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a b s t r a c t

Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However,
training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss
of performance has been a challenge. Here we propose an exact mapping from a network with
Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive
proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers,
batch normalization and max pooling layers was trained to high performance on some training set.
Furthermore, we assume that we have access to a representative example of input data used during
training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping
from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the
ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep
ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of
performance.

© 2023 Published by Elsevier Ltd.
1. Introduction

Energy consumption of deep artificial neural networks (ANNs)
ith thousands of neurons poses a problem not only during
raining (Patterson et al., 2021; Strubell, Ganesh, & McCallum,
020), but also during inference (Brown et al., 2020). Among
ther alternatives (Howard et al., 2017; Hubara, Courbariaux,
oudry, El-Yaniv, & Bengio, 2016; Tan & Le, 2019), hardware
mplementations of biologically inspired spiking neural networks
SNNs) (Attwell & Laughlin, 2001; Lennie, 2003) have been pro-
osed as an energy-efficient solution (Burr et al., 2017; Davies
t al., 2021; Diehl, Zarrella, Cassidy, Pedroni, & Neftci, 2016;
allego et al., 2020; Göltz et al., 2020, 2021; Sebastian et al.,
018), not only for large centralized applications, but also for
omputing in edge devices (Boroumand et al., 2021; Jiang, Chen,
Li, 2018; Wang et al., 2020). In SNNs neurons communicate by
ltra-short pulses, called action potentials or spikes, that can be
onsidered as point-like events in continuous time. In deep multi-
ayer SNNs, if a neuron in layer n fires a spike, this event causes
change in the voltage trajectory of neurons in layer n + 1. If,

after some time, the trajectory of a neuron in layer n+ 1 reaches
a threshold value, then this neuron fires a spike.

∗ Correspondence to: Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
E-mail address: ans@zurich.ibm.com (A. Stanojevic).

1 Currently with Huawei Technologies – Zurich Research Center.
ttps://doi.org/10.1016/j.neunet.2023.09.011
893-6080/© 2023 Published by Elsevier Ltd.
While there is no general consensus on how to best decode
spike trains in biology (Gerstner & Kistler, 2002; Pillow et al.,
2008; Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1996),
multiple pieces of evidence indicate that immediately after an
onset of a stimulus, populations of neurons in auditory, visual,
or tactile sensory areas respond in such a way that the timing
of the first spike of each neuron after stimulus onset contains a
high amount of information about the stimulus features (Gollisch
& Meister, 2008; Johansson & Birznieks, 2004; Kubke, Massoglia,
& Carr, 2002). These and similar observations have triggered the
idea that, immediately after stimulus onset, an initial wave of
activity is triggered and travels across several brain areas in the
sensory processing stream (Hung, Kreiman, Poggio, & DiCarlo,
2005; Optican & Richmond, 1987; Thorpe, Delorme, & Van Rullen,
2001; Thorpe, Fize, & Marlot, 1996; Yamins & DiCarlo, 2016).
We take inspiration from these observations and assume in this
paper that information is encoded in the exact spike times of each
neuron and that spikes are transmitted in a wave-like manner
across layers of a deep feedforward neural network.

Specifically, we use coding by time-to-first-spike (TTFS) (Ger-
stner & Kistler, 2002), a timing-based code originally proposed in
neuroscience (Gerstner, 1998; Gerstner & Kistler, 2002; Gollisch &
Meister, 2008; Johansson & Birznieks, 2004; Thorpe et al., 2001),
which has recently attracted substantial attention in the context
of neuromorphic implementations (Comsa et al., 2020; Gallego
et al., 2020; Göltz et al., 2020, 2021; Kheradpisheh & Masquelier,

2020; Mostafa, 2018; Rueckauer & Liu, 2018; Stanojevic et al.,
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022; Zhang et al., 2021). In our implementation of TTFS coding,
ach neuron fires exactly one spike. The stronger the input to a
iven neuron the earlier it fires. Coding schemes with at most one
pike per neuron are intrinsically sparse in terms of the number
f spikes. Since spike generation is a costly process from the
nergetic point of view (Sorbaro, Liu, Bortone, & Sheik, 2020),
TFS coding paves the way towards implementations with low
nergy consumption.
While a relation between ReLU networks and networks of

on-leaky integrate-and-fire neurons with TTFS coding has been
uggested before (Kheradpisheh & Masquelier, 2020; Mirsadeghi,
halchian, Kheradpisheh, & Masquelier, 2021; Rueckauer & Liu,
018; Zhang et al., 2021), there has been so far a major obstacle
hat prevented a successful exact mapping from an arbitrary deep
NN to a deep SNN with TTFS coding. In a standard ANN, time is
iscretized and layers are processed one after the other. The hard
roblem of an exact conversion of ReLU activations into spike
imes arises from the fact that in an SNN spikes are point-like
vents that arrive asynchronously in continuous time. Imagine a
euron in a ReLU network that receives several positive inputs
hat add up to a value of 0.8 and several negative inputs that
dd up to a value of −1.0. Assuming a vanishing bias, the output
f the unit is zero. However, if in the corresponding neuron of
he SNN all the positive inputs have arrived before the negative
nputs, the spiking neuron will have emitted a spike as soon
s the firing threshold is reached (Rueckauer & Liu, 2018). Yet,
t is impossible to ‘‘call back’’ the spike later on so as to can-
el it. A potential solution to this problem is to consider that
ach layer starts its computation only once the calculation in
he previous layer has finished. In a recent conversion scheme
time-dependent threshold was used to enforce the necessary
aiting time (Rueckauer & Liu, 2018). However, due to imperfect
onversion, there exists a small, but not negligible, loss in the
inal performance measure. Other conversion approaches for deep
etworks use custom activation functions (Bu et al., 2022) for
NN training, or numerically optimized multi-spike codes for a
iven activation function (Stockl & Maass, 2021). Moreover, most
arlier approaches assumed that weights and biases of the ReLU
etwork can be used as such in the corresponding SNN, but there
s no fundamental reason why this should be the case.

What we would like for an exact mapping from ANN to SNN
ith TTFS coding is (i) a guarantee that no neuron fires too early
o as to avoid the hard problem mentioned above; and (ii) a
oding rule of how to translate the output x̄(n)i of neuron i in
layer n of the ANN into a spike time of a corresponding neuron
in the SNN. As an aside, we note that the hard problem of TTFS
coding disappears if the trajectory of spiking neurons is always
positive. The ideal mapping approach starts from a standard ReLU
network with or without convolutional layers, batch normaliza-
tion, and max pooling and maps it by a potentially nonlinear
transformation of parameters to a corresponding SNN without
any performance loss using a well-defined mapping rule from
rates to spike timings.

In this paper we construct an explicit mapping that addresses
the points above and guarantees the mathematical equivalence of
an SNN with the corresponding ANN. We assume that there is a
pretrained ReLU network and that we have access to its weights
and biases as well as the input data on which the network was
trained. Using TTFS coding, we propose a conversion which maps
a deep ANN with ReLUs to an equivalent deep SNN with non-
leaky integrate-and-fire units without any loss in performance. In
contrast to other methods which require fine-tuning of the SNN
or training an SNN from scratch (Bellec et al., 2020; Bohte, Kok, &
La Poutre, 2002; Göltz et al., 2020; Kheradpisheh & Masquelier,
2020; Neftci, Mostafa, & Zenke, 2019; Park, Kim, Na, & Yoon,
2020; Tavanaei, Ghodrati, Kheradpisheh, Masquelier, & Maida,
75
2019; Woźniak, Pantazi, Bohnstingl, & Eleftheriou, 2020; Yan,
Zhou, & Wong, 2021; Zenke & Ganguli, 2018; Zenke & Vogels,
2021), the goal of our work is to derive the final SNN from the
pretrained deep ReLU network. Further numerical approximation
or optimization steps (Bu et al., 2022; Rueckauer & Liu, 2018;
Stockl & Maass, 2021) are not needed in our approach. The key
to building an efficient TTFS conversion method is to derive an
exact mathematical equivalence between an arbitrary deep ReLU
network and the corresponding spiking network. Using standard
pretrained models available online, we demonstrate conversion
with 0% performance loss on CIFAR10 and CIFAR100 (Geifman,
2018) datasets as well as larger ImageNet-like (Russakovsky et al.,
2015; Yang, Yau, Fei-Fei, Deng, & Russakovsky, 2022) datasets
such as Places365 (Zhou, Lapedriza, Khosla, Oliva, & Torralba,
2017) and PASS (Asano, Rupprecht, Zisserman, & Vedaldi, 2021)
without any training or fine-tuning.

2. Results

The subsection ‘Main theoretical result’ formulates the precise
claim of a family of exact mappings from ANN to SNN. We then
present the main ideas of the proof for one specific mapping
scheme before we sketch alternative mapping schemes. Finally
we test our mapping algorithm on benchmark datasets.

2.1. Main theoretical result

Definition (Deep ReLU Network). A Deep ReLU Network consists
of M ≥ 1 layers of hidden neurons with full or convolutional
feedforward connectivity. Each neuron implements a rectified
linear function x(n)i = [a

(n)
i ]+, where [ ]+ denotes rectification, and

ts activation variable a(n)i is defined as:

a(n)i =
∑

j

w
(n)
ij x(n−1)j + b(n)i (1)

with weights w
(n)
ij and a bias b(n)i . An upper index n = 0 refers to

he input layer and the ith input is denoted with x(0)i . Optionally
the network may also contain processing steps of max pooling
and batch normalization.

Our aim is to map each neuron of the Deep ReLU network to
an integrate-and-fire neuron in the SNN so that each neuron fires
exactly once. A spike at time t (n−1)j of neuron j in layer n − 1
generates a step current input with amplitude J (n)ij into neuron
i of layer n. The voltage trajectory of neuron i in layer n evolves
ccording to

dV (n)
i

dt
= α

(n)
i H(t − t (n−1)min )+

∑
j

J (n)ij H(t − t (n−1)j )+ I (n)i (t) (2)

where H denotes the Heaviside step function with H(x) = 1 for
x > 0 or zero otherwise. The integration starts at time t (n−1)min
with a slope dV (n)

i /dt = α
(n)
i > 0. The slope parameters α

(n)
i , the

eights J (n)ij , and the thresholds ϑ
(n)
i are parameters of the SNN.

Neuron i in layer n may also receive an additional input I (n)i (t).
If the trajectory of V (n)

i crosses the threshold ϑ
(n)
i at time t from

below, then t = t (n)i is the firing time of neuron i in layer n. In
our mapping, we use I (n)i (t) to induce a short current pulse so as
to trigger a spike at time t (n−1)max if neuron i has not fired before.

We claim that any Deep ReLU network can be mapped exactly
to an SNN with integrate-and-fire neurons.

Theorem (Exact Mapping from ANN to SNN). Given the network
parameters {w(n)

, b(n)} of a Deep ReLU network that has been trained
ij i
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Fig. 1. Two phases of constructing a bidirectional mapping from ANN to SNN. In the first phase, Fully Connected (FCn) or Convolutional (Convn) layers are identified;
atch normalization (BN) is fused with the neighboring layers yielding layers FCBNn and ConvBNn , respectively; in case of zero padding, biases are adjusted at certain
ocations; max pooling steps are transformed to combined ‘Max Min Pooling’ (MMP) steps; and inputs are normalized to [0, 1]. Then the scaling symmetry of ReLU
(n)
i = [a

(n)
i ]+ = C[a(n)i /C]+ for an arbitrary constant C > 0 is applied to bring the weights of the ReLU network into a desired range and the maximum output X (n)

or each layer is calculated. Overline indicates scaled ReLU network. In the second phase, the resulting parameters {w̄(n)
ij , b̄(n)i , X (n)

} are mapped to the parameters

J (n)ij , ϑ
(n)
i , α(n), t (n)min, t

(n)
max} of the SNN. For an arbitrary input data point µ the three networks have the same values in the output layer (before applying softmax) and

re therefore predicting the same class(µ).
o high performance on a training set and given access to a repre-
entative subset of the input data of the training set, there exists a
amily of bidirectional mappings from the Deep ReLU network to an
NN with TTFS coding without any loss in performance where each
eLU is replaced by an integrate-and-fire unit with dynamics as in
q. (2) and parameters {J (n)ij , ϑ

(n)
i , α

(n)
i , t (n)min, t

(n)
max}.

emarks. (i) The theorem mentions a family of mappings since
he mapping is not unique, i.e., different combinations of param-
ters in the SNN give rise to an exact mapping. (ii) In the family
f mappings that we consider each neuron emits at most a single
pike. (iii) A consequence of the exact mapping is that both SNN
nd ANN have exactly the same performance on a sample-by-
ample basis: if for a specific sample the prediction of the ANN is
rong then this is also the case for the SNN, and vice versa. (iv)
ne of the potential mappings is such that slope parameter α

(n)
i is

dentical for all neurons and all layers as stated in the following
orollary.

orollary (Mapping with Fixed α). An Exact mapping from ANN to
NN is possible with a slope parameter α

(n)
i = α > 0 that is identical

for all neurons in all layers. Moreover, we may choose t (n)min = t (n−1)max .

2.2. Proof sketch of main theoretical result

Our proof is constructive, i.e., we propose an explicit mapping
algorithm. The arguments work for arbitrary α

(n)
i > 0. At the end

of the argument we set α
(n)
i = α to instantiate the conditions

of the Corollary; see Methods for details. The algorithm has two
phases, see Fig. 1.

Phase 1: Preprocessing. The original ReLU network undergoes
preprocessing such that the network expects input in the [0, 1]
76
range and without any performance loss; furthermore batch nor-
malization steps are removed by fusing them with the weights
of neighboring layers; see Fig. 2, Algorithm 1 and Methods for
details.

Importantly, and different to other studies in the field of
network conversion, we use the known scaling symmetry of the
ReLU activation function, i.e., [a(n)i ]+ = C[a(n)i /C]+ for an arbitrary
constant C > 0, to implement a nonlinear transformation from
the original weight and bias parameters of the ReLU network
to new parameters {w̄(n)

ij , b̄(n)i }. After the transformation we can
guarantee that the sum of the weights in each neuron is bounded
in the range (−Blow) ≤

∑
j w̄

(n)
ij ≤ 1 − δ for hyperparameters

Blow > 0 and 0 < δ ≪ 1. The transformation proceeds layer-
wise from the input to the output layer and does not change the
network output. Neuron i in layer n of the scaled ReLU network
has an activation variable ā(n)i and output x̄(n)i . The mapping is
bidirectional so given the quantities ā(n)i and x̄(n)i of the scaled
network we can recover the variables a(n)i and x(n)i of the original
network; see Methods Eqs. (20)–(23). Finally, since we have ac-
cess to a representative sample of input data used during training,
we extract X (n), the maximal activation of the rescaled ReLUs in
layer n, across the input data and all neurons in layer n.

Phase 2: Conversion. To construct an exact conversion of the
scaled ReLU network to the network of spiking neurons with-
out any loss in performance we exploit six essential ideas (see
Methods for details):

(i) Choice of TTFS code. We construct a mapping such that each
neuron i in layer n of the SNN emits exactly one spike at t (n)i ,
where t (n)min < t (n)i ≤ t (n)max (see Fig. 3). Positive activation leading
to a ReLU output x̄(n)i = ā(n)i > 0 corresponds to an early firing
time t (n) = t (n) − ā(n), or equivalently, ā(n) = t (n) − t (n). Thus,
i max i i max i
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Fig. 2. Preprocessing for LeNet5 and VGG16 networks: a. LeNet5 original ReLU network with batch normalization (BN, black rectangular sheet) before the activation
function (red sheet); during preprocessing batch normalization is fused with previous convolutional (Convn) and fully connected (FCn) layers. b. When fusing a batch
normalization layer with the next convolutional layer containing zero padding, some of the biases (in green) are changed; c. When fusing batch normalization with
the next convolutional layer with max pooling (yellow) in between, specific channels might be changed to use min pooling function (violet). d. VGG16 original ReLU
network used for CIFAR10 classification with batch normalization after the activation function; during preprocessing batch normalization is fused with following
convolutional and fully connected layers.

Fig. 3. Mapping to multi-layer SNN with TTFS encoding and integrate-and-fire units. Left: Neurons in layer n− 1 are connected to neuron i in layer n. Right: Spikes
from neurons 1 ≤ j ≤ N (n−1) arrive at times t (n−1)j (green vertical arrows). The red trajectory shows the evolution of the potential V (n)

i as a function of time. Neuron

i fires at time t (n)i (red vertical arrow) when V (n)
i reaches the threshold ϑ

(n)
i . The output value x̄(n)i of the corresponding ReLU corresponds to the time difference

between t (n)i and t (n)max . Other neurons in layer n fire at other moments (blue, magenta). No neuron in layer n can fire later than t (n)max . Our exact mapping procedure
guarantees, that for all neurons the slope of the trajectory at the moment of spike firing is positive. Moreover, since in our theorem the threshold is arbitrarily high
(thick blue vertical arrows) for t < t (n)min , all firings in layer n occur for t > t (n)min so that the hard problem of late inhibitory input is solved.

77
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pike times depend linearly on the output x̄(n)i of active ReLU
neurons. Moreover if a neuron in layer n has not fired before
ime t (n)max, it receives an additional external input pulse I (n)i (t) =
ϑ

(n)
i δ(t−t (n)max) with R≫ 1 that triggers immediate firing at time

(n)
max. The parameters α

(n)
i , ϑ (n)

i , the times t (n)min = t (n−1)max , as well as
he weights J (n)ij of the spiking network are determined during the
onversion for all i, j, n as described in Methods (see Algorithm 2)
nd are kept fixed thereafter. With this coding scheme each
euron in layer n − 1 fires exactly once up to t (n−1)max = t (n)min.
herefore for t > t (n)min all input spikes to neurons in layer n have
rrived.
(ii) Slope of trajectory. Since for t > t (n)min all input spikes to

eurons in layer n have already arrived, the trajectory of neuron i
n layer n has, a constant slope dV/dt =

∑
j J

(n)
ij +α(n) [see. Eq. (2)]

hich is independent of the sequence of spike arrivals.
(iii) Weight conversion. Since for t > t (n)min the trajectories have

onstant slope, the mapping from activations in the ReLU to firing
imes in the SNN can be derived from the threshold-crossing
ondition V (n)

i = ϑ
(n)
i for each neuron i in layer n. Evaluating this

ondition yields the nonlinear conversion of weights

(n)
ij =

α
(n)
i

1−
∑

j′ w̄
(n)
ij′

w̄
(n)
ij (3)

which is invertible. A similar invertible relation holds for the bias
parameter (see Methods). Thus weights in the scaled ANN can be
mapped to weights in the SNN without sign change. Summation
over j on both sides of Eq. (3) shows that the slope has a value
α
(n)
i +

∑
j J

(n)
ij = α

(n)
i /(1−

∑
j w̄

(n)
ij ) > 0. Thus, once all input spikes

have arrived, the slope of the trajectories is positive because of
the weight rescaling

∑
j w̄

(n)
ij < 1; This is the key motivation for

the weight rescaling in Phase 1.
(iv) Choice of t (n)max . Given our TTFS code, we know that a

stronger activation leads to earlier spikes, yet we have to make
sure that no neuron in layer n fires before the last spike of
neurons in layer n−1. The earliest possible spike in layer n occurs
at time t (n)max − X (n) where X (n) is the maximal activation of ReLU
neurons in layer n identified during the preprocessing phase. We
therefore set t (n)max = t (n)min + (1 + ζ )X (n), where ζ > 0. In practice
(see below) a value of ζ = 0.5 works well.

(v) Choice of threshold. By definition of our TTFS code, t (n)max is
the time when a neuron in layer n that corresponds to a ReLU
with activation ā(n)i = 0 reaches the threshold ϑ

(n)
i ; therefore this

condition defines the value of the threshold. Because of different
biases and different weights for different neurons, the thresholds
ϑ

(n)
i are neuron-specific (see Methods). This finishes the proof in

the general case.
(vi) Free slope parameter. Since the slope factor α

(n)
i is a free

parameter, we can arbitrarily set α
(n)
i = 1 for all neurons across

all layers 1 ≤ n ≤ M . This yields the Corollary. The condition of
the Corollary is the specific case used in the simulations.

Remark. We may wonder how the above points solve the hard
problem of TTFS coding. Our analysis above makes no statement
about the trajectories of neurons in layer n for the time t <

t (n)min. Therefore we formally set the threshold for t < t (n)min to
an arbitrarily high value to ensure that no spike occurs before
t (n)min. As mentioned under point (iii), our method guarantees a
positive slope after t (n−1)max = t (n)min. Since during the allowed
spiking interval [t (n)min, t

(n)
max] the slope is fixed and positive, a spike

never needs to be ‘‘called back’’. Because of the preprocessing,
we know that

∑
j w̄

(n)
ij > −Blow. For example, a choice Blow =

10 and α(n)
= 1 yields a slope larger than 1/11. Furthermore,

because of our choice of t (n)max under point (iv) we know that
the interval [t (n) , t (n) ] is long enough to allow even the most
min max

78
activated neuron to fire at the correct time. Finally, because of our
choice of TTFS code under point (i) we are sure that all neurons
in layer n− 1 have fired before or at t (n)min. These choices together
solve the hard problem of TTFS coding.

2.3. Examples of equivalent mappings

As stated in the main Theorem, the mapping from ANN to SNN
is not unique; rather there is a family of equivalent mappings.
Here we present several concrete implementation schemes.

2.3.1. Mapping with guaranteed positive slope
In the proof sketch above it was shown that the slope of

all neurons is always positive once all input spikes have been
received. However, we cannot exclude that before the time t (n)min
the trajectory transiently has a negative slope; see Fig. 3. If this
is desired for some application, we can use the free parameter
α
(n)
i = α(n) to ensure that the slope of the trajectory is always

non-negative, even before t (n)min. To do so, we sum over all neg-
ative weights incoming to a given neuron and choose the slope
parameter in layer n such that

α(n)
+min

i

∑
j

J (n)ij H(−J (n)ij ) > 0 (4)

This ensures that the slope is positive not only if all inhibitory
spikes arrive before the first excitatory spike, but also for all
other possible timings of inhibitory input spikes. Therefore the
hard problem of late inhibitory spikes can even be solved with
a threshold that remains constant throughout the processing,
i.e., even before t (n)min. In practice we found that we could work
with a constant threshold even if we did not implement the
strict condition on the slope parameter formulated in Eq. (4) but
worked instead with α(n)

= 1. The strict condition in Eq. (4) can
lead to very large slope parameters α(n) and high firing thresholds
ϑ

(n)
i which we might want to avoid in hardware implementations

because of increased energy consumption.

2.3.2. Mapping with a dynamical threshold
In the proof sketch we assumed a constant threshold ϑ

(n)
i for

all times t > t (n)min. However, we can reinterpret the slope factor as
a dynamical threshold. To see this, we integrate Eq. (2) and write
the threshold condition that determines the firing time t (n)i < t (n)max
in the form

ϑ
(n)
i = V (n)

i (t (n)i ) = α
(n)
i [t

(n)
i − t (n−1)min ] +

∑
j

J (n)ij ϵ(t (n)i − t (n−1)j ) (5)

where we have suppressed the external input and ϵ(s) is the
oltage response to an input spike arriving at s = 0 (Gerstner
Kistler, 2002). Using standard textbook arguments, the term

(n)
i [t

(n)
i − t (n−1)min ] can be shifted to the left-hand side which gives

ise to a ‘dynamical threshold’ (Gerstner & Kistler, 2002) defined
s ϑ

(n)
i (t) = ϑ

(n)
i −α

(n)
i [t− t (n−1)min ]. Thus, the mapping in the corol-

lary is identical to a mapping where the slope factor vanishes,
but each neuron has a dynamical threshold that decreases linearly
with time.

2.3.3. Mapping with identical weights in SNN and ANN
Previous studies have proposed approximative mappings un-

der the condition J (n)ij = w̄
(n)
ij for all neurons in all layers. A quick

glance at Eq. (3) tells us that a mapping with J (n)ij = w̄
(n)
ij becomes

exact under the condition of a neuron-specific slope parameter

α
(n)
i = 1−

∑
w̄

(n)
ij . (6)
j
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T
T

hus, in contrast to the mapping in the proof sketch of the
heorem, the slope parameter α

(n)
i is no longer a free parameter

but must be chosen according to Eq. (6) if the aim is to have the
same set of weights in ANN and SNN. Interestingly, under this
condition, the trajectory of all neurons have the same slope of
value one for t > t (n)min.

2.3.4. Mapping with less than one spike per neuron
Even though our theory requires each neuron to spike exactly

once, it is possible to have an alternative implementation where
a given spiking neuron fires only when the corresponding ReLU
is active. Instead of sending (costly) spikes of inactive neurons,
it is sufficient to store the reference times t (n)max for all n. The
trick is to set the slope of all trajectories of neurons i in layer
n to α

(n)
i +

∑
j J

(n)
ij as soon as the maximum spike time t (n−1)max of

neurons in layer n − 1 has been reached. This is mathematically
equivalent to making all inactive neurons in layer n − 1 fire
at time t (n−1)max but reduces the overall number of spikes in the
network significantly. Therefore each neuron fires at most one
spike. Since the ANN implements a nonlinear function from input
to output, at least one neuron has to be inactive for at least one
input data point, so that we know that on average there is strictly
less than one spike per neuron. Since we are interested in a low-
energy solutions, we report in the following the average number
of active neurons across all inputs and all neurons for the given
dataset. This number can be interpreted as ‘spikes per neuron
per classification’. Note that this number depends on the specific
regularization used during training of the ANN and can be further
reduced by appropriate loss functions. Examples of this approach
will be given below.

2.4. Performance on benchmark datasets

The above algorithm is a constructive proof that an exact
mapping is possible. However, it is not clear how well it would
perform in practice since there might be stability issues in the
implementation or long processing delays that would reduce the
attractivity of the mapping. In the following we test this algo-
rithm on several image classification tasks with different standard
datasets.

For each data set, we report the classification accuracy for the
original ReLU network, for the SNN, as well as the percentage of
agreement on a image-by-image basis between class prediction
of original ReLU network and SNN network. Agreement is 100
percent, if for each image that is correctly (wrongly) classified
by the ReLU, the image is also correctly (wrongly) classified by
the SNN. Furthermore we report percentage of spikes per neuron
under the implementation scheme mentioned at the end of the
previous subsection.

2.4.1. MNIST, Fashion-MNIST and CIFAR10
In order to compare our results with existing conversion ap-

proaches (Rueckauer & Liu, 2018; Yan et al., 2021), we include
MNIST and Fashion-MNIST (Deng, 2012; Xiao, Rasul, & Vollgraf,
2017) as well as CIFAR10 (Geifman, 2018) in our evaluation.
We consider 16-layer VGG16, 5-layer LeNet5 and 2-layer fully
connected networks, see Table 1. VGG16 contains max pool-
ing, fully connected and convolutional layers together with zero
padding and batch normalization applied after ReLU activation
functions. For the MNIST dataset the SNN achieves the same 99.6%
accuracy as the original ReLU network with 100% agreement,
whereas the number of active neurons is around 51%. Similarly,
for Fashion-MNIST there is a 100% agreement between SNN and
ReLU predictions with the accuracy of 93.7% and around 45% of
active neurons. In Rueckauer and Liu (2018) the authors perform
a conversion of a 2-layer fully connected network as well as a
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LeNet5 convolutional network such that the weights and biases of
the SNN and ANN are identical. We reproduce the ANN results of
those models and compare the performance of their SNN with the
one obtained using our method. Our SNN surpasses the accuracy
in Rueckauer and Liu (2018), and has 100% agreement between
SNN and ANN with around 50% active neurons. Moreover, if we
apply L1 activity regularization to the 2-layer fully connected
network, MNIST images are classified with the accuracy of 98.52%
with only 20 spikes in the hidden layer, i.e. 3.33% of active
neurons. The original and the scaled LeNet5 network can be seen
in Fig. 2a. For the preprocessing and mapping details refer to the
Methods.

CIFAR10 contains color images of ten classes. The pretrained
weights were obtained from an online repository (Geifman, 2018)
where a convolutional network similar to the VGG16 architecture
(see Table 1) was used. It comprises 15 layers in total since it
uses only two fully connected layers instead of three (Fig. 2d). The
network contains max pooling and convolutional layers together
with zero padding and batch normalization applied after the ReLU
activation functions. For CIFAR10 the SNN achieves the same
93.59% accuracy as the original ReLU network with 100% agree-
ment between the two networks, whereas at 38% the number
of active neurons is smaller than for the other datasets. If we
apply L1 activity regularization, a small subset of 21.51% active
hidden neurons is enough to perform classification with 93.16%
accuracy. Further reduction of the number of spikes to 15.52%
already decreases the accuracy to 90.54%.

In Fig. 4 we show an example of an SNN inference for classifi-
cation of a cat image from CIFAR10. For input and hidden layers
a raster plot of 10 neurons is shown and the spikes of neurons
with higher activation of the corresponding neuron in the ANN
are color-coded with darker shade. At the input layer the value
of the data can be recovered from the spiking time of neuron
i as x0i = 1 − t (0)i and in layer n the output of a neuron i of
scaled ReLU network can be recovered from the spiking time of
the corresponding neuron in the SNN as x̄(n)i = t (n)max − t (n)i . The
duration of the interval [t (n)min, t

(n)
max] varies considerably from one

layer to the next. At the output layer n = 15 a potential with
darker color indicates a larger value of the activation variable of
the corresponding neuron in the original ReLU network. At time
t (15)max = t (14)max + 0.1 when all the input from the layer n = 14 has
arrived, the maximum potential corresponds to the neuron with
maximal activation variable, i.e. both networks predict the same
class.

2.4.2. Large-scale data sets
We avoided the ImageNet dataset because of privacy-

concerns (Yang, Yau, Deng, & Russakovsky, 2022) and used in-
stead Places365, PASS, and CIFAR100 for more realistic tests.
The ’Places365-Standard’ dataset contains high-resolution color
images (Zhou et al., 2017) resembling those in the ImageNet
dataset. The pretrained weights are obtained from an online
repository (Zhou, 2018) that contains a standard VGG16 network
without batch normalization which we map to a corresponding
SNN; see Table 1. The SNN achieves the same 52.69% accuracy
as the original ReLU network with 100% agreement between the
two networks, whereas the number of active neurons is around
53%.

The PASS dataset consists of 1.4 million unlabeled images
(Asano et al., 2021) and is used as a substitute for ImageNet
(Asano et al., 2021) so as to avoid privacy-concerns. We use the
same network as for the ‘Places365-Standard’ dataset, see Table 1.
The weights are downloaded from the VGG16 model for ImageNet
available in TensorFlow (tfp, 2022; Russakovsky et al., 2015). An
inference on an image from PASS returns one of the 1000 Ima-
geNet classes as output. When performing inference with the SNN
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Table 1
Comparing performance of original ReLU networks and SNNs. Agreement metric shows percentage of inputs for which original
ReLU network and SNN network predict the same class. Spikes column reveals the average percentage of active neurons across all
hidden layers when the mapping with less than one spike per neuron is applied. Places365 and PASS are used as substitutes for
ImageNet which breaches data privacy (Yang, Yau, Fei-Fei, et al., 2022). Accuracy calculation is not applicable for PASS dataset, as
it is unlabeled. L1 denotes model with regularization. The highest accuracy and the lowest percentage of spikes for model/dataset
pairs across different methods are highlighted in bold.
Model & dataset Image size Classes Accuracy [%] Agreement [%] Spikes [%]

ReLU SNN

Fully connected, MNIST (Rueckauer & Liu, 2018) 28 × 28 × 1 10 98.50 98.35 – –
Fully connected, MNIST [ours] 28 × 28 × 1 10 98.52 98.52 100 50.28
Fully conn. L1, MNIST [ours] 28 × 28 × 1 10 98.52 98.52 100 3.33
LeNet5, MNIST (Rueckauer & Liu, 2018) 28 × 28 × 1 10 98.96 98.57 – –
LeNet5, MNIST (Fig. 2a) [ours] 28 × 28 × 1 10 99.03 99.03 100 50.18
VGG16, MNIST [ours] 28 × 28 × 1 10 99.60 99.60 100 51.21
VGG16, Fashion-MNIST [ours] 28 × 28 × 1 10 93.70 93.70 100 45.34
VGG16, CIFAR10 (Yan et al., 2021) 32 × 32 × 3 10 92.55 92.48 – –
VGG16, CIFAR10 (Fig. 2d) [ours] 32 × 32 × 3 10 93.59 93.59 100 38.38
VGG16 L1, CIFAR10 [ours] 32 × 32 × 3 10 93.16 93.16 100 21.51
Large-scale tests

VGG16, CIFAR100 [ours] 32 × 32 × 3 100 70.48 70.48 100 38.21
VGG16, Places365 [ours] 224 × 224 × 3 365 52.69 52.69 100 53.72
VGG16, PASS [ours] 224 × 224 × 3 1000 N/A N/A 100 53.24
Fig. 4. Image Classification with spikes. A presentation of a cat image from the CIFAR dataset triggers spikes (filled and open circles) in consecutive layers of the
SNN. For layers 0, 1, 2 and 14, one of the neurons is the one that fires the earliest spike for this image whereas the other nine are randomly selected. In a given
layer, earlier spike times correspond to larger values (darker color) of the corresponding ReLU in the original network. At the output layer, the maximum potential
corresponds to the largest activation variable in the ReLU network. Zoom inset: Voltage trajectories of three neurons from the same convolutional channel in layer
2. Spike times correspond to the moments of threshold crossing. Histogram inset: Histogram of spike counts per time bin of neurons in layer 2 averaged across all
neurons and all images in the test set. Only 34.92% of neurons fire before t (2)max .
we verify the agreement of the class prediction between the two
networks. There is a 100% agreement between the original ReLU
network and our SNN, with the fraction of active neurons around
53%. The results of this and the previous paragraph together show
that the SNN achieves the same accuracy as the corresponding
ANN on ImageNet-like datasets using spiking neurons that fire
on average only for 53% of the inputs.

A similar statement is true for the CIFAR100 dataset. Using
the same network architecture as for CIFAR10, and pretrained
weights downloaded from an online repository (Geifman, 2018),
we find on CIFAR100 a 100% agreement between SNN and ReLU
predictions with the accuracy of 70.48% and around 38% of active
neurons. Thus, on all tested large-scale datasets we find 100
80
percent agreement between the ANN and SNN indicating that the
mapping is without any performance loss.

2.4.3. Sensitivity to noise and parameter changes
As outlined in the introduction, the hardest problem of the

conversion is to prevent spike firing in layer n before all spikes
from layer n−1 have arrived. In our mapping algorithm, a positive
value ζ > 0 should guarantee, for a large enough and repre-
sentative subsample of input images from the training set, that
during test the above problem is avoided. For all implementation
results so far, the standard choice was ζ = 0.5. In order to
check sensitivity to the choice of ζ , we varied ζ across positive
and negative values. Using the VGG16 model and the CIFAR10
dataset, we found that the performance degrades gracefully when
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Fig. 5. Sensitivity tests a. Performance as a function of the parameter ζ . Note that the theorem requires ζ > 0; our standard choice in all other figures is ζ = 0.5.
b. Performance of the network when there is a jitter in spike timing; note that spike timing difference between the earliest and latest neuron in a given layer is
often less than 2 time units (see Fig. 4). c. Performance of the networks when neuron-specific variations are added to the slope parameter α

(n)
i during inference;

note that the reference value is α(n)
= 1 for all layers.
pushing ζ slightly into the negative regime, but breaks down for
a value ζ < −0.5, see Fig. 5a. Importantly, when switching from
ζ = +0.5 to ζ = −0.5, the total processing time for image
classification is reduced by a factor of three.

Noise in hardware implementations could potentially arise
from a spike jitter caused for example by imprecisions in de-
tecting the exact time of threshold crossing. We add a Gaussian
noise of given standard deviation (SD) and perform 16 trials. No
performance degradation is observed up to a standard deviation
of 0.001, see Fig. 5b. With a jitter of about 1 percent, the accuracy
drops from 93.59% to 92.93%, which depending on the application
may or may not be considered as acceptable. We note that spike
times of hundreds of neurons in a given hidden layer spread over
an interval of one or a few time units so that even with a jitter
of 0.01 the order of spike firing is considerably changed.

Imprecisions could also arise from heterogeneities in the hard-
ware. A sensitive parameter is the reference slope α(n). We modify
the slope parameter in a neuron-specific way α

(n)
i + Y where

Y is a zero-mean Gaussian random variable with a standard
deviation that we control. This simulates a systematic neuron-
specific hardware manufacturing imperfection. Even a standard
deviation of 0.001 leads to a dramatic drop in performance, see
Fig. 5c. This is expected since a small mismatch in slope leads
to a relatively large shift in spike timing because changes are
accumulated throughout the integration interval [t (n−1)min , t (n)max]. As
mentioned in the discussion, using existing learning rules for
spiking neurons in the hardware loop (Göltz et al., 2021) could be
used to rapidly fine-tuning weights to compensate for hardware
heterogeneities.

3. Discussion

In this paper we propose an exact mapping from a ReLU net-
work to an SNN with time-to-first-spike coding. While a relation
between ReLU networks and networks of non-leaky integrate-
and-fire neurons has been suggested before (Kheradpisheh &
Masquelier, 2020; Mirsadeghi et al., 2021; Rueckauer & Liu, 2018;
Zhang et al., 2021), there have been four obstacles that in the past
prevented a successful exact mapping from deep artificial neural
networks to deep spiking neural networks:

(i) As mentioned in the introduction, a neuron in layer n that
fires a spike before the last spike of neurons in the previous layer
n− 1 has arrived could compromise an exact mapping, since not
all inputs are taken correctly into account: in particular, a late
inhibitory input could have led to substantially different spiking
time if taken into account. Having access to a representative
sample of inputs from the training data enables us to solve this
problem by an appropriate choice of intervals [t (n) , t (n) ], with the
min max
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condition t (n−1)max = t (n)min. In other words, firing times of all neurons
in layer n are guaranteed to fall into a desired interval, such that
all spikes from layer n− 1 have arrived before the first neuron in
layer n fires a spike.

(ii) In some implementations of an SNN, the slope of the
potential of a neuron might be negative, zero, or only marginally
positive once all input spikes have arrived. In the last case, the
threshold could be eventually reached but spiking would be sen-
sitive to noise. We have solved this problem by a positive slope
parameter α

(n)
i for the trajectory of the integrate-and-fire neuron

in combination with a suitable (non-unique) preprocessing of
ReLU parameters that together guarantee that the slope of the
trajectory is larger than some minimal value once all input spikes
have arrived.

(iii) In the past it has been left open how to map the neuron of
ReLU that is inactive for a given input vector to the corresponding
spiking neuron. We have solved this problem by forcing the
corresponding spiking neuron to fire a spike at the maximum
spike time for that layer. We have also proposed an alternative
implementation where inactive neurons do not fire spikes.

(iv) Existing spiking neural network approaches often use rate
coding, custom activation functions or specific constraints during
ANN training (Bellec et al., 2020; Gardner, Sporea, & Grüning,
2015; Huh & Sejnowski, 2018; Neftci et al., 2019; Rueckauer &
Liu, 2018; Rueckauer, Lungu, Hu, Pfeiffer, & Liu, 2017; Woźniak
et al., 2020; Yan et al., 2021; Zenke & Ganguli, 2018; Zenke &
Vogels, 2021; Zhang, Zhou, Zhi, Du, & Chen, 2019). In contrast
to prior work, our approach uses sparse TTFS coding, standard
ANN elements and does not involve learning. The advantage of
our approach in view of an application in neuromorphic edge
devices is that a network consisting of standard fully connected
and convolutional layers with ReLU activation function as well
as max pooling and batch normalization can be pretrained using
well-established optimization tools. After conversion, the SNN
is guaranteed to have the exact same accuracy as the original
ANN. The disadvantage is that hardware imperfections such as
uncontrolled parameter variations are not taken into account
during training.

TTFS coding for a conversion from ANN to SNN has been used
before in an implementation (Rueckauer & Liu, 2018) that con-
tains elements similar to our approach, but with a few important
differences. First, we have a systematic way to define the end t (n)max
of the allowed spiking interval. Second, we use a TTFS code with
a linear relation between spike times and ReLU output whereas
the relation is nonlinear in the earlier scheme (Rueckauer &
Liu, 2018). Third, we identify for the case w̄

(n)
ij = J (n)ij an exact

condition for the slope parameter and generalize to mappings
where the weights are not simply copied from the ANN to the
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NN. The latter gives the freedom to choose the slope parameter
o that the trajectory has always positive slope.
The success of our method paves the road to many future

esearch direction including both theory and application:
(i) The discrete transition between spikes that are absent or

resent (depending on the input or on parameter variations) has
lagued learning algorithms for spiking neural networks (Bohte
t al., 2002; Göltz et al., 2020; Kheradpisheh & Masquelier, 2020;
eftci et al., 2019; Tavanaei et al., 2019; Zenke & Ganguli, 2018).
ur theoretical contributions imply that spikes do not appear
r disappear, but are rather shifted forward or backward within
ome finite interval. Earlier learning approaches have shown that
hose spikes that are triggered at moments when the slope of
he potential is close to zero induce a high sensitivity of spike
iming to small parameter changes. By introducing a positive
lope parameter into an integrate-and-fire neuron in combination
ith a suitable (non-unique) preprocessing of ReLU parameters
ur mapping guarantees that the slope of the trajectory is at the
oment of firing bounded within some favorable range, so that

he problems of sensitivity or discrete transitions are avoided.
herefore, our mapping approach opens the path towards sta-
le learning algorithms in single-spike deep SNNs, for example
sing the mapping suggested here as initialization of parame-
ers (Stanojevic et al., 2023). Making a step towards increased
iological plausibility the approach can also be extended to a
eaky integrate-and-fire neuron model where each input spike
auses a response described by a double-exponential filter as long
s the coding interval [t (n)min, t

(n)
max] is short compared to the two

time constants of the exponential (Stanojevic et al., 2023).
(ii) Extension of the mapping to other architectures such as

ResNet and to other types of neurons beyond non-leaky integrate-
and-fire and ReLU would give the opportunity to have higher
flexibility in terms of pretrained models. Moreover, it is of in-
terest to further expand the theoretical framework such that it
processes not just a single image but a stream of input data.
This would present significant benefits for applications. At the
moment, our method is limited to feedforward networks and an
extension to Recurrent Neural Networks is left for future work.

(iii) To leverage our theoretical contribution for low-energy
applications, a hardware implementation of this algorithm is
desirable (Widmer et al., 2023). In view of future hardware im-
plementations we are interested to further reduce the number of
spikes and latency. With an improved implementation in com-
bination with L1 regularization of the ANN, we have already
reduced the fraction of spikes per neuron to well below 50%, see
Table 1. The overall classification latency is defined as t (N)

max, which
is the time instant when the readout at the output layer happens.
The obtained values for t (N)

max in VGG16 networks are around 3000
for MNIST and 2000 for Fashion-MNIST. The shallower networks
have much smaller classification latency on the MNIST dataset
of around 50 with LeNet5 and close to 15 for a 2-layer fully
connected network. Using the VGG16 model, CIFAR10 is classi-
fied with a latency close to 200 and around 300 for CIFAR100.
Larger datasets yield higher latency, with values around 50’000
for Places365 and close to 100’000 for PASS. We emphasize that
the units are arbitrary. The classification latency can be reduced
by a less conservative choice of meta-parameters of the mapping
so as to reduce the dead time between spike arrival times in
layers n− 1 and layer n. In particular a choice ζ = −0.5 (instead
of ζ = +0.5) reduces the overall processing time by a factor of
three without a dramatic loss in performance; see Fig. 5a. Further
reduction of latency is achievable with ζ < −0.5, as well as by
decreasing the precision of spiking times. This is most effective
when combined with retraining of weights and thresholds along
the lines discussed above under point (i) (Stanojevic et al., 2023).
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(iv) For hardware implementations the question of robustness
to noise and heterogeneities is also important. We have started
to explore the robustness of our algorithm to noise by adding a
Gaussian noise of given standard deviation to the spike times of
each layer, see Fig. 5b. Moreover, we have considered the case
where the conversion was done with slope parameter α(n)

=

1, while the hardware introduces fixed noise of given standard
deviation for the slope parameter of each neuron, see Fig. 5c. It
would be possible to fine-tune network weights with existing
algorithm (Göltz et al., 2020) to compensate for hardware het-
erogeneities. Our current approach assumes asynchronous pro-
cessing in continuous time and real-valued weights. In view of
digital hardware implementations, it would also be of interest to
study the effects of weight and time quantization. Future work
on quantification of energy reduction will crucially depend on the
concrete hardware implementation that is envisaged.

To summarize, this paper provides a constructive proof that
deep ReLU networks and single-spike neural networks of
integrate-and-fire neurons are mathematically equivalent. As a
consequence, we reach functional deep spiking neural networks
that have the same accuracy as ReLU networks and where spiking
neurons fire at most one spike per neuron. Since spike transmis-
sion is an energy costly process in biology (Attwell & Laughlin,
2001) and neuromorphic hardware (Sorbaro et al., 2020), our
mathematical results open a pathway to low-energy computing
with deep neural networks.

4. Methods

4.1. Preprocessing

Before we perform the mapping from the ReLU network to the
SNN, we perform a few preprocessing steps on the network with
pretrained weights.

(i) If the network does not use batch normalization, this step
is skipped. If batch normalization is implemented, it is fused
into the neighboring fully connected and convolutional layers.
The parameters of the batch normalization are µ̂i

(n) and (σ̂i
(n))2

enoting the estimated mean and variance, γ
(n)
i and β

(n)
i which

ndicate scaling and shift factors learned during the optimization
hereas ϵ is a small constant. In the following equations we use
(n)
i to denote the scaling factor γ

(n)
i /

√
(σ̂i

(n))2 + ϵ.
When batch normalization is applied to the activation vari-

able a(n)i and before the activation function, it is fused with the
processing of the previous layer (see Fig. 2a). The parameters are
transformed as follows:

b(n)i ← κ
(n)
i (b(n)i − µ̂i

(n))+ β
(n)
i (7)

w
(n)
ij ← κ

(n)
i w

(n)
ij . (8)

Note that in case of convolutional architecture each index i cor-
responds to a different channel.

When batch normalization is applied to the output of the
activation function x(n)i , then it is fused with the processing of the
subsequent layer (see Fig. 2d). The parameters are transformed as
follows:

b(n+1)k ← b(n+1)k +

∑
i

(β (n)
i − κ

(n)
i µ̂i

(n))w(n+1)
ki , (9)

w
(n+1)
ki ← κ

(n)
i w

(n+1)
ki . (10)

Note that the assignments of biases and weights need to be
executed in this particular order. Moreover, in case of convolu-
tional architecture, there are a few special cases that need to be
considered.
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Algorithm 1 Preprocessing

Input: Model with parameters w
(n)
ij and b(n)i

Output: Model with parameters w̄
(n)
ij and b̄(n)i

1: x(0)i ←
x(0)i −p
q−p ▷ Rescale inputs to [0, 1]

2: for layer ∈ Model do ▷ Iterate over all layers in the Model
3: if layer ∈ [ Conv1, FC1 ] and [p, q] ̸= [0,1] then
4: Model← fuse_BN_after_ReLU (Model, p, q) ▷ Fuse imaginary batch normalization layer in case

network was trained on [p, q] range
5: else if layer = BN and layer+1 = ReLU then
6: Model← fuse_BN_before_ReLU (Model) ▷ Fuse batch normalization before activation with

previous parametrized layer
7: else if layer = BN and layer-1 = ReLU then
8: Model← fuse_BN_after_ReLU (Model) ▷ Fuse batch normalization after activation with next

parametrized layer and process padding or max
pooling, Figs. 2b, 2c

9: end if
0: end for
1: c(0)i ← 0, n← 1
2: for layer ∈ Model do ▷ Iterate over all layers in the Model
3: if layer ∈ [ Convn, FCn ] then
4: Model, c(n)i ← scale (Model, c(n−1)i , Blow, δ) ▷ Scale layer with c(n−1)i , Eqs. (17), (19), and then with

c(n)i , Eqs. (16), (18)
5: X (n)

← max_output (µ, Model) ▷ Calculate maximum output for layer n given training
samples µ

6: n← n + 1
17: end if
18: end for
a

w

S

b

When batch normalization is applied to a zero-padded input
nto a convolutional layer, the bias change in Eq. (9) introduces an
nnecessary offset at zero-padded locations. For these particular
ocations, we calculate the bias by taking into account only the
et of inputs Sl which were not obtained through padding (see
ig. 2b). Eq. (9) is replaced with:

(n+1)
k,l ← b(n+1)k,l +

∑
i∈Sl

(β (n)
i − κ

(n)
i µ̂i

(n))w(n+1)
ki (11)

When max pooling is applied after batch normalization, the
weights of the subsequent convolutional layer are changed as
described in Eqs. (9) and (10). The batch normalization multiplies
the output of each channel with factor κ

(n)
i , see Eq. (10). When

this value is negative, the sign of the output is changed. During
the inference time, the max pooling operation is transformed into
a min pooling operation for the channels with switched sign (see
Fig. 2c).

(ii) If network has input in range [0, 1], this step is skipped. Let
us assume that the network has input in arbitrary range [p, q].
We would like for the network to operate for input in [0, 1]
interval without changing its output. This scaling can be seen as
an imaginary batch normalization layer between the input layer
and the first layer.

The input data is transformed as x(0)i ←
x(0)i −p
q−p and the biases

nd weights of the first layer are set to:

(1)
k ← b(1)k + p

∑
i

w
(1)
ki , (12)

(1)
← (q− p)w(1)

. (13)
ki ki
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When there is zero padding in the first convolutional layer,
Eq. (12) is replaced with:

b(1)k,l ← b(1)k,l + p
∑
i∈Sl

w
(1)
ki (14)

(iii) In order to guarantee that the potential increases once
all input spikes have arrived, we rescale the parameters of the
ReLU network. We exploit the scaling symmetry of ReLU neurons
[ai]+ = C[ai/C]+, for C > 0 and normalize weights so that the
sum of input weights is smaller than 1− δ, for some 0 < δ < 1.
Similarly, we want to make sure that the sum of input weights
does not fall below some lower bound (−Blow) < 0. To implement
the scaling, we begin from the initial weights w̄

(n)
ij ← w

(n)
ij and

biases b̄(n)i ← b(n)i , start in layer n = 1 and proceed up to n = M
one layer at a time. For each neuron i, we calculate the sum over
all the incoming weights

c(n)i =
∑

j

w̄
(n)
ij (15)

If c(n)i > (1 − δ), we set for this specific neuron i its bias and
incoming weights (for all j) to

b̄(n)i ←
(1− δ)

c(n)i

b̄(n)i ; and w̄
(n)
ij ←

(1− δ)

c(n)i

w̄
(n)
ij (16)

nd the outgoing weights (for all k) to

¯
(n+1)
ki ←

c(n)i

1− δ
w̄

(n+1)
ki (17)

imilarly, if c(n)i ≤ −Blow we set the bias and the incoming
weights (for all j) to

¯ (n)
i ←

Blow
(n) b̄(n)i ; and w̄

(n)
ij ←

Blow
(n) w̄

(n)
ij (18)
|ci | |ci |
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nd the outgoing weights (for all k) to

¯
(n+1)
ki ←

|c(n)i |

Blow
w̄

(n+1)
ki (19)

ote that signs are not changed by the scaling operation. Scaling
nsures that for all hidden layers (−Blow) ≤

∑
j w̄

(n)
ij < 1. We have

larger weights in the final output layer (readout weights), but this
does not cause any problems. The network where all the above
preprocessing steps are applied is called a scaled ReLU network.
ts parameters are denoted with a bar to distinguish them from
he original, unscaled, network.

If c(n)i > (1− δ) the activation variable ā(n)i is given by

¯
(n)
i ←

(1− δ)

c(n)i

a(n)i (20)

nd if c(n)i ≤ −Blow by

¯
(n)
i ←

Blow

|c(n)i |
a(n)i (21)

nd ā(n)i ← a(n)i otherwise. Similarly, if c(n)i > (1 − δ) the output
¯
(n)
i of ReLU is given by

¯
(n)
i ←

(1− δ)

c(n)i

x(n)i (22)

nd if c(n)i ≤ −Blow as

¯
(n)
i ←

Blow

|c(n)i |
x(n)i (23)

and x̄(n)i ← x(n)i otherwise.
(iv) We apply all training data 1 ≤ µ ≤ P at the input layer

of the scaled ReLU network and observe the activation pattern
for each neuron in the network. For each layer n we determine
the maximal output of the activation function x̄(n)i (µ) across all
training data 1 ≤ µ ≤ P and all neurons i in that layer:

X (n)
= max

i,µ
{x̄(n)i (µ)} (24)

If the number P is very large, we choose a statistically repre-
sentative subset of data and perform the max-operation over
these.

4.2. Conversion to SNN

The essential idea of the mapping from the ReLU neurons to
the spiking neurons is that a positive activation leading to an
output x̄(n)i = ā(n)i > 0 is identified with an early firing time:
t (n)i = t (n)max − ā(n)i , whereas vanishing output x̄(n)i = 0 corresponds
to firing at t (n)i = t (n)max.

The actual mapping is defined as follows (see Fig. 3).
(i) Input encoding. The input data lies in the interval 0 ≤ x(0)i <

1 and we set t (0)min = 0, t (0)max = 1 and t (0)i = 1 − x(0)i . With the
parameters of the input layer fixed, we now proceed layer by
layer from n = 1 to n = M

(ii) We set t (n)min = t (n−1)max

(iii) We set t (n)max = t (n)min + B(n) with B(n)
= (1 + ζ ) X (n) and

ζ > 0. The idea is that even the neuron with the strongest
input must fire within the desired interval [t (n)min, t

(n)
max], i.e., not too

early. Under the assumption that the test data comes from the
same statistical distribution as the training data, a small value
ζ ≪ 1 should in practice provide a sufficient safety margin.
Indeed, if the training data set is large enough to be statistically
84
representative, the probability that test data contains a point
causing activation larger than (1+ ζ ) X (n) decreases rapidly with
ζ . The range [t (n)min, t

(n)
max] is therefore large enough to encode all

the values from layer n of the rescaled ReLU network.
(iv) For a given α

(n)
i > 0 we first choose a reference threshold

ϑ̃
(n)
i in layer n such that an integrator without any spike input

would fire at t (n)max. Hence for t > t (n)min the reference threshold is

ϑ̃
(n)
i = α

(n)
i [t

(n)
max − t (n−1)min ] (25)

For the formal proof of the exact mapping, we set the reference
threshold for t ≤ t (n)min to a sufficiently high value ϑ̃

(n)
i = Θ →∞

for all times t ≤ t (n)min. This ensures that no neuron in layer n fires
before t (n)min. The value from Eq. (25) is used only for t > t (n)min.
However, for our practical algorithmic implementations we use
the threshold given in Eq. (25) throughout for all t , because in all
encountered data sets the probability of neurons in layer n firing
before t = t (n)min was negligible.

(v) The actual threshold also depends on the bias and weights
of the neuron. To account for this, we set the actual threshold of
neuron i in layer n to a value

ϑ
(n)
i = ϑ̃

(n)
i + D(n)

i (26)

With these parameter choices, an exact mapping from ReLU
network to an SNN is possible with a value

D(n)
i = [B

(n)
∑

j

J (n)ij ] − [α
(n)
i +

∑
j

J (n)ij ] b̄
(n)
i . (27)

and weights

J (n)ij =
α
(n)
i

1−
∑

j′ w̄
(n)
ij′

w̄
(n)
ij (28)

here w̄
(n)
ij are the weights of the scaled ReLU network. Note that

he denominator of Eq. (28) is always positive since
∑

j w̄
(n)
ij < 1.

ence the mapping does not change the sign of the weights. The
nverse weight transform from SNN to ReLU is

¯
(n)
ij =

1

α
(n)
i +

∑
j′ J

(n)
ij′

J (n)ij (29)

his completes the conversion.
Note that we kept biases b̄(n)i as explicit parameters. How-

ever, following standard practice in the ANN literature, we could
replace biases by an additional input neuron with connection
weight equal to b̄(n)i . The equations above as well as those for
weight rescaling in Phase 1 are to be used analogously in that
case.

Lemma. With the conversion rules Eqs. (25) to (28) spike firing
ccurs at a value x̄(n)i = t (n)max − t (n)i .

roof. Let us integrate the differential Eq. (2) of the integrate-
nd-fire units which yields for t (n)min < t < t (n)max a voltage

(n)
i (t) = [t − t (n−1)min ]α

(n)
i +

∑
j

J (n)ij [t − t (n−1)j ] , (30)

here all neurons in layer n−1 have firing times t (n−1)j ≤ t (n−1)max =
(n)
min. The firing time t (n)i of neuron i in layer n is given by the
threshold condition V (n)

i (t (n)i ) = ϑ
(n)
i . We exploit that neurons in

layer n− 1 that have not yet fired are forced to fire at t (n−1)max . We
ow insert the claims t (n)i = t (n)max− x̄(n)i and t (n−1)j = t (n−1)max − x̄(n−1)j

nto Eq. (30) and use Eqs. (25)–(27) as well as t (n) = t (n−1) and
min max
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Algorithm 2 Conversion

Input: Model with parameters w̄
(n)
ij and b̄(n)i , X (n)

Output: SpModel with parameters J (n)ij , ϑ (n)
i α(n), t (n)min and t (n)max

1: t (0)min ← 0, t (0)max ← 1, n← 1, α(n)
← 1,∀n← 1 . . .M

2: for layer ∈ Model do ▷ Iterate layer-wise from the first to the output layer
and calculate parameters and intervals

3: if layer ∈ [ ConvBNn, FCBNn ] then
4: if layer+1=ReLU then
5: t (n)min ← t (n−1)max

6: t (n)max ← t (n−1)max + (1+ ζ )X (n)

7: J (n)ij ←
α(n)w̄

(n)
ij

1−
∑

w̄
(n)
ij

8: ϑ
(n)
i ← α(n)(t (n)max − t (n−1)min )+

∑
i J

(n)
ij (t (n)max − t (n)min)− (α(n)

+
∑

i J
(n)
ij )b̄(n)i

9: else if layer+1=softmax then

0: α
(n)
i ←

b̄(n)i

(t(n−1)max −t
(n−1)
min )

1: J (n)ij ← w̄
(n)
ij

12: end if
13: n← n+ 1
4: end if
5: end for
w
n
a
g
i

v
a
N

h
n

B(n)
= t (n)max − t (n)min to find

¯
(n)
i =

1

α
(n)
i +

∑
j J

(n)
ij

∑
j

J (n)ij x̄(n−1)j + b(n)i (31)

Thus, the Eq. (29) for the weights follows from a comparison
of this formula with the ReLU equation x̄(n)i =

∑
j w̄ijx̄

(n−1)
j ; see

Eq. (1) with x̄(n)i = [ā
(n)
i ]+. The solution is unique since trajectories

have positive slope so that the threshold is reached at most once.

4.3. Conversion of max pooling

If the ReLU network contains max pooling layers, the SNN con-
tains layers performing max pooling and min pooling, outputting
the earliest and latest spiking time respectively. This functionality
can be implemented with integrate-and-fire neurons such that
each neuron fires exactly one spike. To this end we introduce
connections K (n−1)

ij within a given layer. A spike at time t (n−1)j of
a ReLU neuron j in layer n−1 generates a pulse current, modeled
by a Dirac delta pulse of total charge K (n−1)

ij , which is injected into
neuron i of the max pooling or min pooling operation belonging
to the layer n− 1. The voltage of neuron i evolves according to

dV (n−1)
i(MMP)

dt
=

∑
j

K (n−1)
ij δ(t − t (n−1)j ) (32)

If V (n−1)
i(MMP) crosses the threshold ϑ

(n−1)
i(MMP) at time t then t = t (n−1)i(MMP)

is the firing time of neuron i. For the layers which are preceded
by a max pooling or min pooling operation the Eq. (2) is replaced
with:

dV (n)
i

dt
= α

(n)
i H(t − t (n−1)min )+

∑
j

J (n)ij H(t − t (n−1)j(MMP))+ I (n)i (t) (33)

In case of the max pooling operation, all weights K (n)
ij are set to

slightly larger values than the threshold value ϑ
(n)
i(MMP), such that

the very first input spike triggers firing. In case of min pooling
operation, parameters K (n)

ij are set to the value of ϑ
(n)
i(MMP)/Q <

(n)
ij < ϑ

(n)
i(MMP)/(Q − 1) where Q is the total number of inputs. As

consequence, the very last input spike triggers the firing.
85
4.4. Mapping of the output layer

The output layer of the scaled ReLU network has a softmax
activation function and parameters {w̄(M+1)

ij , b̄(M+1)i }. In the SNN
e implement the output layer with an integrator unit, i.e. the
eurons just integrate the currents and do not spike spike. A spike
rriving at the output layer at time t (M)

j from a neuron in layer M
enerates a step current input with amplitude w̄

(M+1)
ij into neuron

of layer M + 1. The voltage of neuron i in layer M + 1 evolves
according to

dV (M+1)
i

dt
= α

(M+1)
i H(t − t (M)

min)+
∑

j

w̄
(M+1)
ij H(t − t (M)

j ) (34)

where H denotes the Heaviside step function. The non-leaky
integration starts at time t (M)

min and lasts until time t (M)
max and α

(M+1)
i

takes value:

α
(M+1)
i =

b̄(M+1)i

t (M)
max − t (M)

min

(35)

The largest potential V (M+1)
i at time t (M)

max determines the predic-
tion.

4.5. Final remarks regarding the mapping

First, as mentioned in the results section, other mappings are
also possible. For efficient coding with short latency, the aim
is to choose parameters such that the resulting time intervals
[t (n)min, t

(n)
max] are not too large, however large enough to encode all

alues from the ReLU network with sufficient temporal resolution
nd such that the firing times of different layers do not overlap.
ote that (in contrast to leaky integration with time-constant τ ) a

non-leaky integrator has no intrinsic time scale. Second, it would
be possible to start the integration of all integrate-and-fire units
across all layers n synchronously at time t = 0, if we increase at
the same time the threshold in layer n by an amount α(n) t (n)min.

Third, since α
(n)
i +

∑
j J

(n)
ij > 0 and all neurons in layer n − 1

ave fired at or before t (n−1)max , the voltage trajectories V (n)
i of all

eurons i in layer n have for t > t (n−1) = t (n) a positive slope; see.
max min
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q. (2). If, after preprocessing,
∑

j w̄
(n)
ij ≤ 1− δ, then the maximal

slope of the trajectory at threshold is α(n)/δ. Similarly, if after
reprocessing

∑
j w̄

(n)
ij ≥ −Blow, then the minimal slope at the

moment of firing is α(n)/(1+ Blow). A small slope of the potential
lose to the threshold should be avoided, since this increases
he sensitivity to noise (in particular in view of combining with
earning algorithms or unknown heterogeneities in the exact
alue of the slope). In practice, a value of Blow = 10 worked fine

for our numerical simulations.
Fourth, we used a value of ζ = 0.5. If the training set is large,

and if we have access to all data in the training set, a positive
but small ζ → 0 would be sufficient to guarantee that a neuron
cannot fire ‘too early’. However, the test set could potentially
include data where the total activation is slightly larger than
the maximal activation in the training set. Since training set and
test set arise, in principle, from the same statistical distribution,
a parameter choice ζ = 0.5 should provide a sufficient safety
margin and this is confirmed in our simulations in the Results
section.

4.6. Simulation details

All the experiments were performed with Python program-
ming language and TensorFlow library. The simulations were
executed on NVIDIA A100 GPUs.

In our algorithm we calculate the threshold crossing time t (n)i
xactly by solving Eq. (30) when V (n)

i (t (n)i ) = ϑ
(n)
i . Therefore,

ur simulations work in continuous time with machine precision
nalogous to the real-valued output of the ReLU which is contin-
ous with machine precision. Solving for exact threshold crossing
imes is a widely used technique in SNNs (Gewaltig & Diesmann,
007; Mostafa, 2018) and conceptually different from a discrete-
ime implementation where threshold crossing is defined as the
irst time step where the voltage variable is above threshold.

We consider six datasets of different sizes and complexity:
(i) MNIST and Fashion MNIST datasets contain grayscale im-

ges of size 28× 28 which are labeled into ten classes. For each of
he two datasets there are 60000 training images and 10000 test-
ng images. Data preprocessing step includes normalizing pixel
alues to the [0, 1] range and in the case of a fully connected
etwork the input is also reshaped. The pretrained parameters
f the original ReLU networks are obtained by training with
ackpropagation using Adam optimizer (Kingma & Ba, 2015) with
xponential learning rate schedule and standard cross-entropy
oss. We apply dropout for regularization. In case of the VGG16
rchitecture the kernel was always of size 3 and the input of
ach convolutional operation is zero padded such that the shape
t the output remains the same. Due to small input size, the
irst max pooling operation in the standard VGG16 architecture
s omitted. The output of the convolutional part of VGG16 is
f size 512 which is followed by two fully connected layers
ach containing 512 neurons and the output layer. The LeNet5
rchitecture has three convolutional, two max pooling and two
ully connected layers with 84 and 10 neurons, see Fig. 2a. Finally,
he 2-layer fully connected network has one hidden layer with
00 units. LeNet5 and VGG16-like networks also contain batch
ormalization before and after ReLU function, respectively.
In Fig. 2a we see the scaled LeNet5 network where the batch

ormalization are fused with previous convolutional and fully
onnected layers and the parameters of the network are scaled.
or VGG16 network the batch normalization are fused with next
onvolutional and fully connected layers. Moreover, in this case
he shift which appears due to zero padding is counter balanced
ith bias change at certain locations, see Fig. 2b, and every time
atch normalization appears before max pooling, the channels
hose sign is changed are replaced with min pooling, see Fig. 2c.
 a

86
Since the model is trained on [0, 1] range there is no need to
fuse an imaginary batch normalization after the input. In order to
obtain the scaled ReLU network the parameters of the network
are scaled. Finding the maximum output X (n) of each layer on
the subset of the training set finalizes the preprocessing step (see
Fig. 1). In the following mapping phase the parameters of SNN are
calculated.

(ii) CIFAR10 and CIFAR100 contain images of size 32 × 32 × 3
Krizhevsky & Hinton, 2009). For each of the two datasets there
re 50000 training images and 10000 testing images. The data
reprocessing step includes normalizing data with given fixed
ean and standard deviation as given in Geifman (2018). The
etwork was trained on the data rounded to [−3, 3] range. In
reparation for SNN mapping and inference, the input x(0)i is

urther preprocessed as x(0)i ←
x(0)i +3

6 . The kernel is always of size
3 and the input of each convolutional operation is zero padded
such that the shape at the output stays the same. The output
of the convolutional part of the VGG16 architecture has size 512
which is followed by two fully connected layers with 512 and 10
neurons.

During the preprocessing, the batch normalization is fused
with the next convolutional and fully connected layers and bias
is changed in locations where the input is coming from the zero
padding. When necessary, the max pooling function is replaced
with min pooling. Since the model is trained on [−3, 3] range the
imaginary batch normalization is fused with first convolutional
layer and in locations where the input is generated by zero
padding the bias is changed. In order to obtain the scaled ReLU
network the parameters of the network are scaled. Finding the
maximum output X (n) of each layer on the subset of training
set finalizes the preprocessing step (see Fig. 1). In the following
mapping phase the parameters of SNN are calculated.

(iii) The images in Places365-Standard dataset are labeled into
365 scene categories. There are 1.8 million training images, 36500
validation images and 328500 test images. Since the labels for
the test set are not publicly available, we report the metrics on
the validation set. Data preprocessing step includes centralizing
data around a given fixed mean and reshaping it to the size of
224 × 224 × 3 as described in Zhou (2018). The network is
rained on the data which can be rounded to [−200, 200] interval.
In preparation for SNN mapping and inference the input x(0)i is

further preprocessed as x(0)i ←
x(0)i +200

400 . Since the model is trained
on [−200, 200] range the imaginary batch normalization is fused
with first convolutional layer and in locations where the input
is generated by zero padding the bias is changed. In order to
obtain the scaled ReLU network the parameters of the network
are scaled. Finding the maximum output X (n) of each layer on
the subset of training set finalizes the preprocessing step (see
Fig. 1). In the following mapping phase the parameters of SNN
are calculated.

(iv) We randomly sample 100000 testing and 5000 training
images from PASS dataset. Most of the images in the dataset are
colored and the few ones that are not are dropped during data
preprocessing. The images are reshaped to 224 × 224 × 3 and
preprocessed with the same function as ImageNet for VGG16,
which includes centering each color channel around zero mean.
Since the model is trained on [−200, 200] range, in preparation
for SNN mapping and inference, the input x(0)i is further pre-

processed as x(0)i ←
x(0)i +200

400 situating the input on the [0, 1]
ange. Moreover, the imaginary batch normalization is fused with
he first convolutional layer and in locations where the input
s generated by zero padding the bias is changed. In order to
btain the scaled ReLU network the parameters of the network
re scaled. Finding the maximum output X (n) of each layer on
he subset of training set finalizes the preprocessing step (see
ig. 1). In the following mapping phase the parameters of SNN
re calculated.
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