harmonics. Since the total noise
power is constant, the effect of the peaks is to decrease the noise level at frequencies between
the frequency peaks of oscillations (figure 2).

The effect of inhibition on the power spectrum can be understood with intuitive arguments.
Neurons that fire will force other neurons in the network to remain silent. A short time later,
many neurons are silent which decreases the overall inhibition. The probability of firing is
therefore increased. Thus, the network activity changes at a high frequency between high
and low firing probability. The low-frequency components of the noise are moved to higher
frequencies. This means that anticorrelations act as a high-pass filter. On the other hand, if
the inhibition is too strong, this may cause neurons to synchronize their activity. The network
will tend to oscillate at the characteristic frequency of the system [8, 33].

The PSP time constants also affect the shape of the spectrum. Short time constants slightly
increase the noise level atlow frequency but also increase the bandwidth of the low-noise regime
(data not shown). For high noise levels, the effect of the axonal delay on the noise spectrum
is negligible. On the other hand, for low levels of noise the stability of the asynchronous state
depends on the value of the delay [14, 15]. Close to the instability, oscillations decay slowly
which shows up in the spectrum by regular peaks (data not shown).

Some researchers [28,31] have found that spectra of the recorded activity of single neurons
often present a/lf behaviour at low frequency, which contradicts our results. This behaviour,
however, does not reflect the effect of refractoriness that produces a dip at low frequency.
We speculate that the/ £ dependence may be caused by correlated variability of the neuronal
activity with external inputs from other cortical areas. Moreover, the noise shaping is a property
of a population of neurons and not of a single neuron. In order to observe it experimentally,
one should simultaneously measure the activity of many neurons, a technique that is not yet
available.

Anticorrelations improve the SNR in a frequency range that can extend beyond the single-
neuron frequency. This means that inputs that vary faster than the mean firing rate of a
single neuron can still be transmitted with high SNR. Figure 7 gives a good illustration of this
statement. A population of neurons spiking at rates between 3 and 13 Hz receives a 40 Hz
external input signal (figure &)). The population activity generated by the signal looks rather
noisy (figure 76)). Now, let us take the point of view of a neuron receiving input from the first
population. The membrane potential will show a low-pass filtered version of the activity. The
filtered activity clearly shows the 40 Hz modulation (figure)y( This modulation cannot be
seen from the spike train of a single neuron in the population (figup.7(

In this paper, noise shaping is produced by fully inhibitory networks, which is, of course,
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Figure 7. (a) A sinusoidal 40 Hz signal is applied to a network of 1000 neurdnjsTtfe population
activity produced by the signal looks noisg) @ neuron receiving input from the population will
filter the activity due to its slow time constantsl) The spike train frequency of a single neuron in
the population is much lower than the 40 Hz signal.

not realistic. We think that other coupling architectures that anticorrelate the neuronal firings
may also generate noise shaping. Cortical neurons often present a connectivity pattern that
consists of a local inhibition and a long-range excitation [3]. It has been shown [1, 22, 34]
that, for constant stimuli, correlations can increase the amount of information transmitted by
a population of neurons coding for some feature variable. Here, we have considered time-
dependent stimuli but restricted the analysis to a single homogeneous pool of neurons. The
extension of the present work to more biologically plausible network architectures is now
under investigation.
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Appendix

In order to derive the noise spectrum, equation (20), we rewrite equation (14):
d ! A oA n
0= E/ Sp(t|t)A(t) dt (26)

where we have used equation (11). The effect of the finite-size fluctuations is represented
by a global multiplicative noise in an infinite system. Expression (16) is repeated here for
convenience:

Pn(tlt) —> pp(t|E)[1 + o £(1)] (27)
whereé¢ is a normally distributed random variable with zero mean &wtrrelations. The
fluctuating rate (27) causes fluctuationd () in the activity which in turn cause fluctuations
in the postsynaptic potentiak(r) = hg + Ah(t), wherehg = JAg + he and Ah(¢) =

d [f A A d ! o dSh,o=o(1f)

0= — Sh=heo=0(t|t ) AA({) + Ap— dr dr Ah(t) ——————
| Simtoamoteiirsai) odt{/_m 1f_oo (19 2=t

With the relation (11) and,,,(0) = 1 and the definition of the ‘survivor’ functiosi, (see

section 2.2), we have:

Jf0°° €(s)AA(t — s)ds + Ahext(r). In order to calculate the spectrum of the fluctuations,
~dr o
d [ o (tIT
+Ag / o Lhztoo (tI1) (28)
dr J_o

we linearize equation (26) with respectdtandAh. We find:
Ah:O}
do o0

AA(t):/ d7 Py, (t17)AA)

+A d Ocd OOd Ah d S
oa[fo x/x s (t—x)[d—,m%(s—x)} hc,(s)}

+aAo%|:/Ooo dx /'00 ds &t — x)ppy(s —x)ShO(s):|. (29)

We now use the filter§ and £ defined in (18) and (19). This gives equation (17). The result
in the Fourier domain is

AA(w) = Py (@) AA(w) +iwAoL(0) Ah(w) + iwo AgF (w)E (w). (30)

In the absence of a varying external inpul/ex(tr) = 0), we have Ah(w) =
J&(w)AA(w). Equation (30) reduces to

AA(w) = Py (0) AA(w) +iwAoL(0)JE(w)AA(w) + iwo Ao F (w)E (w). (31)

The Fourier transform of equation (11) give®;,(w) = —iwSy,(w) + 1. Using this
relation, we find the analytical expression of the noise spectrum given by equation (20).
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