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Summary

When animals explore an environment, they store useful spatial information in
their brains. In subsequent visits, they can recall this information and thus avoid
dangerous places or find again a food location. This ability, which may be crucial for
the animal’s survival, is termed “spatial learning”.

In the late 1940s, theoretical considerations have led researchers to the conclusion
that rats establish a “cognitive map” of their environment. This spatial representation
can then be used by the animal in order to navigate towards a rewarding location. In
1971, researchers have for the first time found direct evidence that the hippocampus,
a brain area in the limbic system, may contain such a cognitive map. The activity of
neurons in the hippocampus of rats tends to be highly correlated with the animal’s
position within the environment. These “place cells” have since been the target of a
large body of research.

Apart from spatial learning, the hippocampus seems to be involved in a more
general type of learning, namely in the formation of so-called “episodic memories”.
Models of hippocampal function could thus provide valuable insights for the under-
standing of memory processes in general.

Insights from animal navigation could also prove beneficial for the design of au-
tonomous mobile robots. constructing a consistent map of the environment from
experience, and using it for solving navigation problems are difficult tasks. Incor-
porating principles borrowed from animal navigation may help building more robust
and autonomous robots.

The main objective of this thesis is to develop a neural network model of spatial
learning in the rat. The system should be capable of learning how to navigate to a
hidden reward location based on realistic sensory input. The system is validated on
a mobile robot.

Our model consists of several interconnected brain regions, each represented by a
population of neurons. The model closely follows experimental results on functional,
anatomical and neurophysiological properties of these regions. One population, for
instance, models the hippocampal place cells. A head-direction system closely inter-
acts with the place cells and endows the robot with a sense of direction. A population
of motor-related cells codes for the direction of the next movement. Associations are
learnt between place cells and motor cells in order to navigate towards a goal location.

This study allows us to make experimental predictions on functional and neuro-
physiological properties of the modelled brain regions. In our validation experiments,
the robot successfully establishes a spatial representation. The robot can localise
itself in the environment and quickly learns to navigate to the hidden goal location.
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Zusammenfassung

Wenn ein Tier seine Umgebung erkundet, werden nützliche Informationen in
seinem Gehirn gespeichert. Zu einem späteren Zeitpunkt können diese Informatio-
nen abgerufen werden und dem Tier helfen, gefährliche Orte zu umgehen oder eine
zuvor entdeckte Nahrungsquelle wiederzufinden. Diese lebenswichtige Fähigkeit wird
“räumliches Lernen” genannt.

Um 1948 haben Verhaltensforscher aus theoretischen Gründen postuliert, dass
die Ratte eine “kognitive Karte” ihrer Umgebung erstellt. Diese Karte wird dann
verwendet, um einen Zielort aufzusuchen. 1971 wurde zum ersten Mal ein direkter
Hinweis gefunden, dass der Hippocampus, eine Gehirnregion im limbischen System,
eine kognitive Karte enthalten könnte. Die neuronale Aktivität im Hippocampus der
Ratte scheint im Zusammenhang mit dem Aufenthaltsort des Tiers zu stehen. Diese
sogenannten “Ortszellen” sind seither das Ziel vieler wissenschaftlicher Studien.

Der Hippocampus scheint nicht nur am räumlichen Lernen, sondern an einer
generelleren Form von Lernen beteiligt zu sein, nämlich an der Bildung von “episodis-
chem Gedächtnis”. Mathematische Modelle dieser Hirnregion könnten wichtige Bei-
träge zum Verständnis von Gedächtnisfunktionen leisten.

Aus den Navigationsmechanismen bei Tieren gewonnene Einsichten könnten sich
auch beim Entwurf von autonomen Robotern als nützlich erweisen. Die auf Erfahrung
basierte Erstellung einer Umgebungskarte und deren Gebrauch für Navigationsprob-
leme sind komplizierte und schwierige Aufgaben. Das Einbinden von Prinzipien aus
der Tiernavigation könnte helfen, fehlerunanfälligere und autonomere Roboter zu
konzipieren.

Das Hauptziel dieser Doktorarbeit liegt in der Entwicklung eines Modells für
räumliches Lernen bei der Ratte mittels eines neuronalen Netzwerks. Das System
soll in der Lage sein, in einer realistischen Umgebung an einen versteckten Zielort zu
navigieren. Das System wird auf einem mobilen Roboter getestet.

Unser Modell besteht aus mehreren vernetzten Gehirnregionen, wobei jede durch
eine Zellpopulation repräsentiert wird. Dabei werden funktionelle, anatomische und
neurophysiologische Eigenschaften dieser Regionen berücksichtigt. Eine Population
modelliert zum Beispiel die Ortszellen im Hippocampus. Ein Richtungssystem inter-
agiert ständig mit den Ortszellen und stattet den Roboter mit einem Orientierungs-
sinn aus. Eine Population von Aktionszellen kodiert die Richtung der nächsten Be-
wegung. Für die Zielgerichtete Navigation werden Assoziationen zwischen Ortszellen
und Aktionszellen gelernt.

Die vorliegende Studie erlaubt funktionelle und neurophysiologische Voraussagen
über die modellierten Gehirnregionen. In unseren Experimenten erstellt der Roboter
erfolgreich Umgebungskarten, mit deren Hilfe er sich lokalisieren kann. In kurzer Zeit
lernt er, zum versteckten Ziel zu navigieren.
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Chapter 1

Introduction

When animals find an interesting place such as a food source, they can somehow
store in their brains the location where the food was found. Later, when the animal
is again near this “rewarding location”, they are able to recall this information and
find the food again.

In order to study and compare animal performance, experiments often use similar
environments. Probably the most frequently used setups are the 8-arm maze and
the water maze (figure 1.1). In the 8-arm maze, food is placed at the end of each
arm. The animal is put on the central platform, from where it enters the arms and
retrieves the food. After some arms have been visited, the animal is removed from
the maze for a while. When it is put on the central platform again, it only enters
arms that have not been visited yet. In the water maze, a small platform is placed at
a fixed location just under the surface of the cylindrical swimming-pool. The animal
can escape from the water by climbing onto the platform. The water is made opaque
such that the platform is not visible. After a few learning trials, the animal directly
swims to the platform from any location of the maze.

How can animals do that? This is the main question we address in this thesis. In
the following, we argue why this is an interesting question and why research should
be done in order to come closer to an answer.

1.1 Motivation

The task of memorising the locations of interesting places and finding them again
later is termed “spatial learning”. Over the last twenty five years, enormous progress
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Figure 1.1: Frequently used environments for animal experiments: (a) 8-arm maze,
(b) Water maze

has been made in understanding brain fuunction in general and spatial learning in
particular. For instance, it is today undisputed that the hippocampal formation, a
brain area in the limbic system, is involved in spatial learning. But why is it important
to know how spatial learning or the brain in general works? We propose two reasons
why this could be of interest.

Understanding brain functions could help curing neurological diseases and disor-
ders. Spatial learning seems to be a very basic function of the brain. If understood,
it could provide valuable information in a much broader field of application. For
instance, the hippocampus, which has such a predominant role in theories of spatial
learning, is involved in much more general brain functions. Patients with hippocam-
pal damage show severe deficits for several types of learning and memory, in particular
for the so-called episodic memory.

A second reason why understanding the brain could be beneficial is that we may
use the principles of brain function and incorporate them into man-made artefacts.
Mobile robots, for instance, could benefit from theories of spatial learning in animals
in order to become more autonomous and robust, and hence more “intelligent”.

Now, we turn to the question why there is the need for yet another model. Obvi-
ously, we are not the first to propose a neural mechanisms underlying spatial learning.
Many proposals exist in which a simulated animal (which we will call “agent” from
now on) localises itself in an environment and learns to navigate to a rewarding lo-
cation. However, we find that in none of the existing neural spatial learning systems,
the agent can localise itself in a realistic environment without the use of a compass
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or a salient visual cue. Secondly, when combining information from multiple sensory
systems, existing models do not adapt the importance of each sensory input to the
environmental conditions, e.g. the illumination. Finally, agents in existing models
learn to approach the target by moving, at each time step, in a direction drawn from
a small discrete set.

The objective of this thesis is to fill these gaps. We develop a biologically plausible
spatial learning system. The agent should be able to: (i) Localise itself and navigate
in a realistic environment without the need of a compass or a known salient stimulus.
(ii) Learn to weigh the relative importance of different sensory systems according to
the environmental conditions. (iii) Efficiently learn to find a rewarding location while
allowing movements in arbitrary continuous directions.

1.2 Methods

In order to achieve the aim of the thesis, we make use of several tools and methods.
The two most important tools we employ are described here.

Artificial neural networks: The nerve cells in the brain are also termed “neurons”.
The brain contains an incredibly large number of neurons, and each neuron
is connected to many other neurons by “synapses”. Every synapse has a cer-
tain “efficacy” for transmitting information from the presynaptic neuron to the
postsynaptic cell. The efficacy of a synapse is “plastic”. It can be increased or
decreased, which is thought to be the underlying principle of “learning”. Neu-
rons communicate with each other by transmitting short pulses called “spikes”.
It is not known how information is coded in these trains of spikes. In this the-
sis, we use a simplified model of a neuron, called a “rate coded neuron”. The
activity of neuron i is expressed as the mean spike rate ri in some short time
window ∆t. Our network of artificial neurons is synchronised by a global clock
of period ∆t. This simple neuron model makes it feasible to simulate a network
of thousends of interconnected neurons. Therefore, artificial neural networks
are also termed “connectionist networks”.

Mobile robot platform: In order to validate our model, we implement it on an au-
tonomous Khepera1 mobile robot. The Khepera is equiped with a camera and
other sensors (see 5.1). We also employ a simulated Khepera robot in our test
experiments.

1The Khepera mobile robot manufactured by K-Team (http://k-team.com/)

http://k-team.com/
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1.3 Results and Contributions

In this thesis, a new connectionist model of the interactions between several brain
areas involved in spatial learning is proposed. Each area hosts a population of neurons
which serves a particular purpose. The model is validated on a real and simulated
mobile robot in three visually rich and one impoverished environment. The main
results and contributions of this thesis are:

• The modelled neurons share firing properties with real neurons of the corre-
sponding brain area. The interconnections between modelled areas are based
on experimental results. The model is thus biologically plausible.

• In all test-environments, the system establishes an allocentric spatial represen-
tation of position and heading. Their spatial firing is similar to what has been
reported in electrophysiological experiments in rats.

• When the agent is placed in a familiar environment and disoriented, the learnt
spatial representation (position and heading) is recalibrated within four seconds
using visual input. No compass or salient directional cue is necessary for this
recalibration.

• The system learns to weigh visual and tactile sensory input according to the
illumination [274].

• In all explored test environments, the model successfully learns to directly nav-
igate to a hidden goal from any location after 20 learning trials. During and
after learning, the robot’s direction of movement is not limited to a discrete set
of headings [273].

• This work allows us to make testable experimental predictions on the firing
properties of place cells as well as functional and behavioral implications of
lesions in th modelled brain regions.

1.4 Structure of the thesis

This thesis contains some necessary background for our model in the first four chap-
ters. Chapter 5 describes the conditions in which our model is tested. In chapters 6
to 8, our contributions are described in detail. The topics of the chapters are:

Chapter 2 provides a review of experimental and modelling results concerning spatial
representations in animals. A large part is devoted to experimental studies of
the rat’s hippocampal formation.
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Chapter 3 is dedicated to animal navigation. In particular, we describe what kinds of
strategies are used by animals. Furthermore, some typical experimental tasks
are presented. An outline of previous models for animal navigation is given.

Chapter 4 is a brief introduction into the theory of reinforcement learning. It provides
the fundamentals to the understanding of our proposed navigation model.

Chapter 5 describes the environments we used to validate our model. Four different
setups which we often refer to are introduced. Furthermore, the preprocessing
of the sensory input to our model is described.

Chapter 6 presents our model for the construction of a cognitive map. We describe
how visual and movement-related information is combined into stable and con-
sistent spatial representation. This chapter contains the main contributions of
this thesis.

Chapter 7 provides a simple abstract model of multimodal integration. A gating
network learns to weigh sensory modalities according to the environmental con-
ditions.

Chapter 8 contains our proposal for a mechanism of animal learning. It combines
our spatial representation and a reinforcement learning mechanism in order to
achieve goal-directed behaviour in continuous state and action spaces.

Chapter 9 summarises the contributions of this thesis. Various experimental predic-
tions of our model are discussed. A comparison to the previous models outlined
in chapters 2 and 3 is also given. Finally, a list of limitations of our system is
established and some future directions of interest are suggested.
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Chapter 2

Spatial representations in animals

Animals use various navigation strategies to solve a spatial task (see section 3.3).
While a simple stimulus-response behaviour is sufficient for solving easy tasks such
as navigating towards a visible goal location [56], more sophisticated mechanisms are
required to navigate in a complex environment. Tolman [293] first suggested that an-
imals are using “cognitive maps” for solving such complex navigation tasks in 1948.
Such a cognitive map contains information about the context of the task. It should,
for instance, enable the self-localisation of the animal and support navigation by indi-
cating the positions of interesting locations such as food sources or dangerous places.
In 1971, O’Keefe and Dostrovsky [197] discovered that neurons in the hippocampus
of the rat discharge as a function of the animal’s position and heading in its envi-
ronment. It was quickly suspected that these “place cells” could be the neuronal
substrate of a cognitive map. The rat’s hippocampus and its place cells thus have
been studied extensively for the last 25 years.

In this chapter, we review the literature on cognitive maps and other represen-
tations of space that are likely to support animal navigation. The first part details
the involvement of the hippocampus in spatial learning. Next, a simpler type of
representation termed “path integration” is discussed. Then, we review important
biological background on the multisensory maps in the superior colliculus, which is
the inspiration for our model of multimodal integration (chapter 7). Finally, selected
previous models are outlined.

7
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2.1 The rat hippocampus

The startling discovery of place cells in the hippocampus [197] created a whole new
field of research on the involvement of the hippocampus in spatial learning and naviga-
tion. The activity of place cells in the hippocampus is highly correlated with the rat’s
spatial location in its environment. If every location in the environment is covered by
such place cells, efferent neurons could thus decode the rat’s spatial location only by
considering the place cells’ activity [100, 99, 237, 336]. This place code may form the
basis of a complex spatial learning system. This section reviews experimental results
which reveal key properties of hippocampal place cells.

2.1.1 Anatomy

The hippocampal formation (HF) is a limbic brain area which occupies a considerable
percentage of the rat’s brain (figure 2.1 (a)). It includes the hippocampus (HPC),
entorhinal cortex (EC) and the subicular complex (SbC) [7, 8].

The hippocampal formation

Inputs to HF: EC is a target of most higher cortical associative areas. HF can there-
fore operate on highly processed sensory information from all sensory modalities [42].
Through the fornix bundle, the hippocampal formation receives afferent connections
from subcortical areas, in particular cholinergic and GABAergic projections from the
medial septum. Cholinergic input targets mainly the excitatory pyramidal and gran-
ule cells, as well as inhibitory GABAergic interneurons. GABAergic septal neurons,
on the other hand, selectively synapse on GABAergic interneurons only [91].

Outputs of HF: There are two main outputs of the HF: One pathway leaves the
HF through the subiculum and projects to subcortical areas. It innervates thalamic
nuclei, amygdala and–via the fornix fibre bundle–nucleus accumbens (NA) [329,149].
A second pathway projects to many cortical areas through EC [126].

Internal connectivity in HF: EC is the primary sensory input area of the HPC.
It consists of a medial (mEC) and a lateral (lEC) region. Figure 2.1 (d) shows a
more detailed diagram of the HF internals. HPC can be further divided in: dentate
gyrus (DG) and the cornu ammonis (CA). CA has four subregions, but CA1 and
CA3 are the most prominent [7, 329, 8]. SbC is composed of the subiculum (Sb), the
pre-subiculum (prSb) and para-subiculum (paSb) [7]. The simplified flow of sensory
information can be divided into the following stages (figure 2.2): (i) EC receives
sensory information from associative cortical areas and transmit them to DG, CA3,
CA1 and Sb via the perforant path (pp). (ii) DG mossy cells strongly bias CA3
pyramidal cells via the mossy fibres. (iii) CA3 projects to CA1 and Sb through the
Shaffer-collaterals (sc). (iv) CA1 cells synapse on Sb–as well as EC neurons. (v) Sb
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Figure 2.1: Hippocampus anatomy. All pictures adapted from [8]. (a) Schematic rat
brain with highlighted hippocampus. (b) Coronal section. (c) horizontal section. (d)
schematic illustration of (c). EC: entorhinal cortex. HPC: hippocampus. DG: dentate
gyrus. CA1/3: cornu ammonis subregions. Sb: subiculum. PrSb: pre-subiculum.
PaSb: para-subiculum. pp: perforant path. mf: Mossy fibres. sc: Shaffer collaterals.
fx: fornix
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Figure 2.2: Schematic illustration of the HF internal interconnections. See figure 2.1
for a description of the labels.

sends its output via the fornix (fx) to subcortical regions, but also to EC. (vi) EC
projects back to cortical areas.

Entorhinal cortex

Entorhinal cortex is the cortical gateway to the hippocampus. A distinction can be
made between the medial and the lateral areas. EC follows the general neo-cortical
architecture of a six-layered structure that has been extensively studied [141, 329,
126]. Nevertheless we do not make a distinction between layers of EC for reasons of
simplicity and focus on the differences between the medial and the lateral areas.

Inputs to EC: Both mEC and lEC receive projections from sensory associative
areas (visual, auditory and somatosensory) as well as from the parietal, temporal
and frontal areas via perirhinal and postrhinal cortices [329, 283, 126, 152]. Olfactory
information from the olfactory bulb and piriform cortex is conveyed directly and via
perirhinal cortex [141,331,249,152,30,332,127]. The subiculum as well as CA1 send
their output mainly to mEC, but also to lEC. DG and CA3 don’t innervate EC [7,329].
Pre-subiculum also synapses on mEC.

Outputs of EC: EC cortical efferents target primarily perirhinal, orbitofrontal
and piriform cortices, but parietal, temporal, frontal and occipital areas are also
innervated [60,329,126]. Via the perforant path, EC conveys multisensory information
from its cortical afferents to DG, CA3, CA1 and Sb [7, 329].
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Internal connections in EC: Neurons in the deep regions connect to cells in the
superficial layer of EC [7,329,8]. There is also evidence for strong synaptic innervation
from the lateral to the medial region [221].

Dentate gyrus

DG granule cells receive processed sensory input from EC. Granule cells then project
to mossy cells. Mossy cells laterally contact other mossy cells as well as strongly
project to CA3 [55,8,115]. Throughout the entire life, neurogenesis occurs in the rat
DG. Stem cells migrate into the granule layer and differentiate into fully functional
and networked granule neurons [24, 143,54,115].

Cornu ammonis or hippocampus proper

The hippocampus proper consists of four subregions CA1-CA4, with CA1 and CA3
being the most distinguishable. Place cells have originally been found in CA1 pyra-
midal cells in 1971 [197].

Inputs to CA: The CA3 region receives strong projection from DG via the mossy
fibres. Both CA1 and CA3 are also innervated by EC via the perforant path [7, 5,
329,8, 115].

Outputs from CA: CA1 an CA3 pyramidal cells connect to subiculum via the
Shaffer fibre bundle. The angular bundle connects CA1 to EC (perforant path) [6].

Internal connections in CA: CA3 neurons laterally send outputs to other CA3
neurons via the Shaffer collaterals. Also via the Shaffer fibres, CA3 connects to
CA1 [7, 5, 8].

Subiculum

The subicular complex (SC) consists of the subiculum (Sb), the pre-subiculum (prSb),
whose dorsal part forms the post-subiculum (poSb) and the para-subiculum (paSb).

Inputs to SC: The main input to Sb originates in CA1 and EC [6]. The paSb
is innervated by the retrosplenial cortex whereas prSb is reached from areas in the
temporal and parietal lobes, as well as from thalamic nuclei, which project onto
poSb [40].

Outputs from SC: Via the fornix fibre bundle, Sb projects on the nucleus ac-
cumbens (NA) and the septal complex. Sb also innervates entorhinal and prefrontal
cortex, amygdala and the thalamus. prSb and paSb also synapse on EC [7,329].

Internal connections in SC: Within SC, Sb projects to prSb and paSb and prSb
also synapses on paSb [7, 329].
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2.1.2 Hippocampal EEG

The hippocampal EEG shows distinct patterns depending on the rat’s behaviour.
During motion (active or passive [98]), the EEG shows a 6–12Hz oscillation called
theta rhythm [199, 41, 264]. Theta is also observable during sensory scanning (eg.
sniffing) and REM-sleep [46]. On top of that, firing is synchronised to a gamma oscil-
lation of 40–100Hz throughout the whole hippocampal formation [53,59]. Subcortical
cholinergic and GABA-ergic inputs from the septal region seem to be responsible for
generating the hippocampal theta rhythm [326, 44, 173, 113]. When septal input is
inactivated, the CA3 place fields are disrupted whereas the CA1 fields are unaffected.
Simultaneously, acquisition of place learning tasks is impaired [37] and errors in work-
ing memory increase significantly [178].

While eating, drinking or awake-immobility as well as in slow-wave sleep, however,
the EEG shows large field high irregular amplitude signature, termed sharp waves.
During each sharp wave event, a high frequency ripple volley of 140–200Hz occurs
[53, 52]. It is speculated that theta/gamma waves synchronise input from cortex to
hippocampus, whereas sharp waves/ripples modulate output from hippocampus back
to cortex [53].

2.1.3 When do place cells fire?

Hippocampal place cells fire at rates of up to 50Hz when the rat traverses a specific
portion of the environment whereas it is almost completely silent otherwise [195].
The shape of place fields varies: The firing rate can be distributed approximately
like a circular Gaussian in 2d (same variance in all directions), but it may also be
elongated in one dimension (especially along walls) or in rare cases have multiple
peaks of activity [189,195,163,324].

Sensory cues

Distal vs. proximal cues: In many experiments in various mazes (see section 3.4),
rats can see local landmarks within the maze (such as corners or irregularities on the
maze walls) as well as distal cues outside of the maze (ie. posters on the walls) [196,
174, 187, 189, 200, 253, 36, 221, 28, 334, 195, 58]. When the arena is rotated, the place
fields generally stay relative to the distal cues [196,174,200,253,334,58]. If, however,
a reward is given relative to a local cue, place cells can learn to fire relative to
this cue and ignore distal cues. This is particularly true for place cells near the
landmark [28,29,108].

Directionality: Place cells fire at specific locations in an environment. However,
a place cell may fire independently of the rat’s heading or it may fire only when
the rat is oriented in a specific direction. In general, open field environments tend
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to produce omnidirectional firing [163, 186, 158, 195]. In linear tracks, radial mazes
and square loops, where the rat’s trajectory is stereotype, place cells which fire at
a specific location are silent when running in the opposite direction [163, 159, 107,
167, 169]. Firing is also directional in an open environment where the rat is not
forced–but motivated (by food) to run in a square loop [159]. This suggests that
it’s the experienced trajectory or local views–not the maze type–which determines
directionality.

Non-visual sensory cues: Place cells are strongly influenced by vision. However,
somatosensory, olfactive and internal (path integration) cues seem to contribute to
the formation and maintenance of place fields [120,241,242,145,146,233]. When land-
marks are removed from an explored environment, the place code is not necessarily
disrupted [196,120,217,187,200]. Stable place fields can also be established in the dark
and they persist when the light is turned on after exploration [220,158,242]. Rats that
have been blinded shortly after birth can show normal place fields as adults [241].
Congenitally blind and deaf rats follow local cues when the maze is rotated [120]
and show landmark-relative firing (but only after the first contact with a local land-
mark [242]). A place code established in normal lighting conditions persists for up to
8 minutes when turning off the light [220]. It is suggested that this time is bridged
by path integration. Cleaning the floor during or between experiments, however,
decreases this persistence to 2 minutes. Not cleaning the floor, on the other hand,
strongly increases the stability and coherence of the place code even in the presence
of visual cues, suggesting an important role of olfactory cues [242].

Environment geometry: Place fields have been shown to stretch if the environment
is resized [187]. In rectangular arenas, fields that are centred at a certain ratio
between walls are centred at the same ratio when the environment is stretched in
one dimension [195].

Small or gradual changes: When cue cards are slightly rotated during a session,
place fields follow the cue rotation whereas they don’t if the rotation is large and
quick [234]. In an environment with multiple landmarks, place cells can be stable
when removing some–but not all landmarks [196, 187, 200]. This suggests that place
cells learn to ignore unstable landmarks if there are sufficient other cues available.

Sequential activation

Phase precession: In the behaving rat, the firing times of place cells in CA is synchro-
nised to the phase of theta. The relationship between place cell firing and theta phase
depends on the animal’s experience: When the naive rat traverses the place field of
cell i, it fires at the constant phase θi = θ0

i . After many repetitions of traversing the
place field, θi starts depending on the position of the rat within the field: When the
rat enters the field, the cell still fires at θ0

i . As the rat moves towards the centre and
the far end of the field, however, the firing phase θi decreases systematically. This
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shift is termed phase precession. It is a temporary effect and seems to have van-
ished on the following day [199, 264]. There are some interesting consequences due
to phase precession: (a) The phase of firing provides additional information about
the rat’s location within a place field [41]. (b) Within one theta cycle, two place
cells with adjacent fields fire in the same order as the order of activation due to
the rat’s movement [264, 130]. This temporal compression might be important for
learning sequences on a behavioural timescale in the framework of spike timing de-
pendent plasticity, which requires a much shorter timescale [170]. Models of how
phase precession could emerge are proposed in [300,35,153,168,111]

Experience dependent Shift: If the same trajectory is repeated many times, CA1
place cells on that trajectory start to enlarge their fields backwards and become asym-
metric [167,168]. This can be viewed as a mechanism to predict future location [188].
However, this effect vanishes overnight and is not persistent across environments: A
place cell with asymmetric field in a well-known environment can show a symmetric
field in an unfamiliar environment. It has been proposed that this asymmetric shift
is necessary to produce phase precession [168], but see also [125].

Replay during sleep: Place cells which were active during an experimental session
are more likely to be activated during subsequent sleep [213, 259]. Furthermore,
cells which are co-activated during a session (because their fields overlap) also show
correlated firing during sleep [325]. The temporal order of firing is also correlated.
This suggests that recent sessions may be replayed during sleep, possibly helping to
consolidate the acquired episodic memory [263].

Context dependence

multiple environments: In any environment, only a subset of 10-25 percent of all
pyramidal cells are active. All other cells are completely silent [291]. Place cells seem
to be randomly attributed to these subsets and any cell may be active in several
environments. If it is, however, the place fields in those environments are totally
unrelated [142,291]. Whenever an animal is returned to a familiar environment, place
cells show fields consistent with previous sessions in the same environment [189,292].

No topology: Place cells are not topologically arranged in the hippocampus. If
two place cells code for a neighbouring place in an environment, they need not be
anatomical neighbours in the rat’s brain. Neighbours in the hippocampus needn’t
show neighbouring place fields either [196,142,187,291]

Tuning speed: It is not clear how long it takes to establish a place code. Place cells
have been observed to get tuned persistently the first time the rat traverses through
the cell’s receptive field [119]. However, further investigation shows that it can take
from 10–30 minutes, or even hours until the place code is stable [324,284].

Non-spatial determinants: Place cells are also sensitive to information other than
the rat’s location. For instance, their firing activity depends on speed, orientation,
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task, reward, odour or tone discrimination and many other variables [163, 158, 159].
In general, the hippocampus seems to encode and memorise the whole context of an
episode, in which spatial information is only one part.

Remappings: Entire place codes can suddenly and instantly switch to a different
representation for the same environment. This event is termed a “remapping”. A
different subset of place cells may be active for each task in the same environment.
The subsets needn’t be disjoint and and place cells seem to be randomly attributed
to those subsets. Cells that are active in several tasks may have different place
fields [159]. The effect largely resembles the case of multiple environments.

Place cells outside the hippocampus proper

Place cells have mainly been recorded in CA. However, the other areas of the hip-
pocampal formation also host cells with spatial firing properties:

Dentate gyrus (DG): DG granule cells show directional place cells in the radial arm
maze. Their place fields are significantly smaller than for CA pyramidal neurons [135].
Granule cells also exhibit phase precession [264,106].

Subiculum (Sb): In the subiculum place cells show less spatial specificity than
in CA [23]. Firing depends not only on place, but also on speed of motion [162].
Depending on the trajectory constraints, CA place fields may be omnidirectional (eg.
in open field exploration). Subicular place fields, however, are directional even in
open environments [258]. Sb place cells also preserve their topology across scaled and
reshaped environments: The field of a place cell in a square environment is on the
same position and has the same shape in a round arena. In a scaled environment, the
place field scales with the environment [258,255,257]

Entorhinal cortex (EC): Similarly to Sb place cells, neurons in the medial entorhi-
nal cortex (mEC) preserve firing topology across reshaped environments. Place cells
are also likely to be active in any environment, in contrast to CA place cells, which
may become silent or code for a completely different place [221]. Place fields in EC
are also less spatially specific than in CA. They fire in all regions of the arena, with a
peak at its dedicated position [221,89,90]. CA place cells, however, are silent outside
of their field. EC firing is also modulated by theta [179].

2.2 Path integration

Homing by dead reckoning (HDR) is the ability to return to the starting point of
a journey, eg. the nest location, without using allothetic cues [22, 177]1. This is

1Allothetic cues means that the source of information is outside of the animal. Visual input for in-
stance is allothetic. In contrast, idiothetic cues are internally generated. Vestibular or proprioceptive
cues are examples of idiothetic sensory input.
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Figure 2.3: Path integration as a spatial representation (shaded area). The essential
building blocks are: (i) A memory of the spatial variables to integrate, (ii) sensors which
provide displacement information in various formats, and (iii) an update function which
transforms from sensory specific frame into the common frame of the memory.

considered an easy task and a wide variety of species can solve it (see section 3.3.1
for a review of behavioural experiments on HDR). In this section, we focus on the
spatial representation needed for HDR. In this thesis, we call this representation a
Path integrator (PI). It is less complex than a hippocampal cognitive map. Indeed,
an intact hippocampus is not necessary for HDR [4].

In its simplest form, a path integrator is a system composed of three modules (fig-
ure 2.3): (i) a memory of spatial variables (e.g. the position and heading of the agent)
in an arbitrary coordinate frame. (ii) Sensory input (e.g. optic flow, vestibular, pro-
prioceptive etc.) which provide relevant information about the change of the spatial
variables in sensor-specific arbitrary coordinate frames. (iii) An update mechanism
which transforms and combines all sensory information into the common frame of the
spatial memory. Additionally, an external signal may recalibrate the path integra-
tor’s memory in order to remove drifts or reset the spatial variables to a known initial
state.

In our terminology, we focus on the memory aspect of PI—the storage and update
of the agent’s position and heading for example, and not on the navigation part, such
as using the stored values for homing. Other definitions of PI are more similar
to what we term HDR. They include a simple navigation strategy based on vector
subtraction and exclude allothetic input for the update (see section 3.3.1 and compare
figures 3.2 and 2.3),

The outputs of a PI system are the spatial variables which allow the animal to
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localise itself or other places (food, nest). For some HDR tasks, only the egocentric
bearing of the nest needs to be integrated [260]. Let us focus on the more common
view, where path integration represents the animal’s location in space with respect
to some reference point (e.g. the nest). Often, a distinction is made between a
head-direction and a position system. In our terminology, they both take part in
path integration. The output of the PI then is the current position ~p = (x, y) and
heading θ of the agent.

The input is a small displacement signal since the last update. This input consists
of internally generated (idiothetic) cues, such as motor efferent copy, vestibular and
proprioceptive input as well as external (allothetic) cues (e.g. optic flow), which can,
when available, reduce the effect of systematic drifts [103,43,176,164].

Independently of the origin of the input signal, path integration contains memory2,
in the form of the stored position and heading.

The question of how the animals perform PI is not known, but several brain areas
are known to be related to PI. Candidates for the neural locus of the position system in
mammals include the hippocampus [162,238], subiculum [228], para-subiculum [228]
and entorhinal cortex [228, 255, 256]. However, animals with hippocampal lesions
are still capable of HDR [4], which is not consistent with [162, 238]. Brain areas
suspected to be involved in a head direction system are: The postsubiculum [222,288],
anterodorsal [285,31,139] and laterodorsal [180,179], nuclei of thalamus and the lateral
mammillary nuclei (LMN) [150,268].

2.3 Multimodal integration

Multimodal integration is the process of combining information from different sen-
sory organs into a common representation. The multimodal experience and its origins
have been intensely studied during the last 50 years. Psychologists and psychophysi-
cists were the first to examine multimodal integration and its development in human
infants.

Piaget [216] stresses the fact that infants explore their environment actively and
particularly like multisensory experiences. This motivation may be important to
maximise information acquisition. Intermodal correlations are then established with
touch being the reference to which other modes are correlated to.

Gibson [103] puts a strong emphasis on intersensory aspects for perception of self-
motion. Not only vestibular and proprioceptive information from muscles and joints,
but also vision and maybe others may contribute to the percept of motion. One
consequence is that touch would not necessarily be more trustworthy than any other
sense (see [43] for a review of those early psychophysical experiments).

2When we just use the term “memory”, we refer to working memory, see section 3.3
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From evolutionary thoughts, Marks [157] concludes that a union exists between
senses already at birth and a differentiation takes place during early stages in life.
All senses share some common characteristics and therefore a common representation
exists for all sensory modes.

More recently, lesion studies aim at finding brain areas which are important for
multisensory perception. It has been revealed that the superior colliculus (SC) seems
to play a major role in spatial orientation and intersensory processing [270]. SC lesions
result in severe sensory (especially visual) neglect and spatial orientation deficits. In
order to find out how this brain region participates in multimodal integration, a series
of electrophysiological experiments try to characterise the properties of individual
neurons in superior colliculus [270]. The following section summarises the results of
these investigations.

2.3.1 Superior colliculus

The superior colliculi (SC) are two “hills” on the dorsal surface of the midbrain. In
lower animals, they are known as the optic tectum. SC is a seven-layered structure,
but most commonly, only two parts are distinguished: The three most dorsal layers
form the superficial, the four layers below are the deep part. In contrast to the
inferior colliculi which are purely auditory, the superior colliculi receive at least visual,
auditory and somatosensory inputs. The left colliculus processes input of the right
sensory hemisphere and vice versa [270]. When referring to the superior colliculus
(singular), we address any one of the two bumps if not specified otherwise.

Superficial layer: The superficial layer is mainly devoted to visual processing. In
primates, SC is well known for its implication in saccadic eye movement. There is a
large body of research on this topic, see [333] for a review. In the cat, oculomotor
reflexes also seem to be influenced by SC: If a target appears in the visual field, a
specific subset of SC neurons seem to initiate an orienting movement to bring the
target into the view centre. The direction and amplitude of the shift seems to be
coded by a population of SC neurons [191, 192]. Once the target is fixated, another
set of neurons fires tonically while the target is in the centre [191]. It has also been
shown that these shift-neurons form a topological map [192,270].

Deep layer: Deep layer neurons respond to visual, auditory and somatosensory
stimuli. They are innervated by ascending subcortical sensory structures as well as by
descending cortical areas. The cortical afferents origin in sensory cortical areas and are
therefore mainly unimodal. Some cells in deep SC respond only to a single modality.
The majority of its output neurons, however, seems to be multimodal. They respond
to a combination of visual, auditory and somatosensory stimuli. Efferent projections
target nuclei of the thalamus, the opposite superior colliculus, and–via two pathways–
brain stem and spinal cord [270,305].

The various unimodal sensory neurons in SC form topological maps. There are



2.3. MULTIMODAL INTEGRATION 19

maps for at least visual, auditory and somatosensory stimuli. Neurons seem to rep-
resent the spatial location of important stimuli’s origins. It is not always clear in
which coordinate frame objects are encoded, but there are indications that visual
maps are retinotopic, whereas auditory maps are head-centred and somatosensory
maps are body-centred [72, 270, 171, 308]. Motor neurons which serve the purpose of
orienting the sensory organs (eyes, ears, head, body) towards interesting stimuli are
also organised in topological maps.

The majority of the SC’s output neurons seem to be multimodal. As they respond
to a combination of topologically arranged unimodal cells, multimodal neurons also
form a map like structure [72, 214, 270, 171, 308]. It is not clear how the input from
different frames are combined, but as the receptive fields of unimodal neurons are
large, it has been suggested that a small displacement of one map (eg. due to a
exocentric eye position) would not completely disrupt the multimodal map. Another
possibility is that unimodal maps are coded in motor-error coordinates with respect
to the dominant sense [214,270].

An interesting property of multimodal units in SC is multimodal enhancement :
Presenting a visual or auditory stimulus alone is much less effective in making it fire
than presenting the stimuli together. In order to enhance the response of a neuron,
the spatial and temporal location of the stimuli have to coincide. If a sound is not
coming from the same location than the visual stimulus, however, the response is
depressed [270, 306]. Recent experiments enforce the belief that cortical input to SC
is necessary to produce multimodal enhancement [307,133,132]. The enhancement is
not present at birth, but rather develops through experience [309]. The distribution of
uni–and multimodal cells strongly depends on the species. In primates and cats, most
unimodal cells are visual and multimodal neurons are predominantly visual–auditory,
whereas in the rat, somatosensory units are the most numerous and tactile–visual are
the most common multisensory cells [71, 317,270].

Recent experiments also show that the basal ganglia–to which SC is reciprocally
connected–use similar enhancement and depression processing than SC and thus mod-
ulates sensory activity in the superior colliculus [131]. The basal ganglia are thought
to be involved in selecting an appropriate motor response in conflicting behavioural
situations. In sections 3.3.2 and 4.4, the relation of the striatum (a region of the
basal ganglia) to animal navigation is further discussed. In particular, during “taxon
navigation” (section 3.3.2), rats seem to make use of superior colliculus to orient
themselves towards a goal location.

In the rat, over 80 percent of 93 cells measured in superior colliculus show theta
field activity temporally coincident with spatial firing in hippocampus (see section
2.1.2). It is suggested that superior colliculus may be linked to hippocampal theta-
generating structures [194]. In rats performing a spatial memory task, spatial firing
patterns (tuned to place, orientation, or both) have been found in SC [57].
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Figure 2.4: Place cell model proposed by Sharp (1991): (a) system architecture.
Shaded areas mean winner-take-all competition. (b) Environment with eight land-
marks. Sensory cells encode the view considering only the distance d (type 1), or the
distance d as well as bearing φ to dedicated landmarks (type 2).

2.4 Previous models of hippocampal place cells

2.4.1 Sharp (1991)

The model proposed by Sharp [254] builds on visual cells that encode the agent’s
distance and bearing to several landmarks in the environment. Three layers of simu-
lated rate-code neurons and Hebbian-type learning between them results in a spatial
representation similar to hippocampal place cells. The circular environment contains
eight landmarks evenly spaced on the wall (figure 2.4).

In the first layer, two types of neurons encode the agent’s view of the simulated
environment. Each cell is “responsive” to one or several landmarks. Type 1 neurons
fire whenever the agent is within a certain range of its landmark, i.e. distance d to the
landmark is smaller than a neuron-specific maximum. The size of this range varies
among cells and can extend over the centre point of the arena. Type 2 cells also
only fire when the distance d to the landmark is within a given characteristic limit.
An additional requirement, however, is that the agent’s bearing φ with respect to its
landmark lies within a cell-specific limit. The size of these receptive bearing angles
varies from 80◦ to 170◦. The tuning of these cells (which landmarks at what distance
and bearing range activate a given cell) of both types of cells is random and remains
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fixed throughout the experiments.
The intermediate layer is comprised of three populations of 20 neurons. Each

cell j receives input hj =
∑

i wji from all sensory neurons i of the first layer. In each
cluster, the cell j∗ with the largest input h∗

j = maxj hj fires with a rate of h∗
j . All

other cells are silent [235]. A neuronal implementation of this winner-take-all (WTA)
scheme could be lateral interconnections within each cluster. All three active cells of
this layer are eligible for Hebbian type learning on their input synapses wji. Sharp
proposes entorhinal cortex as location for this layer.

The three active cells of the second layer project their activity onto the third layer,
which consists of one cluster of 20 neurons. The same WTA mechanism as in the
entorhinal layer is applied here, and again, the winner-neuron adapts its weights using
Hebbian learning. In this layer, which is proposed to be located in the hippocampus,
place cells with omnidirectional place fields are reported by Sharp for simulations in
the circular environment. When the movement of the agent is restricted to follow
paths like in an eight-arm-maze, simulated place cells are unidirectional, which is
consistent with recordings in rats.

This model relies on an abstract visual system where the exact distances to the
eight landmarks are available. All eight landmarks are also perfectly distinguishable
by the sensory cells. In the absence of light, this model can not sustain spatial
firing due to the lack of a path integrator. Rats can, however, maintain place fields
in the dark [220, 158, 242]. Finally, a winner-take-all mechanism is applied to the
modelled entorhinal cortex and hippocampus. Experimental data however suggests a
distributed and redundant coding of place in the hippocampal formation.

2.4.2 Burgess et al. (1994)

Burgess et al. [41] offer a model of place cells consisting of four layers of neurons, as
depicted in figure 2.5 (a). Visual cells are based on distances to landmarks placed
near the walls. The effect of theta-phase precession is reproduced by the system.

A set of 15 sensory cells is attributed to each landmark of the environment. Per
theta cycle, sensory cell i fires a number of spikes ni which depends on the difference
between the actual distance to the landmark and its specific preferred distance di.
The tuning curves are large and of triangular shape, and the preferred distances
uniformly cover the environment.

One layer above, each cell in entorhinal cortex (EC) receives input from two
predefined sensory cells i and j and fires bni · nj/2c spikes. The two afferent sensory
cells are chosen such that each is coding for a different landmark and the location of
their peak firing activities coincides with the centre of the entorhinal cell’s receptive
field. The angle α between the agent’s heading and the egocentric orientation of
the place-field centre determines the phase (with respect to the theta rhythm) at
which spikes are fired (figure 2.5 (b)): If |α| < 60◦, the cell fires at a “late” phase,
if 60◦ < |α| < 120◦, the phase is “middle”, and else the cell fires “early” in the theta
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Figure 2.5: Place cell model proposed by Burgess et al. (1994): (a) system architec-
ture. Shaded areas mean winner-take-all competition. EC: Entorhinal cortex, HPC:
Hippocampus, SUB: subiculum. (b) θ Phase precession: Firing of EC neurons is “late”
when the angle |α| between agent heading and place field centre is < 60◦, “middle”
when 60◦ < |α| < 120◦ and “early” when |α| > 120◦. The shaded area is the place-field
centre, which is, by construction, located between the two landmarks.

cycle. Burgess et al. postulate that phase precession as seen in hippocampal place
cells is generated in EC, which forwards this information to its target structure.

Each neuron in the EC layer connects to half of the cells in the hippocam-
pus (HPC). The synaptic weight is binary (0 or 1). Initially, most connections are
turned off. A Hebbian-type learning rule allows these synapses to be switched on if
the pre–and postsynaptic cells are both maximally active. The input to each place
cells in HPC is proportional to the sum of presynaptic spikes at active synapses. Neu-
rons in the HPC layer are clustered into five groups of 50 neurons. In each group,
only the four cells with largest inputs are allowed to fire spikes [235].

Each HPC place cells projects to half of the cells in the subicular layer (SUB)
of the model. The same Hebbian learning procedure as between EC and HPC is
implemented here. The only difference is that in SUB, cells are arranged in ten



2.4. PREVIOUS MODELS OF HIPPOCAMPAL PLACE CELLS 23

Allocentric
Bearing
Memory

Vestibular
Input

Motor
Efference

Copy

Visual
Input

Place CodePath Integration

Head
Direction

Φ

Local View

T,r, θ

Φ

Φ

Φ

(x,y)

(x,y)

φ

φ

θΦ

Figure 2.6: Architecture of the model proposed by Wan, Redish and Touretzky. Dur-
ing exploration, landmark information (type T , distance r and egocentric bearing θ)
is combined with head direction Φ to produce allothetic landmark bearing φ. The
allothetic bearing memory stores (T, r, φ). Path integration updates position (x, y).
Place cells use all this information to tune their receptive fields.

groups of 25 neurons. As a consequence, each cell has to compete with less cells,
which results in larger place fields as in HPC.

The allothetic input to this model is algorithmic. It consists of the exact distance
to the arena walls. Furthermore, the mechanism which determines the phase of
firing with respect to the theta rhythm depends on the bearing to the cell’s centre of
receptive field. It is not clear how the rat can compute this bearing. This model does
not include a path integrator and is thus incapable of producing spatial firing in the
dark.

2.4.3 Wan, Redish and Touretzky (1994, 1996, 1997)

The system by Wan, Redish and Touretzky [310,296,228,229] consists of separate pop-
ulations for the local view, head direction, path integrator and place code (figure 2.6).
All populations interact with each other in order to form a consistent representation
of space.

The visual input provides the system with information about landmarks. In their
simulated environment, the type Ti, distance ri and bearing angle θi to each land-
mark i enters the local view system. The compass bearing φik of landmark i, viewed
from place (x, y) is then calculated and stored. This calculation also requires infor-
mation about the agent’s current heading Φ which is provided by the head direction
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system.
The head direction system keeps track of the compass bearing Φ of the agent by

integrating angular velocity signals form vestibular cues and efferent motor copies of
motor commands. If the agent is disoriented, the current heading can be reset by the
local view system by comparing the egocentric and compass bearing of landmarks.

The path integrator updates the agent’s position (x, y) within the environment
by summing up motor efference copies. When reentering a familiar environment, the
internal state of the path integration system may be incorrect. It can, however, be
recalibrated using visual input. This is done via the place code module.

The place code population combines information about the local view and the in-
ternal path integration system. Each newly recruited place unit tunes to the following
parameters: (i) Type T , distance d and compass bearing φ of two randomly chosen
landmarks, (ii) retinal angle difference α = θi − θj between two (possibly different)
randomly selected landmarks, (iii) position information (x, y) given by path integra-
tion. Place units compute a “fuzzy conjunction” of their inputs in which terms that
are unavailable or thought incorrect drop out.

This model relies on an abstract allothetic input which features a perfect measure
of the landmark type, distance and bearing. The computations in the model are
performed in an algorithmic instead of a neuronal way.

2.4.4 Gaussier and colleagues (1998, 2000, 2002)

The models by Gaussier and colleagues [96,95,97] relies on the detection of landmarks
in real panoramic camera images. Spatial information is coded by the transition
between places (figure 2.7).

In a first step, visual features are extracted from the panoramic view. For each
detected landmark in turn, its type and compass bearing (the agent has a built-in
compass) are represented in a merged “what” and “where” matrix. The type neu-
rons form a winner-take-all network, whereas the compass bearing network supports
generalisation by “spreading” activity to neighbouring neurons.

When a place seems interesting (e.g. close to a goal location), a place cell of the
place recognition layer is recruited and units from the view-matrix connect to it. At
each time step, the activity of place cells is calculated in two steps: First, the initial
activation acti of place cell i is determined according to

acti = 1 −
1

πNi

·
N∑

k=1

Vik · [vk|Θik − θik|π + π(1 − vk)] (2.1)

where N is the number of detected landmarks in the current time step, Ni is
the number of visible landmarks when place cell i was recruited, Θik is the compass
bearing of landmark k viewed from place i, θik is the compass bearing of the same
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Figure 2.7: Architecture of the model proposed by Gaussier and colleagues. Land-
mark type and bearing are extracted and merged in a recognition matrix. Place cells
compete with each other implementing a winner-take-all (WTA) mechanism. Place
cells allow the following layer to predict potential future places by associating the de-
layed place of the previous time step (e.g. place A) with the current place. After
transition learning, possible future places (e.g. B or C) can be predicted.

landmark viewed from the current position. Vik is set to one if landmark k was visible
when cell i was recruited or zero otherwise. vk is set to one if landmark k is visible
from the current location and zero otherwise. |.|π is the absolute value modulo π.
Second, a winner-take-all mechanism resets the activities of all but the winning cells
to zero. The place recognition module is attributed to cells in entorhinal cortex (EC)
and dentate gyrus (DG).

A delay in the place recognition layer allows the next layer to learn place transi-
tions: Previously active cells connect to transition cells using a Hebbian-type learning
rule.

Allothetic input to this system is provided by a real camera. However, these
camera images are aligned using an artificial compass. In the place recognition layer,
a winner-take-all mechanism suppresses all but one neuron. This is in contradiction
with experimental data which reveals the distributed and redundant nature of the
hippocampal place code. In the absence of visual input, this model does not work
due to the lack of a path integration component.

2.4.5 Arleo et al. (2000, 2001)

Arleo et al. [13,14,16,15] propose a spatial learning system based on low-level feature
extraction of real camera images from a miniature robot. Idiothetic representations
are calibrated using visual stimuli (figure 2.8).

The feature extraction module transforms the high-dimensional camera image
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Figure 2.8: Architecture of the model proposed by Arleo et al. Low-level visual fea-
tures are extracted and stored in view cells (VC) which drive visual place cells (VPC).
Vestibular cues update the head direction (HD) system as well as a population of path
integration cells (PIC). VPC and PIC converge onto a population of place cells (PC).
Synapses are modified using a Hebbian learning. HD and PIC are constantly recali-
brated by VPC to keep the representations consistent.

into a filter-based representation. Two Alternatives are described. (i) Linear vision
camera: Walsh-like filters are tuned to various patterns and spatial frequencies. (ii)
2d camera: A set of modified Gabor filters are tuned to different orientations and
spatial frequencies. A log-polar retinotopic sampling grid is placed on the image and
the filter set applied to each “retina” point.

At each time step, the agent takes four “snapshots”, one in each cardinal direction.
For each orientation, the filter activities are stored in “view cells” (VCs).

An unsupervised growing network scheme is employed which recruits visual place
cells (VPCs) when necessary. Synapses from VCs to VPCs are initialised and modified
using a Hebbian-type learning rule. VPCs are suggested to occupy superficial lateral
entorhinal cortex.

Vestibular input drives populations of head direction (HD) and path integra-
tion (PIC) cells. PIC is postulated to be located in superficial medial entorhinal
cortex, whereas the HD system is is distributed across ante–and laterodorsal thala-
mic nuclei, lateral mammillary nuclei and postsubiculum. Position information from
VPC is used to recalibrate path integration. Similarly, the bearing angle to a salient
landmark (a lamp) in conjunction with VPCs are used to recalibrate the head direc-
tion system.

PIC and VPC project to place cells in the hippocampus proper (PC). The same
unsupervised growing network scheme and Hebbian learning is applied to PCs. Re-
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alistic place fields are reported for both visual systems.
In this model, four real camera snapshots provide the visual stimulus for a place.

However, the images must always be taken in the four cardinal directions. Even
a small error in the estimation of the heading impairs the construction of a repre-
sentation and the localisation of the agent. Furthermore, the sensory preprocessing
assumes a foveal vision. The rat, in contrast, does not seem to have a fovea [124].

2.5 Models of multimodal integration

Most robotic systems make use of explicit probabilistic sensor models to represent
measurements and their uncertainty [302,160].

As representation of the environment, occupancy grids [77, 302, 160], stochastic
maps [48] or biologically inspired hippocampal place cells [13, 14] are successfully
used. The hippocampal place code differs from the other representations in that it
doesn’t contain the information of free vs. occupied space, but rather associates the
agent’s location directly with the corresponding sensorial measurement.

Some systems use sensor fusion techniques to enhance the quality of the spa-
tial representation. Probabilistic methods [48, 302] as well as neural networks [160]
are employed to integrate multimodal information into one coherent representation.
Those techniques aim at reducing the uncertainty present in the probabilistic map.
Most of these systems rely on representations and operations which are not easily
mapped to neuronal properties or brain areas.

Biologically inspired spatial learning systems [96,95,14,16,97], on the other hand,
mostly focus on a single allothetic modality and thus don’t propose a solution to the
integration of multiple allothetic sensory information.
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Chapter 3

Animal navigation

In this chapter, we review experimental and modelling studies of animal navigation.
Animals show various behaviours when solving navigational tasks. The selection of an
appropriate strategy depends on the task’s complexity and on the available sensory
input. The basal ganglia seem to play an important role in navigation. In particular,
they are suspected to be involved in the process of selecting an appropriate strategy.
Therefore, it is necessary to briefly review the basal ganglia in order to understand
the following sections. One factor which determines the complexity of a task is its
memory requirements. An appropriate navigation strategy thus relies on a suitable
memory system. For this reason, we present an overview of the properties of various
types of memories before the introduction of a common taxonomy for navigation
strategies. Then, we review experimental data on behavioural, neurophysiological,
and lesion studies which aim at discerning those strategies and finding their neural
substrates. The final section presents previous models of animal navigation relevant
to our work.

3.1 The basal ganglia

The basal ganglia (BG) is a brain area comprised of several nuclei in the fore–and
midbrain (figure 3.1). BG is known to be involved in motor-disorders such as Parkin-
son or Tourette. It is suggested that the BG resolves the conflict of competing motor
programs by inhibition of all but the selected [116,122,175].

The striatum is the main input structure of BG. It is innervated by almost all
cortical areas and the hippocampus. The substantia nigra pars reticulata (SNr) as

29
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Figure 3.1: Basal ganglia. (a) para-sagittal view (adapted from [116]). (b) Coarse
functional diagram of the basal ganglia: The dorsal path is thought to be involved in
orienting behaviours whereas the ventral stream is important for more complex spatial
navigation. Ctx: cortex. HPC: hippocampus. SNr/SNc substantia nigra pars reticu-
lata/compacta. VTA: ventral tegmental area. GPi: Globus pallidus pars interna. NA:
nucleus accumbens. CPu: caudate putamen. Th: Thalamus. SC: superior colliculus.

well as the internal part of the globus pallidus (GPi) are the main outputs of the BG.
They project mainly to the thalamus (and thus indirectly to cortex) as well as to the
superior colliculus (SC) [320,116,8, 175].

Dopaminergic neurons in the BG–namely the substantia nigra pars compacta (SNc)
as well as the ventral tegmental area (VTA)–both project back to the striatum. They
tend to synapse on the same spines than cortical and hippocampal afferents and
seem to be involved in the processing of reward signals which could possibly mod-
ulate synaptic plasticity in the striatum [92, 251, 266, 122, 248]. In particular, they
might signal errors in the prediction of rewards, a component which is at the core of
reinforcement learning mechanisms [122,248] (cf. chapter 4).

Two almost separate circuits can be distinguished: Caudate-putamen (CPu) re-
ceives its input from cerebral cortex and is the entry point to the dorsal path, whereas
the nucleus accumbens (NA), which is innervated by hippocampus and cortical areas,
is the first stage of the the ventral pathway. The paths are termed dorsal and ventral
because CPu and NA occupy the dorsal and ventral areas of the striatum. Both
pathways contain a direct inhibitory and an indirect excitatory pathway from input
to output [3, 265, 267]. These two pathways could reflect two different navigation
strategies which compete for the execution of motor programs [116, 175]. The dorsal
path could, for instance, be responsible for taxon navigation while the ventral path
supports a locale navigation strategy [211,161,210,321] (cf. section 3.3).
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3.2 Memory systems

Each of the navigation strategies discussed in sections 3.3.1–3.3.4 makes use of par-
ticular computations and operations relevant for the task. For instance, visual input
must be encoded, stored and recalled in order to compare the current to an already
experienced situation. These operations must be supported by some kind of memory.

Depending on the research area, different aspects of memory systems have been
investigated and led to different, but overlapping, terminologies. Our taxonomy of
navigation strategies, like many others, focuses on the underlying neural substrates.
However, their memory requirements are of equal importance. For each strategy,
we state what kind of memory is involved and what other type is not needed. It
is therefore important to first define what we mean by “memory” and relate the
different types to existing terminologies of memory. Thus we start with our definition
of different types of memory before turning to navigation strategies. We distinguish
three types of memory. For each of them, we’ll summarise behavioural or functional
properties, theoretical considerations, and neural substrates and mechanisms.

Long-term memory (LTM): A long term memory system can store a very large amount
of experiences. Those memories are relatively stable over years or even lifetimes.
There are three types of LTMs: Episodic memory refers to a rich multi-sensory
personal experience anchored in time and space, as for example the first date
with your beloved. Semantic memory concerns facts of the world, as for exam-
ple knowing that Bern is the capital of Switzerland. Episodic and semantic are
also termed declarative memory. Procedural, or non-declarative memory refers
to skills, like playing squash or riding a snowboard. The process of storing
something in LTM is called learning.

The learning speed seems to vary between different brain areas. In hippocam-
pus, for instance, it is extremely fast: One exposure is sufficient to permanently
memorise the experience. This type of memory is also termed reference mem-
ory [202,203,129,236,226]. In cortex, on the other hand, learning is suggested to
be slow [136,137]. This slowness might be important for generalisation: Unim-
portant and variable details are averaged out and only the underlying principles
are learnt [328,26,327].

The neuronal correlate of LTM is a stable modification of the properties of
neurons and, in particular, their synapses. It has been suggested that LTM is
the effect of long-term potentiation and –depression (LTP/LTD) of synaptic effi-
cacy [17,18,32]. Experiments show that if two connected neurons are stimulated
such that presynaptic action potentials are repeatedly followed by postsynaptic
spikes, the synapse can be potentiated. Conversely, the synapse’s efficacity is
decreased if the postsynaptic neuron fires just before the presynaptic neuron.



32 CHAPTER 3. ANIMAL NAVIGATION

This effect is termed spike-timing-dependent plasticity (STDP) [156,27,151] and
may be a mechanism to form LTM. The temporal window for STDP is 20−40ms.
Once a potentiation is induced, during a period of minutes or hours following
LTP induction, the synapse undergoes a process of consolidation in which the
modification is fixated [147]. Retention of such a potentiation is beyond hours
or days [62, 73, 74]. In this thesis, we follow this interpretation of LTM and
assume that it involves modifying synaptic efficacies.

Short-term memory (STM): Short term memory is a storage of recent events for short
time spans. An example could be to remember whether or not you already
added sugar to your coffee, or, what the contents of the last paragraph was.
Some short-term memories may become part of long-term memory by a process
called consolidation, but others just vanish. A variety of conditions, including
normal aging, can diminish or destroy short-term memory, while leaving long-
term memory intact.

It is not clear what neuronal mechanisms are responsible for STM. There is also
no clear distinction between STM and working memory (see below). Some defi-
nitions group them together as one class. Here, however, we make a distinction
based on theoretical considerations. We define STM as a gradually decaying
trace of past events. The quality and strength of the trace is slowly fading away,
and more recent events may overwrite this memory at any time. The timescale
should be in the order of seconds or minutes. This memory may be related to
LTP in that it could “bridge” the temporal gap until the synaptic modification
is consolidated.

Potential neuronal mechanisms for our type of STM are slowly varying con-
centrations of chemical agents in the synapses. For instance, a burst of in-
coming spikes has been shown to facilitate synaptic transmission for short pe-
riods of time [303, 67, 337]. It has been suggested that the presynaptic neuro-
transmitter release probability is transiently increased, resulting in this short-
term-facilitation of the synapse [299, 250]. Postsynaptic concentrations of cal-
cium [322,243,316] only decay slowly and might implement a short-term mem-
ory trace postsynaptically. Calmodulin-dependent protein kinase II [122, 205]
and neuromodulators such as dopamine [207] have been shown to modulate
short-term, as well as long-term potentiation.

Working memory (WM): Working memory, like short term memory, is limited to
a short period of time. The difference between WM and STM is that WMs
are thought to be symbolic instances that can readily be manipulated. They
contain everything that is important for immediate processes, such as thinking,
calculating, etc. Classical experiments have shown that in humans, WM is
limited to “seven plus minus two” items, irrespective of the type and complexity
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of items used [172]. WM seems to be correlated with intelligence (as assessed
by intelligence tests)

Theoretically, we can think of WM as “states”. Each item to be remembered
is locked in such a state. In contrast to STM, we define WM to be a non-
decaying memory. Its retention time is in the order of seconds or minutes.
Working memory operations are quick: Information may be stored, recalled or
overwritten in a switching rather than gradual manner.

WM may be implemented by sustained activity as proposed by discrete or
continuous attractor network models [9, 10, 335, 227, 238, 272]. WM relies on
LTP to tune the synaptic efficacies for attractor networks. Once tuned, no
further modification of synapses is necessary for WM.

Clearly, these types of memory are not always distinguishable. Theoretically, it is
mainly the timescale which separates them. Nevertheless, we think it useful to ask
which type of memory is involved for each of the navigation strategies presented in the
following sections. In particular, working memory seems to be a key distinguishing
factor.

3.3 Navigation strategies in animals

There are several taxonomies for navigation strategies proposed in the literature [293,
198, 94, 297, 321]. We present here a mixture of these classifications, with the aim of
simplicity and relevance for this thesis.

3.3.1 Homing by dead-reckoning

The ability of an animal to return to the starting point of a journey, eg. the nest lo-
cation, without using external cues is often termed path integration or dead reckoning
in the literature [22,177,313,315,80,79,314]. It implies that during the entire journey,
a displacement and heading vector is continuously updated. In this thesis, however,
we will call this ability homing by dead reckoning (HDR), because it explicitly sug-
gests that not only the updating and storing of spatial information, but also its use
is included in this term. We reserve the notion of path integration to the capability of
storing spatial information and continuously adding small displacement information
to this representation of space (see section 2.2). Figure 3.2 schematically illustrates
(gray area) what we mean by HDR. It is important to note that the update of the
spatial variable relies only on idiothetic (internal) cues, such as motor efferent copy,
vestibular cues or proprioception—but not, e.g. optic flow, because it relies on the
illumination of the environment.
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Figure 3.2: Homing by dead reckoning: The capability of returning to the initial
location of a journey by only using idiothetic cues. This requires storing and updating
two quantities: egocentric bearing θ of the target as well as its distance d.

The distance and bearing of the nest location continuously needs to be updated
and stored. This operation requires working memory. A subset of the more general
path integrator (section 2.2) might be used, where only idiothetic cues are considered
for the update.

Transforming the idiothetic input into a distance and bearing update needs to be
learnt. This transformation might be stored in a long term memory. It is, however,
environment independent and needs to be learnt only once. After the transformation
has been learnt, it is usable in all environments and tasks.

Cataglyphis desert ants may travel thousands of body lengths in a journey for
food—and still return to the nest location in a straight line [313, 315, 314]. If the
straight return path is blocked by newly inserted large barriers, the ant avoids the
obstacle and, at the edge of the obstacle,directly head towards the nest [314]. They
seem to use the sun as polarising orientation cue [313,314]. Other invertebrates, e.g.
spiders or bees are also HDR-capable.

More recently, homing capabilities are also studied in mammals. Gerbils [177],
hamsters [78, 81, 80, 79, 260], rats [293, 319, 25] and many other species show HDR
ability. The homing capability is usually tested in the dark, by luring the animal
in a curvy path away from its nest, and then startle the animal as a motivation
to quickly return to the “save” home. Depending on the experimental design, the
animal only needs to keep track of the egocentric bearing of the nest. Indeed, it is
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demonstrated in [260] that homing performance may increase significantly if the nest
is at the periphery, rather than the centre of an enclosed arena.

When the animal is allowed a brief view of the environment at the end of the
outward journey, the homing is more accurate. This and other similar experiments
indicate that the path integrator can be recalibrated using visual information [81,79].

3.3.2 Taxon navigation

Taxon navigation is the strategy of orienting and moving towards a salient stimulus.
For instance, finding a visible food source can be achieved by taxon navigation. This
category includes the case where the food is hidden, but a distinct landmark is placed
at its location. All the animal has to do is learn to detect the landmark, rotate until
it is straight ahead, and move forward.

Such a mechanism is often termed stimulus-response navigation, because a proper
action can be associated to each percept [293, 198]. No working memory is required
for this type of navigation. A long-term memory, however, is needed to learn and
store the correct response to the possible signals. In this thesis, we may use the terms
”stimulus-response”, or ”memoryless” interchangeably for a mechanism that doesn’t
involve working memory.

The following brain-areas seem to be involved in taxon navigation: Superior col-
liculus [270], caudate putamen [211,161,210,321] and posterior parietal cortex [11,271]

3.3.3 Praxic navigation

Some tasks can be solved by just executing a sequence of motor actions. For instance,
if the relation between entry-point and goal location in an environment never changes
between trials, the goal can be found without taking external cues into account. In
contrast to HDR, where this motor program is trivial (namely a straight line), the
term praxic navigation is used for complex motor responses.

Suppose that the complex motor response can be divided into a sequence of
straight trajectories. Storing the order of the components may be seen as a long-term
memory process. But in order to know the current position within the component
(or the position within the entire sequence), the animal has to use path integration.
Therefore, praxic navigation requires working memory.

There is evidence that posterior cingulate cortex [164,278,50,49,230] and caudate
putamen [161,210] contribute to praxic navigation.

3.3.4 Locale navigation

While taxon navigation is sufficient to navigate towards a landmark, locale navigation
enables the animal to reach any point in an environment. The animal combines many
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spatial and temporal aspects of the environment or the task and stores them in the
form of a cognitive map [293,198].

Such a spatial representation allows the animal to localise itself in the environ-
ment and plan routes from one place to another. It therefore supports navigation to
an invisible goal. As in taxon navigation, a long-term memory may store the asso-
ciations of place and direction of the goal. This memory is often termed reference
memory [226] in the context of locale navigation. Working memory is not required
for this task.

However, this is only one aspect of locale navigation. The cognitive map needn’t
be purely spatial. More generally, a context is represented. This includes temporal
relationships between events. Consider the following task: An animal starts at place A
and in a first stage has to go left to reach place B. Then, it has to return to A and
in a second stage go right to place C. The choice of going left or right at A thus
depends on the stage of the task. This task can be solved by locale navigation and it
requires working memory.

The locale system is the most complex of those described here. Not surprisingly,
many brain areas contribute in building and using the cognitive map. The most
relevant brain areas for locale navigation are: Hippocampus [197,196,163,200,189,187,
165, 259, 135, 324, 199, 158, 139, 159, 195, 263, 169, 168], entorhinal cortex [23, 221, 179],
subiculum [23,190,258,255] and nucleus accumbens [76,279,320,39].

3.4 Common navigation tasks

In this section, we present some frequently used experimental setups for spatial nav-
igation tasks. We review some of the results which lead to the taxonomy of rodent
navigation discussed in section 3.3.

3.4.1 Water maze

The water maze (figure 3.3(a)) was introduced by Morris in 1981 [183]. It is a cylin-
drical arena of 1–2m diameter, filled with water. Milk or paint is added to the water
in order to make it opaque. A platform is located somewhere in the pool where the
animal can escape from the water. If the platform is slightly submerged so that the
animal can’t see it, the setup is termed hidden water maze, in contrast to the visible
water maze, where the platform sticks out of the water. Sometimes the position of
the (maybe hidden) platform is indicated by a strong visual landmark directly above
the platform; this is termed cued water maze.

Rats with hippocampal lesions are unable to find the platform in the hidden water
maze task [184, 185]. Instead, they circle the arena at a fixed, but correct distance
from the wall. Lesions of the fimbria fornix fibres, which connect the hippocampus to



3.4. COMMON NAVIGATION TASKS 37

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

(a) (b) (c)

(d)

�����
�����
�����
�����

�����
�����
�����
�����

(e)

����������������������

(f)

Figure 3.3: Frequently used environments for navigation experiments: (a) Water
maze, (b) 8-arm maze, (c) T maze, (d) small enclosed environment with cue card, (e)
open environment with local objects, (f) linear track

the nucleus accumbens, also impair the rats in the hidden, but not the visible water
maze task [76, 209]. If, however, the rats always start from the same location, even
fornix-lesioned animals can learn to find the hidden platform. These results suggest
that the hippocampus is needed for locale, but not for praxic navigation.

Whereas hippocampal lesions leave the animal with some information (e.g. the
distance to the wall), lesions to the subiculum, post-subiculum or anterior thalamic
nuclei, which are all part of the head-direction system, produce severe deficits if
the platform is hidden. If the platform is visible, however, performance remains
normal [185, 279, 287]. Hence, the head-direction system seems to play a role in
locale, but not in taxon navigation.

Learning to swim directly to the hidden platform takes the rat in the order of
20 trials. After this task has been learnt, relocating the platform results in much
shorter training time of around 5 trials [88]. If the platform is moved every day,
but left at a fixed position during all sessions of a day, the rat learns to escape to
the platform after the first trial from day 6 onwards [269]. This suggests that some
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knowledge or experience can be reused when the location of the platform changes.
More precisely, the rat may build a spatial representation which is independent of the
goal location.

Caudate-putamen lesions, in contrast, impair navigation in the cued or visible
water maze task [209,161]. If well-trained rats in the visible or hidden platform task
are tested with a visible platform at a new location, hippocampal lesions make rats
escape on the new platform whereas caudate lesioned rats swim to the location where
the platform had been during training [161,66]. When the hidden platform is moved
from trial to trial, but always cued with a salient landmark, fornix1 lesions don’t
decrease performance whereas caudate lesions do. Conversely, caudate lesions don’t
affect navigation to a location-stable hidden platform, whereas fornix lesions do [209].
This suggests that caudate putamen is involved in taxon, but not locale navigation.
Conversely, the hippocampus and nucleus accumbens are important for locale, but
not for taxon navigation.

3.4.2 Radial arm mazes

Several types of radial mazes, most notably the eight-arm maze shown in figure 3.3(b),
plus-maze (basically a 4-arm radial maze) and the T-maze (figure 3.3(c)), are em-
ployed to investigate rodent navigation. Popular experiments in radial mazes include
working memory versus long-term reference memory tasks2.

In the non-rebaited 8-arm maze, reward is given in some arms, but the reward is
not refilled after consumption. This task is also termed win-shift task. In most win-
shift task, a delay is imposed to the rat after some arms are visited. This reduces the
possibility that the animals use a praxic strategy to solve this task, i.e. just execute
a stored motor program. On the average, rats visit more than seven different arms
in their first eight choices. This is a sign of working memory, since the animals have
to remember which arms they have recently visited [204]. Arms that are not baited
in any of the training trials are not visited in probe trials [202]. The ability to avoid
never baited arms does not require working memory, but it depends on long-term
(reference) memory only.

If the arms are rotated during the imposed delay after the third arm visit, it is
revealed that the rats seem to identify the remaining arms by the distal (extra-maze)
cues [204]. Hippocampus lesioned rats, however, make working memory and refer-
ence memory errors, i.e. they reenter already visited arms and search the unbaited
arm [129].

Rats can also be trained to honour local cues such as floor texture and ignore
distant landmarks [202]. After rotating the arms, rats don’t enter the cued unbated

1the fornix fibre bundle connects the hippocampus to the nucleus accumbens, see section 2.1.1
2reference memory in our terminology is a form of long term memory which stores information

related to spatial contexts
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arm even with hippocampal lesions. They do, however, make working memory errors
(reenter already visited arms) [129]. These results show that an intact hippocampus
is required for spatial working memory as well as for memorising a spatial context
(reference memory), whereas for locally cued mazed that can be solved by taxon
navigation, hippocampal lesions have no effect.

In a plus-maze, rats easily learn to go to a specific place (eg. the arm that points
to the west) regardless of their starting arm. More learning is required to make them
always turn in a certain direction independently of the starting arm [294]. Indeed,
when rats are trained for eight days to go from the south arm to the west arm, they
will also go to the west arm when starting from the north in a test trial on the
ninth day. After another eight days of south to west training, however, they turn
left (into the east arm) in a test trial from the north. Caudate lesioned animals,
in contrast, always go to the west arm, while hippocampal lesions produce a left-
turning behaviour [208, 210]. This nicely shows that hippocampal-dependent locale
navigation is learnt first, but can be overruled by caudate-dependent praxic navigation
after further training.

3.4.3 Unrestricted arenas

Small environments surrounded by walls (figure 3.3(d)) or open field environments
like in figure 3.3(e) where the animal’s movement is unrestricted have been used
to study the properties of place cell firing as well as the behavioural response to
various manipulations. Rectangular as well as circular environments of various sizes
are employed. In some experiments, local objects are placed in the arena.

In a closed rectangular environment where all corners are distinguishable, rats are
trained to run from any of eight starting positions to a specific corner to find food.
When the rats are disoriented, the rats run to the opposite corner almost 50% of the
time [51]. When the rats are not disoriented, however, they choose the right direction
in more than 75% of the cases [155]. In other experiments, it has been shown that head
direction cells do not follow external cues if the cue is unstable over trials, whereas it
strongly influences head direction cell firing if it is [164,262,286,139]. These findings
suggest that the head-direction system is mainly influenced by idiothetic input but
can be reset by a stable allothetic cue, but not by an unstable allothetic signal.

In a circular arena, place cells rotate with local landmarks only if they are pushed
against the walls. If they are put in the interior of the arena, place fields do not
follow landmark rotations [58]. However, in an open arena with an arrangement of
distinguishable local landmarks, gerbils or rats can learn to find food relative to the
landmarks even if the whole arrangement is moved in the environment and the animals
start from a different location in each trial. They search at the correct distances and
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bearings3 from each landmark if one or two of the landmarks are removed [56, 29].
Indeed, electrophysiological recordings show that hippocampal place fields can follow
nearby local landmarks instead of distal cues if the landmark is relevant for finding a
reward [108].

3.4.4 Linear tracks

A linear track is an environment where the animal can only move along one dimension.
In a loop environment (figure 3.3(f)), for instance, the rat can only move in one direc-
tion. In other variants, the animal moves back and forth between two endpoints of a
short straight track. Its movement is thus extremely restricted and controllable. For
this reason, numerous experiments study place cell activity under those conditions.

If a rat shuttles between a movable start box and a fixed goal location, a conflict
situation between the local view and internally generated movement signals can be
created. When the start box is moved closer to the goal location, the sequence of
place cell activity is accelerated to compensate for the shorter travel distance [107].
In the dark, however, the place cells fire with respect to the moved starting box [106].
This suggests that under normal lighting conditions, visual cues and path integration
continuously interact to keep a consistent representation whereas in the dark, place
cells are driven by path integration [106]. This is consistent with experiments where a
place representation established in the dark persists when the light is turned on [158].

Place fields are directional in a linear track: A cell active on the outward journey
generally isn’t active on the way back [107, 166, 106]. It has been suggested that a
different reference frame is used for the two paths [296,228,238].

Well trained rats show asymmetric place fields in linear tracks. The field enlarges
against the direction of movement. This shift results in a representation that predicts
future locations [188,167,166,169].

3.5 Previous models of rodent locale navigation

Several models have been proposed in the literature to emulate the reviewed animal
navigation strategies. In this chapter, we present a brief overview of models which
are related to our proposal (chapter 8). They all concern rodent locale navigation,
for it is this navigation strategy which is also addressed by our model.

3.5.1 Burgess et al. (1994)

Here we describe how Burgess et al. [41] use the spatial representation summarised
in section 2.4.2 for navigation. The place cells in the subiculum (SUB) project to a

3Here, the bearing is defined with respect to the direction given by a vector between landmarks
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population of eight goal cells (GC). A head direction (HD) system which also contains
eight cells with fixed one-to-one connections to GCs attributes a direction to each GC.
These connections are, however, gated by a reward signal, such that goal cells are only
activated if a HD cell is active and a reward is delivered.

Every time the agent reaches a rewarding location, it looks in all eight directions.
In each of them, a reward is delivered at the late phase of the θ cycle. Hebbian-type
learning is then applied to the binary synapses from SUB to GC. Place cells firing at
the late phase of θ tend to have receptive fields located ahead of the present position.
The goal cell coding “north”, for instance, is thus contacted by subicular cells located
to the north of the goal. As the receptive fields of subicular place cells are very large,
the fields of GCs are also large. This allows the system to estimate its bearing and
distance with respect to the goal location from almost any place of the environment
after only one trial.

This model postulates goal cells in the subiculum which are sufficient locale navi-
gation. This is in contradiction to experimental data where fornix lesions impair rats
in the hidden water maze [76, 279, 209]. Furthermore, the goal cells in this model
create a global basin of attraction towards the goal. Local information such as ob-
stacles are not taken into account. Finally, this learning mechanism also suffers a
“distal reward” problem because only those place cells whose fields contain the goal
may learn place to action associations.

3.5.2 Brown and Sharp (1995)

The model by Brown and Sharp [39] (figure 3.4) is based on a simplified version of
the spatial representation outlined in section 2.4.1. A population of “motor” cells
in nucleus accumbens receives spatial information from the hippocampal place cells.
Together with a head direction system, the model learns to perform movement com-
mands which lead to a rewarding location. Nucleus accumbens cells are separated in
two clusters of 60 motor neurons and the same amount of inhibitory interneurons.
Each of the 60 place cells is connected to a unique interneuron of each cluster. Each
interneuron in turn projects to a unique subset of 59 motor cells, which form the
output of the navigation system. These synapses are fixed.

Every time the agent encounters a rewarding position in the environment, head
direction cells modify their synaptic weights to the active motor unit using a reward-
modulated Hebbian-type learning rule. An exponentially decaying memory trace of
pre– and postsynaptic coactivation enables the agent to propagate reward information
along its trajectory. Most recently active synapses are strengthened most, while the
change in synaptic efficacy for previously active synapses is smaller.

In test trials, the two active motor units compete for action selection. A left turn
is performed if the “left” motor unit is more active than the right and vice versa. The
model is able to solve the hidden water maze task.
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Figure 3.4: Navigation architecture proposed by Brown and Sharp (1995): Nucleus
accumbens (NA) consists of two populations; one for right turns, the other for left
turns. Each place cell (PC) has a fixed connection to an inhibitory neuron in each NA
cluster. Each interneuron is connected to a unique subset of excitatory output cells,
containing all but one “motor” cells. Head direction (HD) cells learn to select left or
right turn motor cells by reinforcement-modulated Hebbian learning.

This model updates its place-action mapping only when a rewarding location is
encountered. Places that are far away from the goal are only associated to actions
using a global temporal activity trace. The existence of such long memory traces in
animals is still an open question. Temporal difference learning rules 4.1 don’t suffer
this limitation.

3.5.3 Abbott and coworkers (1996, 1997)

The work by Abbott and coworkers [34,101] suggests that hippocampal region CA3 is
the neural substrate for navigation maps. Learning on the recurrent CA3 connections
using spike timing dependent plasticity results in a shift of receptive fields towards
the goal location. Initially, CA3 place cells have perfectly Gaussian receptive fields
with high overlap. Training consists of repeated trials, ending when the agent reaches
the goal location. This procedure introduces an inhomogeneity with respect to the
experienced trajectories: No path can lead from the target to other places because
trials end at the goal location.

Navigation maps to multiple targets can be represented simultaneously: Place cell
activity is modulated by the distance to the target location. After learning, navigation
maps to multiple targets can be recalled. Routes to novel target location can also be



3.5. PREVIOUS MODELS OF RODENT LOCALE NAVIGATION 43

generated by superposition of the learned maps.
The learning rule used in this model produces a shift of the place fields in the

direction opposite to the goal location. In order to use this shift for navigation,
the original place field centres are accessed explicitly to calculate the agent’s next
movement, which is a biologically implausible operation. Furthermore, this model of
locale navigation is entirely concentrated in the hippocampus. It is not consistent
with the impairments reported in the hidden water maze following fornix or nucleus
accumbens lesions [76, 279,209].

3.5.4 Gaussier and coworkers (1998, 2000, 2002)

The navigation model by Gaussier and coworkers [96, 95, 97] is based on the spatial
representation reviewed in section 2.4.4. A transition prediction network based on
place cells “proposes” candidate future places (see figure 3.5). Competition within the
transitions recognition layer selects the most active transition (e.g. node BD, leading
from place B to place D). This competition is biased by a goal planning layer. Motor
actions are associated to transitions using Hebbian-type learning.

The goal-planning layer contains units which code for the same transitions as
the recognition layer. Here, however, the transition units are interconnected with
constant synaptic weights wij < 1. Whenever a motivation input activates a node
(e.g. DG1, the transition from place D to goal G1), this activity A0 = 1 propagates
back to all other transitions. Activities Ai = maxj(wijAj) are calculated iteratively
until the network settles in a stable state. Once stabilised, node activities are set
according to their distance to the goal location. These activities bias the competition
in the transition recognition layer, such that transitions which lead to the goal on the
shortest path are favoured.

According to this model, locale navigation is implemented in the hippocampus,
which is in contradiction with experimental data, suggesting that the fornix projection
to nucleus accumbens is necessary to solve the hidden water maze task [76,279,209].
The goal planning layer operates on the symbolic place transition nodes. The shortest
path to the goal in this layer needn’t correspond to the shortest path in the real
environment.

3.5.5 Foster et al. (2000)

The model proposed by Foster et al. [88] (figure 3.6) is based on an actor-critic
architecture for temporal-difference (TD) reinforcement learning (see section 4.1). A
layer of place cells (PCs) with perfectly tuned Gaussian receptive fields provides the
navigation system with the agent’s position within its environment.

A “critic” neuron c receives input from each PC i. Its firing rate rc =
∑

i wciri

represents the estimated “value” of the current agent position. The critic also outputs
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Figure 3.5: Navigation architecture proposed by Gaussier and coworkers: Transition
predictions are made in CA3 (not shown) and propagated to the CA1 network. There,
winner-take-all (WTA) competition selects the most active transition and executes
its attributed motor command. Competition is biased by transition units in the goal
planning system which, according to motivation, back-propagates transitions to goal
locations (e.g. DG1) through the network.

a reinforcement signal δ in the form of a temporal difference of current and previous
activities (i.e. position value prediction error). This signal is used to improve value
estimation by modifying afferent connection weights wci towards δ ·ri and thus reduce
the error δ.

An actor network consisting of eight neurons is responsible for selecting actions.
Each cell a codes for a direction of movement and receives afferent connections of
strengths wai from each PC i. Actions are selected stochastically, but cells with
a high firing rate ra =

∑

i wairi are favoured over cells with low firing rates. The
weights wai are modified using Hebbian-type learning, modulated by the critic’s error
signal δ.

Using this mechanism, navigation to a stable hidden goal location can be learnt
in about ten trials. When a learnt target is relocated, however, relearning the new
location takes longer due to interference with the previous goal location. To overcome
this difficulty, a coordinate system (CS) is added to the model: The CS consists of
five neurons: two of them represent the current position of the agent (x, y), the next
two code for a goal location (xg, yg) to be learnt, and the remaining neuron is an
action neuron acoord. The mapping of place cell activity to coordinates (x, y) is learnt
using TD-learning. Each time the reward is found (i.e. at the end of each trial),
the current estimated coordinates (x, y) are copied into the the goal memory (xg, yg).
The “abstract” action acoord neuron competes with all other actor cells for action
selection. Its activity, however, doesn’t depend on the agent location, but on how
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Figure 3.6: Navigation architecture proposed by Foster et al.: An actor-critic ar-
chitecture is employed to learn a navigation map. Places are coded by a place cell
population (PCs). The actor selects actions whereas the critic estimates the quality
of these actions. The critic also generates a reinforcement signal signal δ which guides
learning of better actions and quality estimations. A task-independent coordinate sys-
tem (CS) is learnt from place cell activity. Once learnt, CS can store the goal location
and propose goal-oriented actions acoord by vector subtraction.

well the coordinate system is tuned. Modification of its weight wcs is similar to other
actor neurons, i.e. modulated by δ. Whenever acoord is selected, the direction of
movement θ is given by vector subtraction of goal–and current coordinates.

During learning, the agent’s movement is restricted to eight predefined headings.
Furthermore, learning does not generalise to neighbouring directions. The coordinate-
system module, once adapted, creates a global basin of attraction. Local information
such as obstacles are then completely ignored. The direction of the next movement is
algorithmically calculated by explicitly accessing the coordinates of the goal location,
which is not biologically plausible.

3.5.6 Arleo et al. (2000, 2001)

Arleo et al. [14, 16] propose a locale navigation system using reinforcement learn-
ing [280]. It is based on the spatial representation outlined in section 2.4.5. Each
place cell projects to four “action cells”, coding for north, south, east and west re-
spectively (figure 3.7). The synaptic strengths represent a “navigation map” and are
modified using a reward-based learning method: Suppose that the agent is at place A.
The activity ri(s) =

∑

j wijrj of action cell i depends on place cell activities rj and
synaptic weights wij. It estimates the “value” of action ai(s). When taking action ai,
the agent reaches place B and gains access to action value estimates of the new place.
The weights wij are adapted to correct for bad estimates at the previous place A. In
particular, Watkins Q(λ) (see section 4.1) is used. This model can learn to navigate
from any place in the environment to a hidden goal location. During learning, only
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Figure 3.7: Navigation architecture proposed by Arleo et al.: Place cells (PCs) drive
a set of four action cells (ACs). Connections strengths wij are modified by a reinforce-
ment learning rule.

one of the four actions can be taken (winner-take-all mechanism). Once the naviga-
tion map is learnt, however, generalisation to continuous actions can be achieved by
interpolating between the discrete actions.

A “reward expectation cell” (REC) learns to associate place cell activity with
the goal location G0 using a Hebbian-type learning rule. REC is highly active at G0

before learning. When the location of the goal has been learnt, the reward is expected
and the cell is silent at G0. If the reward is relocated to place G1, however, REC is
strongly depressed at G0. This depression triggers the relearning of the navigation
map. Goal location G0 will then be forgotten.

During learning, the agent’s movement is restricted to four predefined headings.
Because there is no generalisation mechanism in action space. the learning time would
increase if more headings were allowed.



Chapter 4

Reinforcement learning

In this chapter, we review a learning method termed “reinforcement learning” (RL).
Our model of rodent locale navigation (chapter 8) employs a form of RL, the bases of
which are given here. Instead of giving a complete review, we focus on some aspects
and problems of RL that are important for our model.

Reinforcement learning (RL) [280], sometimes also called trial-and-error learning
aims at achieving a goal by continuous interaction between an agent and an environ-
ment. The agent perceives some, but not all properties of the environment. Based on
this information, it takes an action The environment responds to the agent’s action
by moving it to a different situation The environment sometimes responds with a
special reward signal to tell the agent whether or not its actions are good. RL is a
class of methods which aims at optimising the agent’s behaviour in order to maximise
the reward.

(s,a   )π       ω

Agent
Environment

action a

reward r

state s

Figure 4.1: Agent-environment interaction in reinforcement learning (adapted
from [280]). The task is to maximise the return by tuning the parameters ω of the
policy π(s, a | ω).
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States, actions and policies

At each discrete1 time step t, the agent perceives the environment via the state st ∈ S
where S is the set of all possible states. It then selects and executes an action at ∈ A(st)
where A(st) denotes all possible actions available in state st. At the beginning of the
next time step, it receives a reward rt+1 ∈ R and ends up in state st+1. Note that
the reward is a scalar, while the states and actions are vectors. The agent has to
decide which action to execute at each time step, given the perceived state. This
can be described as a mapping of the states to actions. This mapping is called a
policy π(s, a | ω) where ω is a vector of tunable parameters:

π(s, a | ω) = Pr{at = a | st = s, ωt = ω} (4.1)

It specifies the probability of selecting action a when in state s, given the param-
eters ω. A policy which always selects the action which seems best according to the
current information is called a greedy policy. It tries to maximise rewards according
to the current knowledge even if this would prevent access to more abundant rewards
in the future. An ε-greedy policy selects the greedy action most of the time, but with
small probability ε randomly chooses between other available actions. This general
scheme of reinforcement learning is depicted in figure 4.1.

Rewards and returns

We mentioned earlier that the objective of learning was to maximise the reward. Here
we focus on tasks that have a terminal state, which means that at some time step tT

the trial or episode terminates. The expected return R(st) is then defined as the total
reward from time t up to the end of the trial:

R(st) = rt+1 + rt+2 + rt+3 + . . . + rT =
T∑

k=t+1

rk (4.2)

If the task only provides a reward at the terminal state, but several paths with
different lengths lead to that “goal state”, R(st) would equal rT for all states st.
Thus R(st) of equation 4.2 would not be very informative. One way to solve this
problem is to give a negative at each time step. Another approach is to give more
importance to immediate with respect to future rewards. Equation 4.3 takes this into
account and defines the discounted expected return:

R(st) = rt+1 + γrt+2 + γ2rt+3 + . . . + γ(T−t−1)rT =
T−t−1∑

k=0

γkrt+1+k (4.3)

1We only consider the time-discrete case here, but generalisations to continuous time have been
proposed [68,69]
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where γ ∈ [0, 1] is termed discount rate. It determines how important a future
return is if it were received at the present time. The higher γ the more far-sighted
is the agent. If γ = 0, future rewards are worth nothing. For the remainder of this
thesis, we always refer to the discounted version when speaking of return. The RL
task now consists in tuning the parameters ω of policy π(s, a|ω) such as to maximise
the discounted expected return.

Markov property

The agent’s state vector is a summary of what the agent knows about the environment
at the present time. It usually consists at least of preprocessed immediate sensory
input. But it may also be constructed by taking a sequence of sensory inputs into
account, ie. contain a form of working memory. From the state variable, the agent
can then calculate the probabilities of future states and rewards for potential actions,
as formulated in equation 4.4:

Pr{st+1 = s′, rt+1 = r′|st, at, rt, st−1, at−1, rt−1, . . . , r1, s0, a0} (4.4)

This “prediction” of how the environment responds takes the whole sequence of
states, actions and rewards into account. If, however, the state itself includes all
relevant information, the agent is said to have a Markov state representation. It
allows the prediction of future states without knowing how the current state came
about:

Pr{st+1 = s′, rt+1 = r′|st, at} (4.5)

In other words, the Markov property means that equation 4.4 equals equation 4.5.
State transitions are memoryless: Once a new state is reached, the sequence of all
previous states is forgotten. This does not mean, however, that the state vector itself
may not contain a memory of the past. Whether or not a representation is Markov
depends also on the task and on the environment’s dynamics.

Value functions and Bellman equation

In order to plan an appropriate action, the agent has to estimate how good it is to
be in some state, and how much an action is worth in that state. These expected
returns are called value functions. They depend on what actions the agent will take
in the future, ie. on the agent’s policy π. The state value function V π(s) defined in
equation 4.6 tells the agent how much return to expect when in state s:

V π(s) = Eπ{Rt|st = s} (4.6)
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where Eπ{.} denotes the expected value when following policy π. Similarly, an
action value function Qπ(s, a) is defined for taking action a at state s, following
policy π thereafter:

Qπ(s, a) = Eπ{Rt|st = s, at = a} (4.7)

Probably the most important property of value functions is that they follow a
recursive relationship to their previous or successor value. For policy π, state s and
action a, action values satisfy the following equality relation:

Qπ(s, a) =
∑

s′

Pa
s→s′

[

Ra
s→s′ + γ ·

∑

a′

π(s′, a′)Qπ(s′, a′)

︸ ︷︷ ︸

V π(s′)

]

(4.8)

where Pa
s→s′ denotes the probability that state s′ is reached when taking action a

in state s. Ra
s→s′ is the expected value for the reward received when action a leads

from state s to s′. Equation 4.8 is called the Bellman equation for Qπ. The state
value function satisfies a similar Bellman equation. These recursive relationships are
important because they can propagate a known (or well estimated) value back to a
previous state (or state-action pair).

Value functions can serve as quality measure for policies: if a policy π yields higher
expected return than another policy π′ for all states, π is a better policy than π′. More
formally: π > π′ if V π(s) > V π′

(s) ∀s ∈ S. Policies that are better or equal than
all other policies are termed optimal policies π∗. They share the same optimal state
and action value functions V ∗(s) andQ∗(s) respectively:

V ∗(s) = max
π

V π(s) ∀s ∈ S

Q∗(s) = max
π

Qπ(s) ∀s ∈ S
(4.9)

The goal of reinforcement learning is to estimate the optimal policy by estimating
the optimal value functions. The Bellman equation forms the basis of many ap-
proaches for approximating these functions. In the following, we will focus on one
such method: Temporal difference-learning.

4.1 Temporal difference learning

One of the most important methods to estimate the value functions is temporal dif-
ference (TD) learning. It learns directly from experience and iteratively updates
estimates based on other learnt estimates without waiting for the end of the trial.
Several variants of TD-learning have been proposed.
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Sarsa and TD(0)

Sarsa is a TD learning method that estimates the action value function Q from
experience.

At every time step, the estimation Q(st, at) is updated according to equation 4.10.
η is the step size or learning rate of the system and δt is the reward prediction error
or TD-error (equation 4.11). It corresponds to the difference between the actual
reward rt+1 and the predicted reward Q(st, at) − γQ(st+1, a

π
t+1).

Q(st, at) = Q(st, at) + ∆Q(st, at) = Q(st, at) + η · δt (4.10)

δt =
[
rt+1 + γQ(st+1, a

π
t+1) − Q(st, at)

]
(4.11)

where Q(st+1, a
π
t+1) equals zero if st+1 is a terminal state.

Sarsa is an on-policy method because it updates Qπ by actually following policy π.
This is manifested in equation 4.11 in the term Q(st+1, a

π
t+1) where aπ

t+1 corresponds
to the action selected by policy π. For small learning rates η, Sarsa converges to an
optimal policy π∗ and action value function Q∗ if all state-action pairs are visited an
infinite number of times and if the policy converges to the greedy policy [261]. TD(0)
is like Sarsa except that the state values are estimated. TD(0) converges under the
same conditions as Sarsa [282,63,128].

Q-learning

Q-learning, in contrast to Sarsa is an off-policy algorithm. It optimises action values
by using the best, rather than the selected action (equation 4.12) for the update
(equation 4.10):

δt =
[

rt+1 + γ max
a

Q(st+1, at+1) − Q(st, at)
]

(4.12)

Q-learning directly estimates Q∗ while following an arbitrary policy. Like Sarsa,
it also converges if all state-action pairs are tried indefinitely. There is, however, no
need for the action selection to converge to the greedy policy [311,312,128].

Actor-critic architectures

Sarsa and Q-learning both estimate the action value function only. Actor-critic sys-
tems separate the estimation of the state value function and the policy optimisation.
The critic receives the reward feedback from the environment and estimates the state
value function. The actor adjusts its policy to maximise the return. Learning in
both actor and critic is driven by a TD error signal generated by the critic. This
architecture is shown in figure 4.2. It has been suggested that the brain implements
an actor-critic architecture [122].
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critic actor
Environment

action a

reward r

TD error

Agent

state s

Figure 4.2: Actor-critic architecture. The critic generates the TD error signal that
drives learning in both actor and critic (adapted from [280]).

4.2 Eligibility traces

So far the value functions have been calculated on the basis of a neighbouring state
or state-action pair only. Eligibility traces (ETs) extend this idea to benefit from
estimates that lie further away in time. ETs can be combined with almost any TD
learning variant. An ET is a memory of previously occurred states or state-action
pairs. The update of the value function estimates can then be done for all states and
actions eligible for learning. For Q-learning, an eligibility trace et(s, a) at time t can
be defined as follows:

et(s, a) =

{
γλet−1(s, a) + 1 if(s, a) = (st, at)
γλet−1(s, a) else

(4.13)

For undiscounted returns (γ = 1.0), this trace decays exponentially with a trace
decay factor of λ. When the future rewards are discounted, however, the ET decays
at least with the discount rate. With eligibility traces, the update ∆Q(st, at) of
equation 4.10 extends to:

∆Q(st, at) = η · δt · et(s, a) (4.14)

Equations 4.13 and 4.14 make all previously visited state-action pairs eligible for
learning. Most recent actions get more “credit” for the current estimate of expected
return and their values are modified to a greater extent than for decisions taken far
in the past. TD(λ) is a natural extension of TD(0) in that it uses an eligibility trace.
It has been shown that TD(λ) converges to the optimal policy under constraints
similar to TD(0) [63, 64, 128]. For Q-learning, eligibility traces are valid only until
a non-greedy action is taken [311]. This considerably reduces the benefit of ETs for
Q-learning. Other variants of off-policy TD methods seem to work well in practise
but their convergence is still an open question [215], but see also [219].
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4.3 Continuous spaces and generalisation

One of the problems in reinforcement learning is that the learning speed highly de-
pends on the dimensionalities of the state and action spaces. A related issue is the case
of continuous spaces. Both problems can be solved by using function approximation
for the state and action values.

The key idea is that updating an estimate for a specific state also affects the
estimates of similar states.

This idea thus applies to the problem of continuous states/actions as well as to
generalisation. In special cases, convergence has been proved, whereas other cases are
known to diverge [105, 20, 298, 281, 219, 218]. In our model (chapter 8), we implicitly
use function approximation to generalise in continuous state and action spaces.

4.4 Relation to animal learning

There is increasing evidence that dopamine is involved in reward-related learning.
Dopaminergic neurons (DNs) have been found in the substantia nigra pars com-
pacta (SNc) and in the ventral tegmental area (VTA). They project to the dorsal
striatum (caudate putamen), the ventral striatum (nucleus accumbens) and most
parts of neocortex [245]. DNs show regular or tonic firing patterns, as well as tran-
sient or phasic firing activity. DNs phasic activity is related to primary rewards [121],
predicted reward [244, 12, 247], as well as novel stimuli which could be implicated in
attention shifting [225,245], but not to aversive stimuli [245].

In a conditioning learning task, DNs are first active at to onset of Unconditioned
reward stimulus (US). During learning, this activity shifts from the US to the con-
ditioned stimulus (CS) which predicts the US (reward) irrespective of the sensory
modality of the used stimuli [248, 121]. If a fully learnt CS is shown in combination
with a new stimulus, DN activity remains at the onset of the CS and behavioural learn-
ing of the association of the new stimulus with reward fails. This is called “blocking”
and suggests that a fully predicted reward inhibits learning of a new stimulus-reward
association and that the DN activity plays the role of a reward predictor [304,245].

More specifically, phasic dopamine release could be the biological implementation
of the TD-error of reinforcement learning [122,248,275,276,277,70] and code for the
difference of actual minus expected reward.

In the striatum, dopaminergic neurons tend to synapse on the same spines than
afferent axons from cortical areas. It is therefore possible that DNs influence or
modulate either synaptic transmission or synaptic plasticity of cortico-striatal con-
nections [92, 251, 266]. There are at least two possibilities how DNs can influence
learning. First, dopamine has been shown to focalise cortico-striatal transmission,
which only allows the strongest signals to pass [207, 244, 225, 245]. This can be seen
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as a gating signal which only enables the most important inputs to reach the post-
synaptic neuron. If a behavioural response is required after the CS in order receive
the reward, the shift from US to CS in the dopaminergic neurons could serve as an
advance information which results in an attentional focus and more precise learning
of the response [245]. Alternatively, phasic dopamine release might directly influ-
ence plasticity in the target area. In striatum, prefrontal cortex and hippocampus,
dopamine agonists enhance synaptic potentiation whereas antagonists impair poten-
tiation [206,207,109,138]. Recent experiments have electrically stimulated dopamine
neurons in substantia nigra to simulate a reward prediction error. This resulted in
potentiation of cortico-striatal [323, 231] projections. Prefrontal and auditory cortex
also show potentiation if a phasic dopamine release is simulated [21,33].

Other neuromodulators have been suspected to correspond to reinforcement learn-
ing variables. Serotonin may regulate the discount rate of future rewards (equa-
tion 4.3). Indeed, rats with depleted serotonin levels tend to impulsively favour small
immediate over larger, but delayed rewards [69, 181,70]

Noradrenaline seems to be involved in the control of arousal and relaxation and is
suspected to govern the exploration-exploitation tradeoff (parameter of the policy π
in 4.1) [69, 70]. Activity of noradrenergic neurons is correlated with the accuracy of
action selection, especially in urgent situations [19, 301]

Acetylcholine may regulate the speed of learning (η in equation 4.10) [69, 70].
In hippocampus, striatum and cortex, acetylcholine modulates synaptic plasticity
[224,212].



Chapter 5

Sensory input

In this chapter, the sensory input to our model of spatial learning presented in the
remainder of this thesis is described.

Perceptual models for spatial learning largely fall in two categories based on how
the sensory input is generated: (i) Relatively simple mathematical models [254, 41,
296, 228, 229] and (ii) real-world input [96, 13, 14, 95, 16, 97]. A great advantage of
mathematical models of input data is that there is no limitation as to what aspects
of the world-agent relation is perceivable by the agent. Furthermore, perfect control
can be exerted over the noise level in the input.

On the other hand, this freedom can have disadvantages as well: One problem is
that the artificial agent might be allowed to access variables that are not perceivable
by an animal. Or, conversely, the agent might not receive a relevant stimulus necessary
to produce an essential property of cognitive maps. Secondly, a major drawback
of mathematical models lies in the fact that it is impossible to recreate a realistic
setup which is directly comparable to animal studies. Finally, applications of the
model other than understanding brain functions, for example a commercial robotic
application, only makes sense if the system can operate in a real environment. For
these reasons, we choose to simulate our model in realistic environments and propose
a biologically plausible computational mechanism to process sensory input.

First, the environments we used for testing the model are presented. Then, it is
shown how the visual input acquired by the agent is processed. Finally, a description
of how we emulate tactile and vestibular sensory input is given.

55
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5.1 Test environments

The experiments of chapter 6 are run in four different setups. One of them includes a
real Khepera1 mobile robot [182,86,85], and the remaining three are simulations of the
Khepera robot. All of them emulate a rat in an experimental arena. Experiments in
chapter 7 are only run in the real robot setup, but not in the simulated environment.
We use the term “agent” when speaking of similarities between the robot, simulated
robot or sometimes even the rat.

The simulated robot has the advantage that it is more reliable and easier to handle.
For instance, it takes no time to move the simulated robot, but the speed of the real
robot is of course limited. On the other hand, a simulation, even when carefully
designed, never captures all aspects of the real world. It is therefore useful to test the
principles on the real robot, and supplement the results using simulation.

Before discussing the various setups in detail, some common features are out-
lined. The Khepera is equipped with a CCD camera with adaptive gain control,
eight proximity sensors and two odometers—one for each wheel (cf. figure 5.1 (a)).
Vision is the most important input to our model, but we also use the odometer and
the proximity sensors. The simulator mimics the real Khepera robot by emulating
its sensory input and performing similar movements. The rat’s field of view spans
270◦–320◦ and depends on the rat’s head angle [1, 124]. In our system, this view of
the world is projected onto a cylindrical screen around the agent and transformed
into a digital image of 800 × 316 pixels with 256 grey-values per pixel. For reasons
of simplicity, the agent’s movement is decomposed into two primitives: (i) In-place
rotation and (ii) forward movement. At each time step, the agent first rotates to the
desired heading and them moves forward. After this movement, a sensory “snapshot”
of the environment is acquired.

“Office”: The real robot setup

A Khepera miniature mobile robot is placed in an 80cm×60cm arena on a table in
a normal office. The arena is surrounded by borders of 3cm height. The Khepera’s
camera has a view-angle of approximately 60◦ (see figure 5.1). Four pictures in
directions separated by 60◦ are merged into a single image I of approximately θ = 240◦

by rotating the robot in-place. Note that this rotation is only performed in order to
acquire a panoramic view. In order to achieve an approximation of a cylindrical
projection, the camera-lens distortion is first compensated for. Then, the image,
which is recorded by a flat CCD sensor, is transformed such as to simulate a projection
onto a cylinder. An example view is shown in figure 5.2. For the experiments in

1The Khepera mobile robot manufactured by K-Team (http://k-team.com/) is a modular plat-
form popular for research and education.

http://k-team.com/
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chapter 7, a large rectangular-shaped object is placed in the arena to increase the
amount of tactile input to the system.

“Buildings”: Artificial structures

This and the following environments emulate the Khepera robot in a 77×77cm square
arena. Images are pasted to virtual walls placed outside of the arena. The view of
the virtual world is projected onto a cylindrical screen which covers a view angle
of 280◦ using a standard computer graphics algorithm. In the “Buildings” setup, four
walls are placed in a square around the environment and decorated with pictures of
buildings and other man-made structures. An example of what the agent sees is given
in figure 5.3.

“Davos”: Natural environment

Mountains may not be a natural habitat for rats, but buildings probably aren’t either.
Nevertheless, we also test our model in a natural scene which contains less structure
than the man-made objects of the previous two setups. Here, a panoramic view of
the Swiss mountain village of Davos is pasted onto a big cylinder surrounding the
arena. Thus, unlike the previous setup, the walls are not flat. This results in a more
beautiful view of the alps (figure 5.4).

“Minimal”: Impoverished sensory input

The previous environments all provide rich visual stimuli. In most animal experi-
ments, however, the view is restricted to a small number of well-defined cues. In
order to emulate such an impoverished environment, four walls are placed in a square
around the arena. In the centre of each wall, one simple geometrical object is placed.
The objects are a filled black square, a filled white circle, a triangle and a double
cross. The background of each wall is covered with noise of low contrast (figure 5.5).

5.2 Visual processing

Place fields of hippocampal neurons in the rat respond to external, most notably
visual, as well as internal sensorial cues [196,174,58,220,158,80]. In models of spatial
cognition, artificial sensors are employed to provide the neural system with percep-
tions of the world. This sensory input can not be used directly. It needs to be
preprocessed before it is passed on to our neural network model. Here we present
how the visual input from the camera is decomposed and its dimensionality reduced.
The processing is inspired by neuronal properties in primary visual cortex.
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Figure 5.1: (a) The Khepera robot and its sensors. (b) View of the “Office” environ-
ment with the Khepera robot.

Figure 5.2: A view taken by the Khepera in the “Office” environment. Four camera
images are merged into one panoramic view, covering about 240◦.
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Figure 5.3: A view taken by the virtual Khepera in the “Buildings” environment.
Pictures of buildings are pasted to four walls placed around the arena.

Figure 5.4: A panoramic view of the alps around Davos is pasted onto a cylinder
around the arena.

Figure 5.5: A simple object is placed in the centre of each of the four walls surrounding
the environment. The walls are also covered by low contrast noise. Here, at a viewing
angle of 270◦, only three objects are visible.
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5.2.1 Gabor filters

The normalised image data I(x, y) ∈ [−1.0, 1.0] is represented using a set of Gabor
wavelets G. These filters are sinusoidal waves modulated by a Gaussian window
function [93, 148]. They respond to edges in the image much like complex cells in
visual cortex area V1 [123, 61, 134]. The 2-dimensional complex Gabor wavelet in
space domain is defined as:

G(x, y|σx, σy, ω) = e−x2/2σ2
x · e−y2/2σ2

y · eiωx (5.1)

where σ2
x is the variance of the Gaussian window in the direction of the wave

propagation, σ2
y is the variance in the orthogonal direction and ω is the frequency2

of the sinusoidal wave. Depending on the phase of the sine wave, a distinction is
made between the real part <(G) and the imaginary part =(G) (figure 5.6). For an
illustration of the 2d-version of <(G), see figure 5.7.

(a) (b)

Figure 5.6: Gabor filters in 1 dimension. Red arrow indicates wavelength λ of: (a)
real part <(G) (b) imaginary part =(G). Green arrows indicate standard deviation σ

of the Gaussian envelope (in green).

In the Fourier domain, a Gabor filter with frequency ω and variances σ2
x and σ2

y

is a Gaussian centred around the frequency ω and with variances 1/σ2
x and 1/σ2

y :

G(x, y|σx, σy, ω)
F

−→ G(ωx, ωy|σx, σy, ω) = A · e−σ2
x(ωx−w)2/2 · e−σ2

y(ωy−w)2/2 (5.2)

The filter in equation 5.1 responds best to a vertical bar of width 2π/ω (in [pixels]).
In order to detect larger and smaller bars with arbitrary orientation, a family of filters

2In this example, it is actually the angular velocity, but for the sake of simplicity, we’ll use the
term “frequency” to refer to either frequency or angular velocity
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(a) (b)

Figure 5.7: Illustration of Gabor filters in 2 dimensions

with varying frequencies and orientations has to be applied to the image I(x, y). This
filter set is created by scaling and rotating the mother wavelet of equation 5.1. A
schematic illustration of such a set of filters in the 2d-frequency domain is given
in figure 5.8. The ellipses represent the iso-value curves for a cut at e−0.5A (see
equation 5.2). The principal axes of the ellipses then correspond to the variances of
the Gaussians.

We use three wavelengths (λ ∈ {75, 50, 25}[pixels]) and eight orientations which
are uniformly distributed in [0, π]. As we use circular Gaussians (σx = σy = σ),
the ellipses are circles in our case. Furthermore, we fix the window size to half the
wavelength (σ = λ/2).

Gabor filters have an infinite support because of the Gaussian window. We cut
the filters at a distance of 3σ from the centre which cuts off values smaller than
≈ 1.1% of the maximal value A. All filters of the same frequency are cut to the
same dimensions. Then, all negative values are scaled such as to achieve a mean of
zero. This makes the filters insensitive to shifts in luminance. Finally, all values are
scaled in order to get L2-normalised filters (

∑

x,y G(x, y) ·G(x, y) = 1, where x is the
complex conjugate of x).

The filter value fjk(x, y) for frequency j and orientation k is given by the magni-
tude of the complex filter response to the image I at position(x, y):

fjk(x, y) =
√

(<(Gjk(x, y)) ∗ I)2 + (=(Gjk(x, y)) ∗ I)2 (5.3)

where ∗ denotes the convolution operator. Combining the two complex parts
guarantees a response to an edge in the whole range of the filter window.
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Figure 5.8: The set of Gabor filters in Fourier domain, where they are Gaussians.
The ellipses are iso-value curves for a cut at e−0.5A (see equation 5.2). Filter Gjk is
tuned to frequency ωj and orientation φk (j ∈ {1, ..., nfreq}, k ∈ {1, .., norie}). We use
nfreq = 3 and norie = 8

5.2.2 Artificial retina

The mobile agent constantly acquires panoramic views of its environment during test
experiments. The image resolution is rx × ry = 800 × 316 gray-level pixels in the
range [−1.0, 1.0]. This high-dimensional space needs to be transformed into a more
convenient representation for further processing.

We employ the set of Gabor filters described in section 5.2.1 and apply them to a
small set of sampling points in the image I. These sampling points form an artificial
rectangular retina. On each retinal point, the filter vector ~f , composed of all responses
to frequencies j and orientations k, is calculated according to equation 5.3.

The distance (δx) between adjacent retinal points in x must be in relation to the
filter envelope size, parametrised by σx. First, we note that a rotation of the agent
produces a translation of the image in x. Suppose that an agent rotation translates
the image such that a feature which was located at a sampling point is now exactly
between this and the neighbouring point. The distance between retina points in
x direction has to be small enough to still “see” this landmark. In the y direction,
there is no such constraint because the tilt-angle of the robot camera is constant.

We require that the sum of envelopes placed on the retinal points of one row
remains approximately constant over the width of the image. This is achieved if
δx doesn’t exceed 2σx (see figure 5.9). Because the sum of all filter envelopes is ap-
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Figure 5.9: Approximately constant sum of Gabor filter envelopes displaced by 2σ

proximately constant, a landmark between two retina points can be located with high
accuracy if a population decoding scheme is used [100,324,237,336,239]. Furthermore,
all filters must completely lie inside the image.

An example of the retinal response is shown in figure 5.10 for the “Buildings”
environment. The retina consists of 15 columns and 3 rows. On each point, the filter
vector ~fj for the lowest wavelength λj = 50[pixels] is represented by a blue line. It
indicates the direction and “strength” (line length) of edges in its neighbourhood.

5.3 Tactile and vestibular input

Tactile input

The rat’s whiskers are highly sensitive organs. On each side, there are ≈ 30 “macro-
vibrissae” of of 10–60mm length, arranged in 5 rows of 4–7 whiskers positioned be-
tween eye and mouth. In each row, the length of the vibrissae increases from rostral
to caudal [38]. They are mainly involved in spatial tasks and object shape recogni-
tion [38]. The 40–70 “micro-vibrissae” are located near the mouth and mostly point
downwards. Their small length (< 7mm) and high spatial density makes them well
suited for their implication in fine texture discrimination [47, 38]. When exploring
objects, rats rhythmically move their whiskers with a frequency of ≈ 8Hz. The max-
imal excursion is around 30◦. This active whisking increases the sensory range and
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Figure 5.10: Response of the rectangular retina with 15 columns and 3 rows applied
to a view from the “Buildings” environment. The blue lines indicate the direction and
“strength” (line length) of edges near each retinal point.

may facilitate the detection or discrimination of objects [47, 82].
The Khepera robot is equipped with eight infrared light sensors which measure the

ambient light as well as proximity to an object. The range of the proximity sensors
depend on the surface material of the object. For painted wood (which is used in our
experiments), the detectable proximity ranges from around 3 to 5cm. Below 3cm, the
sensor is saturated and above, it is unable to detect the object (figure 5.11). Between
those bounds, the response is roughly linear. If an object is not placed exactly in
front of the robot, but at an angular displacement φ, the sensor value decreases
almost linearly with φ. At φ ≈ 70◦, the response is zero.

2cm

Odometer Motor

Proximity sensors

Figure 5.11: Schematic illustration of the Khepera’s sensors. Proximity sensors
detect objects from around 2 to 5cm.
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“Tactile” input from each of the eight infrared proximity sensors is scaled to [0, 1].
0 means no detectable object, 1 means an object very close to the robot is detected. A
vector ~s(tk) containing all sensor values represents the agent’s tactile input at time tk.
Tactile cells (TCs) are recruited to store and translate this input to neuronal activity.
A TC’s activity rtc(~s(tj)|~s(tk)) depends on the mean distance between the current
sensor values at time tj and it’s stored value over all eight sensors, as expressed in
equation 5.4.

rtc(~s(tj)|~s(tk)) = e
−

(‖~s(tk)−~s(tj)‖)2

2ktcσ2
tc (5.4)

where ktc = 8 is a normalisation factor and σ = 0.8 determines the sensitivity
of TCs. In practise, the sensors are unfortunately almost binary. Recently, other
groups have proposed robotic systems equipped with real rat whisker arrays for object
detection and discrimination [82,110,83].

Vestibular input

The Khepera’s odometers are used to emulate vestibular or proprioceptive input
to our system. After each movement, we use standard trigonometric formulas to
calculate the incremental distance (∆x, ∆y) and heading ∆φ in an external Cartesian
frame (figure 5.12):

∆φ =
dR − dL

B

R =
dL + dR

2∆φ

∆x′ = R sin ∆φ

∆y′ = R(1 − cos ∆φ)

∆x = ∆x′ cos α − ∆y′ sin α
∆y = ∆x′ sin α + ∆y′ cos α

(5.5)

where dL and dR denote the distance travelled by the left and the right wheel
respectively and B is the distance between the two wheels.
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Figure 5.12: Calculating the idiothetic update.



Chapter 6

Spatial representation in the
hippocampus: A new model

Neurons in all parts of the hippocampal formation seem to be important for solving
spatial learning tasks. In particular, granule cells in dentate gyrus (DG) as well as
pyramidal cells in the CA1 and CA3 region of the hippocampus (HPC) fire in strong
correlation with the rat’s position in the environment [196, 174, 187, 189, 200, 253,
36, 221, 28, 334, 195, 58]. Entorhinal cortex (EC) is the “gateway” to HPC. Highly
processed multimodal (visual, olfactive, vestibular, tactile, somatosensory, auditory)
information from EC reach HPC via the perforant path [232,330,221].

Activity in postsubiculum (poSb) neurons is correlated with the animal’s head
direction [222, 288, 289, 31]. Damage to the poSb results in severe deficits in spatial
behaviours [287].

In this chapter, a new connectionist model of the relation between EC, poSb and
HPC is presented. It is able to learn spatial representations based on combining
allothetic and idiothetic information. Experimental results are obtained by imple-
mentation of the model on a real and simulated mobile robot platform.

6.1 Architecture

The architecture of our model is inspired by the anatomical findings reviewed in 2.1.1.
Nevertheless, a functional, rather than an anatomical, terminology for the components
of the model is used. Each component is described in turn, results are presented and
a mapping to anatomical structures in the brain is proposed.

67
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Idiothetic input

MCC

CDC

Allothetic input

APC IPC

calibrate

calibrate

LV

PC

HD

Figure 6.1: Architecture for learning spatial representations. Local view (LV) cells
process, store and compare visual stimuli. We model two types of local view cells: Mul-
ticolumn cells (MCC) and column-difference cells (CDC). CDCs drive cells in the allo-
thetic place code (APC) module and MCCs calibrate the head direction system (HD).
Internal cues drive the idiothetic place code (IPC) and HD. APC calibrates IPC and
they both project to the combined place code (PC).

The spatial representation consists of five interconnected modules (figure 6.1): (i)
The local view module stores and compares sensory input. (ii) The head direction
system continuously updates the agent’s sense of orientation. (iii) The allothetic place
code estimates the agent’s position within the environment based on the local view.
(iv) The idiothetic place code keeps track of the agent’s position by integration of
internal motion cues. (v) The combined place code links the allothetic and idiothetic
codes and forms the output of the system.

The head direction system together with the idiothetic place code forms a path
integrator (PI) (see section 2.2).

6.2 Local view

The local view module receives visual input from the columns of the artificial retina
described in section 5.2.2. Its purpose is to extract information which is relevant for
the construction of a spatial representation. A previous view stored at time tk can
be compared to the current view at time tj by defining a similarity measure between
two sets of filter activities. This measure is implemented by visual neurons described
in this section.
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The choice of a comparison function depends on what transformations the image is
subject to. The agent’s local view in an environment depends on two variables, namely
position and heading. Accordingly, we will call an agent’s movement a “rotation”
if it only changes the heading. If only the agent’s position is changed, and that
only by a small amount, we call it a “step”. Independently of the environment, a
rotation produces a translation along the horizontal axis of the view. A step, however,
causes a complicated and environment-dependent transformation. We assume that
translations along the vertical axis are not possible, i.e. the agent does not look
up or down, only left or right. While this holds for the mobile robot, it is only an
approximation for the rat.

One of the problems is that if the visual cues are far away, a step produces only a
small change in the view, whereas a rotation always produces a big, but predictable
change. For a spatial representation, however, the visual system must permit the dis-
crimination of both heading and position. We therefore “read” the retinal information
in two ways: One neural population tries to discriminate well between headings but
not position, and vice versa for a second population. Both should have broad tuning
curves in order to provide good generalisation of known samples to new views.

Neural substrate: In our model, only low-level features are used to drive the
spatial learning system. There is no notion of objects, landmarks or other high-level
structures. This is a strongly simplified view of the input system to the hippocampus.
An anatomical locus of this processing stage is therefore hard to determine. We just
note here that the posterior parietal as well as perirhinal and postrhinal cortices are
the main inputs to entorhinal cortex, the gateway to the hippocampus. Hence these
regions may be involved in processing (storing and comparing) the local view.

6.2.1 Multicolumn cells

Multicolumn cells (MCCs) aim at discriminating headings regardless of position. The
receptive fields should span a large range of headings, i.e. translations of the image
should not cause a drastic change in activity.

This is achieved by combining information from neighbouring retinal columns. For
each retinal column i positioned at xi, the weighted sum of filter activities ~h(xi, tk)

at time tk, not the activities ~f(xi, tk) themselves, are stored/compared:

~h(xi, tk) = c0 · ~f(xi, tk) +

dncols/2e
∑

j=1

cj · [~f(xleft(i,j), tk) + ~f(xright(i,j), tk)] (6.1)

where left(i, j) = |i − j| and right(i, j) = (ncols − 1) − |i + j − (ncols − 1)| are
the jth column indices to the left and right of the current column i. In the centre,
left(i, j) = i − j and right(i, j) = i + j. Near the borders, however, columns which
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would lie outside of the image are mirrored on the left and right borders. Note that
vector ~f in equation 6.1 is composed of the filter responses from all rows of column i.
The weights cj are sampled from a Gaussian Nc, the standard deviation σc [pixels] of
which determines the amount of translation invariance. Figure 6.2 shows the weighted
sum of the Gaussian Gabor filter envelopes. Similarly to figure 5.9, the receptive field
of the filter vector at column xi is represented by its envelope. For the sum, however,
each envelope is weighted by a factor cj according to its distance j to the central
column. The resulting weighted sum illustrates the receptive field of one element of
the vector ~h, placed at the central column of the image at pixel 400.
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0 100 200 300 400 500 600 700 800

Figure 6.2: The receptive field is enlarged by combining neighbouring columns in
a weighted sum. blue: Plain filter envelopes. black: Gaussian weighing window Nc

(standard deviation σc = 100[pixels] indicated by line). red: Enlarged receptive field
by weighted sum of plain filter envelopes (shifted vertically by −1)

When a small stimulus is translated on the image, the plain Gabor filters can only
see it in a small range defined by their envelopes. The weighted sum described above
enlarges the receptive field without losing discrimination capability. If h(xi) is tuned
to detect a stimulus at position xi, the shifted stimulus can be detected over a broad
range, but only when it is in the central location xi, h(xi) is at its maximum.

A translation of the image is caused by a rotation of the agent. It is therefore
useful to test the filter response and the weighted sum with respect to the agent’s
heading. To keep everything as simple as possible, a virtual environment with an
“optimal” stimulus as the only visual cue at a heading of 0◦ is used. The retina
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only contains one row and each retina point only contains one Gabor filter f . The
stimulus, shown in figure 6.3 (a) is optimal in the sense that it activates most strongly
the vertical Gabor filter f of the central column when the agent’s heading is 0◦.

Three responses are shown versus the agent’s heading in figure 6.3 (b): (i) The
plain response of Gabor filter f(xi) at the central column xi is sharply tuned but
does not respond to the stimulus if the bearing angle is greater than ±25◦. (ii) The
uniform sum

∑

j fj of all columns j. Due to the relation between column distance and
filter width discussed in section 5.2.2, the sum is constant within the agent’s field of
view Ψ. Here, Ψ = 180◦ so the stimulus can’t activate the filters for headings greater
than ≈ 90◦ because the the image is just gray for those headings. (iii) The weighted
sum h(xi)is broadly tuned, but still discriminates with respect to heading. Here, the
width σc = σφ · rx/Ψ of the Gaussian neighbourhood function for an image width
of rx = 800pixels is expressed in degrees of agent rotation and is set to σφ = 30◦.

(a)

-200 -150 -100 -50 0 50 100 150 200

plain filter
weighted sum

uniform sum

(b)

Figure 6.3: (a) ”Optimal” stimulus. (b) Rotation experiment. Retina response to
optimal stimulus versus agent heading: (a) red: filter response f . green: Weighted
sum h of responses f . blue: uniform (unweighted) sum of responses f .
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In order to compare two views, a similarity measure must be defined. At each
time step tk, the agent takes a visual snapshot. The image is processed as described
above and encoded by a set of MCCs. For each column i, a newly recruited MCC
stores the feature vector ~h(xi, tk). The activity of an MCC represents the similarity
of a column at time tj with respect to what the cell stored at time tk. The activation
function is:

rmcc(tj | xi, tk) = e
−

(‖~h(xi,tk)	~h(xi,tj)‖1)2

2k·σ2
mcc (6.2)

where ~z = ~x	~y is the relative difference: Each element l of the normal differences
is element-wise divided by ~x, i.e. zl = (xl − yl)/xl. ‖.‖1 denotes the L1-norm and
k = (nrows · nfreq · norie) is a normalisation factor (number of rows per retina column,
number of gabor frequencies and orientations). Thus rmcc depends on the average
relative distance between stored and current filter activity. In figure 6.4, the same
rotation experiment as in figure 6.3 shows, for the optimal stimulus, how MCC activity
depends on σmcc. The distance d = ‖~h(xi, tk) 	 ~h(xi, tj)‖1 does not increase linearly
with the agent’s heading. In particular, d saturates for headings greater than 90◦. For
this reason, rmcc is not zero for large headings. σmcc thus determines the spontaneous
activity of MCC neurons. In all other experiments, a value of σmcc = 0.25 is used.
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Figure 6.4: MCC activity for an ideal stimulus. The parameter σmcc determines how
much background activity there is.

The receptive fields (RFs) of 50 cells has been visually inspected for all test envi-
ronments. In figure 6.5 (a), the RFs of three MCCs are visualised. They are taken
after 1000 time steps of exploration in the “Buildings” environment (see section 5.1).



6.2. LOCAL VIEW 73

A cell’s firing rate r in the contour-plots is coded by colour-temperature. For instance,
dark red corresponds to r = 1.0 and dark blue means r = 0.0. For each cell, a block
of nine contour plots is shown. Each of the small squares represents the environment.
The eight peripheral images illustrate the receptive field when the agent is oriented
towards the corresponding direction. For instance, the top-right image shows the
receptive field when the agent is facing north-east. The central image is the average
of all directional plots.

The standard deviation of the Gaussian neighbourhood function of equation 6.1
(which determines the factors cj) is expressed in degrees of agent rotation and is set
to σφ = 30◦. The range of sensitivity therefore spans almost 180◦ (see figure 6.3 (b)).
For realistic visual input, this also holds. Nevertheless, a position-sensitive component
in the MCC activity has been observed in nearly all RFs we visualised. In about 50%
of the cases, the centre of the directional RFs are not at the same place for different
directions, as is shown for the cell at the top row of figure 6.5 (a). In almost all cases,
the mean RF (averaged over the eight directions and shown in the centre of the RF
presentation) is very flat. This does not allow a clean localisation of the agent. The
cell’s preferred heading, however, is in most cases clearly distinguishable. In around
a third of the cells observed, a peak of considerable activity is present at a wrong
heading. Such a cell is shown at the bottom.

6.2.2 Column difference cells

The second way of reading out the retinal activation should help to discriminate
positions, regardless of the agent’s heading. Suppose that two distinguishable land-
marks l1 and l2 are the only visual cues in an environment. Let us define d(p) as
the difference in the bearing angle to landmarks l1 and l2 when the agent is at loca-
tion p. If the agent has a field of view of 360◦, the two landmarks are visible for all
agent headings and the difference d(p) is independent of this heading. However, the
bearing difference depends on the agent’s position, i.e. for most positions p1 and p2,
d(p1) 6= d(p2). This property is exploited by the column difference cells (CDCs).

At every time step tk, a variable number of CDCs is recruited: We consider two
retinal columns s and s+ δ. If the filters of both columns are sufficiently active, their
filter vector difference ~d(δ, s, tk) is stored:

~d(δ, s, tk) stored if δ ∈ {3, . . . , 6} and ‖ ~f(xs, tk)‖1 > θcdc and ‖~f(xs+δ, tk)‖1 > θcdc

~d(δ, s, tk) = ~f(xs, tk) − ~f(xs+δ, tk) (6.3)

We set θcdc = 1.0. Such an activity threshold is particularly useful in impoverished
environments, where most filter columns just see plain walls. It prevents recruitment
of cells which store no relevant information.
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The column distance δ should ideally correspond to big angle differences because–
at least in enclosed environments–big landmark bearing differences depend more on
the agent’s position than small ones, which makes position discrimination easier.
However, if the agent’s field of view Ψ is smaller than 360◦, a big value for δ re-
duces the probability that both landmarks are visible at the same time. In our
experiments, Ψ equals 280◦. We allow a range of empirically determined column dis-
tances δ ∈ {3, . . . , 6} which corresponds to bearing differences between approximately
50◦ and 100◦.

CDCs should detect at time tj if the difference of column filter activities of a given
distance δ has already been seen and stored at time tk. The comparison should be
independent of the agent’s heading, i.e. the absolute position of the two columns
spaced by δ on the retina should not matter. To achieve this translation invariance
in the retinal image, ~d(δ, s, tk) is compared with the most similar column difference
at time tj. The firing rate rcdc(tj | δ, s, tk) of a CDC which stored the difference

vector ~d(δ, s, tk) at time tk is given by:

rcdc(tj | δ, s, tk) = e
−

(mini ‖~d(δ,s,tk)	~d(δ,i,tj)‖1)2

2kσ2
cdc (6.4)

where k is the same normalisation factor as for MCCs (equation 6.2) and σcdc

determines the baseline firing rate. In our experiments, we set σcdc to 0.1.
The receptive fields (RFs) of 50 cells has been visually inspected for all test envi-

ronments. In figure 6.5 (b), the RFs of three CDCs are visualised. They are taken
after 1000 time steps of exploration in the “Buildings” environment (see section 5.1).
A cell’s firing rate r in the contour-plots is coded by colour-temperature. For instance,
dark red corresponds to r = 1.0 and dark blue means r = 0.0. For each cell, a block
of nine contour plots is shown. Each of the small squares represents the environment.
The eight peripheral images illustrate the receptive field when the agent is oriented
towards the corresponding direction. For instance, the top-right image shows the
receptive field when the agent is facing north-east. The central image is the average
of all directional plots.

Even though CDCs are translation invariant in the retina frame, their firing rates
depend on the agent’s heading, i.e. CDCs are directional. The reason is that the
agent’s field of view (280◦) is smaller than 360◦. Sometimes, only one of the two

columns is visible and the other is hidden. Additionally, the difference ~d(δ, i, tj)
of column xi and xi+δ in equation 6.4 is calculated for all i ∈ {1, . . . , ncols − δ}
where ncols is the number of retina columns. In other words, columns in the retina
are not wrapped around. Nevertheless, rotation invariance of at least 90◦ was present
in all observed cells. The activity in directions opposite to the main peak is low in all
cases observed. The two cells in the top and central row show rather clean position
tuning. The bottom row displays a cell with a doubly peaked tuning curve. Such
ambiguous RFs has been observed in roughly 30% of the cells.
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(a) (b)

Figure 6.5: Receptive fields. See text for interpretation. (a) Multicolumn
cells (MCCs). (b) Column difference cells (CDCs)
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6.3 Head direction system

The head direction (HD) module forms the most important part of the path integrator
system. Small rotational errors can totally impair the system’s ability to build and
maintain a spatial representation. This section describes how the HD system com-
bines idiothetic and allothetic information in order to produce a stable (non-drifting)
estimate of the agent’s heading.

A population of Nhd = 120 directional neurons codes for the agent’s heading Φ
with respect to an arbitrary fixed compass bearing. Each HD neuron i represents the
heading φi = i · 360◦/Nhd.

The firing rate of HD cells is calculated in two stages. First, the current heading Φ
is estimated. Then, a large activity profile around Φ is enforced in the HD system.
Lateral interconnection between HD cells could be the neuronal substrate for such
activity profiles. Here, we emulate lateral interactions by enforcing a Gaussian activity
profile around Φ. Formally, the firing rate rhd

i of HD cell i is:

rhd
i = e

−
(‖Φ−φi‖ϕ)2

2σ2
hd (6.5)

where ‖.‖ϕ ∈ [0, 2π] is the angular distance and σ2
hd is the angular variance of the

Gaussian profile. In our experiments, a value of σ = 60◦ is used. An example of the
HD activity profile is illustrated in figure 6.6 (a) for a heading of ≈ 105◦.
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Figure 6.6: Activity of the head direction (HD) cell population. (a) Enforced Gaus-
sian activity profile driven by idiothetic cues for a heading of ≈ 105◦. (b) HD activity
at the same location but driven by allothetic cues only.

When the agent moves1, its angular displacement δΦi is estimated by dead-
1It is always assumed that the agent performs “uniform” movements. The movement is uniform

in the sense that the angular velocity ω remains constant throughout the movement.
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reckoning (odometry) and made available to the HD system when the movement
is completed. The new heading, estimated by idiothetic cues, is then Φi = Φ + δΦi,
where Φ is the previous heading estimation.

Any real-world path or heading integration system based on dead-reckoning is sub-
ject to noise, and more importantly, to a systematic drift. In order to keep the HD rep-
resentation accurate, the local views encountered during exploration are continuously
associated to their heading direction. In particular, all multicolumn cells (MCCs)
are connected to all HD cells and synapses are activated/modified at each time step
as follows: If a synapse has zero strength and its pre–and postsynaptic activities rj

and ri are above a threshold θ, the synapse is activated and its strength initialised
using a one-shot Hebbian type learning rule:

wij = ri · rj ifri > θ and rj > θ (6.6)

Once activated, the synaptic efficacy is modified at each time step:

∆wij = η · ri(rj − wij) (6.7)

where η is a small learning rate. After each learning step, weights are renor-
malised: w̃ij = wij/(

∑

k wik). The activities of all MCCs j connected to HD cell i
produce an input potential hi =

∑

j w̃ijrj at the HD cell i. The allothetic heading
estimate Φa is then given as the circular population vector of the input potentials hi:

Φa = arctan

(∑

i hi · sin(2πi/Nhd)
∑

i hi · cos(2πi/Nhd)

)

(6.8)

In figure 6.6 (b), an example input potential distribution is shown. It is recorded
in the “Buildings” environment after 1000 exploration time steps when the agent faces
a heading of ≈ 105◦. The activity is indeed centred around the correct heading, with
a broad but clearly discriminative distribution.

At each time step, both idiothetic and allothetic heading estimations are deter-
mined. The new estimated heading is then calculated as:

Φ = Φi − α · (Φi − Φa) (6.9)

α ∈ [0, 1] determines the influence of the allothetic estimate. A value of zero
means no allothetic influence at all whereas a value of one would completely ignore
idiothetic information. Note that although we explicitly access angular information
in equations 6.5, 6.8 and 6.9 which seems at first sight biologically implausible. How-
ever, if continuous attractors using lateral connections [9, 10, 335, 227, 238, 272] or
a probabilistic activity transition matrix [117, 118] between HD cells was used for
implementing equation 6.5, the recalibration could be performed without explicitly
accessing angular information.
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The advantage of the idiothetic update is that it is always smooth. There are no
“jumps” if the noise in the dead reckoning system is not too big. This smoothness
is not present in the allothetic heading estimation. At each time step, the previous
heading is forgotten and a new independent estimation is performed. In other words:
Idiothetic estimation contains memory and allothetic estimation does not. For this
reason, α in equation 6.9 should be small. We use α = 0.1. As an example, the
distributions of Φa and Φ for the “Buildings” environment are shown in figure 6.7.
While the distribution of Φa is centred around zero, the drifting odometry produces
a shift into the distribution of Φ. The idiothetic noise, however, is smaller than
for the allothetic estimation. This is the reason why the recalibrated heading error
distribution is narrower.
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Figure 6.7: Heading error distributions in the explored “Buildings” environment. (a)
Pure allothetic estimation. (b) combined allothetic and idiothetic estimations.

The tracking capability of the HD system is tested to ensure that calibration works.
Figure 6.8 (a) illustrates for the explored “Buildings” environment that the non-
calibrated heading error (α = 0) drifts away whereas the error for the continuously
calibrated system (α = 0.1) remains bounded.

The distribution of allothetic heading estimation errors is experimentally esti-
mated for all fully explored test environments. The agent is placed 500 times at
random positions and headings. For each trial, the allothetic heading estimation
error ∆Φa is recorded. Gaussians are fitted to the distributions. The mean values
are below one degree for all test environments. The standard deviations for all en-
vironments are shown in figure 6.8 (b). In a second series of experiments, the agent
navigates for 500 time steps in each environment, continuously recalibrating its HD
system according to equation 6.9. The recalibrated heading estimation error ∆Φ is
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Figure 6.8: Calibrating the head direction (HD) system using allothetic information.
(a) Heading error over time for pure idiothetic (∆Φi) and recalibrated (∆Φ) HD sys-
tem. The systematic drift is successfully removed. (b) The standard deviations of the
heading estimation errors for all test environments. The higher values are the allo-
thetic estimation errors ∆Φa, whereas the lower values are for the combined allothetic
and idiothetic estimates ∆Φ.

recorded. Its standard deviation is also shown in figure 6.8 (b). It is always smaller
than in the pure allothetic case, which confirms that idiothetic information is ex-
tremely useful.

Neural substrate: Head direction cells have been found in several regions of the
brain. However, the postsubiculum (poSb) , together with anterodorsal (adT) as well
as lateral mammillary (lmT) nuclei of the thalamus seem to be key brain areas for
spatial orientation [222, 288, 289, 31]. Damage to poSb, for instance, results in severe
deficits in spatial behaviours [287]. Neurons in the subiculum (Sb) show environment-
independent firing which is correlated to position and heading [258, 255, 257]. We
therefore propose that adT, lmT, poSb and possibly Sb form the neural substrate of
the HD module.

6.4 Allothetic place code

In our allothetic place code module, a spatial representation based on visual informa-
tion is constructed from experience. In each time step, a new neuron i is recruited if
the current place is not yet well represented by a sufficient number of active neurons:

new cell i recruited if
∑

k

H(rk − θact) < C (6.10)



80 CHAPTER 6. A NEW HIPPOCAMPUS MODEL

where k runs over all APC neurons, C controls the density of coverage, H(.) is
the Heaviside function and θact is a firing rate threshold above which neurons are
considered active. We set θact = 0.8, which means 80% of the maximum activity. If
the place is already well represented, no new cell is recruited.

Suppose that a new cell i has been recruited. Neurons coding for the current local
view synapse on the new place cell i. In particular, a difference cell (CDC) j connects
with weight wij to place cell i if its firing rate rj is high:

wij =







rj(· ri
︸︷︷︸

=1

) if rj > θact

0 else
(6.11)

This is a thresholded one-shot Hebbian-type rule with learning rate one. The
newly recruited cell should represent the current place. Therefore, it should be max-
imally active (ri = 1) for the current afferent CDC projection. This is achieved by
tuning the parameters of the neuron’s piecewise linear activation function:

ri =







0 if κihi < θlow

1 if κihi > 1
κihi−θlow

1−θlow
else

(6.12)

where hi =
∑

j wijrj is the input potential to APC neuron i, θlow = 0.2 is the

minimal input to activate the neuron and κi = 1/h0
i determines the saturation poten-

tial of neuron i, with h0
i standing for the input potential at the time when neuron i

was recruited. At the moment when the cell i is recruited, we have κ · hi = 1, and
hence ri = 1. For this reason, ri may be omitted in equation 6.11

The resulting place code represents the agent’s position in the environment. The
agent’s encoded position is interpreted by calculating the population vector [100,189,
324,237,34,336,239]:

Pa =

∑

i ri · xi
∑

i ri

(6.13)

where xi is the agent’s position where APC i was recruited. The position error
vector ∆Pa = P − Pa is the difference between the real position and the allothetic
position estimate.

To assess the precision of the allothetic place code, the position error distribution
is estimated experimentally for all test environments. First, the agent explores the
environment in order to establish a population of APCs. After exploration, the agent
is placed 500 times at random positions and headings. For each trial, the position error
vectors ∆Pa are recorded. Circular two-dimensional Gaussians are fitted to the ∆Pa.
The mean values for all environments are below 1cm. The standard deviations of the
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Gaussian fits are plotted in figure 6.9 (a). As an example, the distribution of |∆Pa|
is shown in figure 6.9 (b) for the “Buildings” environment.

0

10

20

30

40

50

60

70

Office Buildings Davos Minimal

di
st

an
ce

 e
rr

or
s 

[m
m

]

Allothetic place code distance errors (standard deviations)

(a)

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180

position error distance [mm]

visual position error distribution

(b)

Figure 6.9: Allothetic position error distribution. (a) For all test environments,
the standard deviations of circular Gaussians fitted to the position estimation error
vectors ∆Pa are plotted. (b) The distribution of the lengths of the error vectors |∆Pa|
for the “Buildings” environment.

Examples of the resulting place code are visualised in figure 6.12 (b) for the
“Buildings” environment after 1000 time steps of exploration. The square represents
the environment. Each dot represents an APC neuron i. Cell i is drawn at the
location where the agent was when i was recruited. Its firing rate ri is coded by
colour-temperature. For instance, dark red corresponds to r = 1.0 and dark blue
means r = 0.0. The population vector is indicated by a cross. The agent’s heading
is not indicated in the plots. Not all APCs which code for a certain position are
active when the agent is near it. The reason is that APCs are directional. They
only fire when the agent’s heading is near the cell’s preferred heading. This becomes
clearer when the receptive fields are discussed in the next paragraph. For most agent
positions, the code is rather disperse. The population vector, however, reliably codes
for the real agent’s location, which is indicated in the left column (figure6.12 (a)). In
some places (most notably in the corners), the code is sparse. This is probably due
to the fact that close walls make nearby places look more different than if the walls
are far away. The last row shows an example where the allothetic estimate deviates
more than usual from the correct value.

The receptive fields (RFs) of 50 cells has been visually inspected for all test en-
vironments. In figure 6.13 (a), the RFs of three APC neurons are visualised. They
are taken after 1000 time steps of exploration in the “Buildings” environment (see
section 5.1). A cell’s firing rate r in the contour-plots is coded by colour-temperature.



82 CHAPTER 6. A NEW HIPPOCAMPUS MODEL

For instance, dark red corresponds to r = 1.0 and dark blue means r = 0.0. For each
cell, a block of nine contour plots is shown. Each of the small squares represents
the environment. The eight peripheral images illustrate the receptive field when the
agent is oriented towards the corresponding direction. For instance, the top-right im-
age shows the receptive field when the agent is facing north-east. The central image
is the average of all directional plots.

RFs of APC neurons are rather stereotype. The cells are broadly tuned around
their preferred position, like the cell in the first row of figure 6.13 (a). All APC cells
observed are directional, and they are all activated in a range of about 180◦ around
the preferred agent heading. Cells that code for positions near the corners tend to
have smaller RFs, as shown for the cell in the centre. The cell shown in the bottom
row has an unusually large and flat RF.

Neural substrate: Entorhinal cortex (EC) is the gateway to the hippocam-
pus (HPC). It receives processed multisensory information from cortex and projects
to HPC. Environment-independent place cells have been found in the medial EC. An
allothetic place code, however, must depend on the environment. To our knowledge,
no published studies investigate spatial firing properties in the lateral EC. As this
is the only other pathway to HPC, we postulate that the lateral entorhinal cortex
contains a broadly tuned, environment-dependent allothetic place code.

6.5 Idiothetic place code

The HD system described above keeps track of the agent’s current compass bearing.
The idiothetic place code (IPC) module presented in this section implements the
memory for the agent’s current position. Together, they work as a path integrator,
i.e. an environment-independent spatial representation.

A population of Nipc = 400 simulated neurons encode the agent’s estimated posi-
tion Pi in a Cartesian coordinate frame. Each IPC neuron j is assigned a predefined
preferred position pj such that a square region of space is uniformly covered. The fir-
ing rate rj of cell j is a two-dimensional Gaussian with variance σ2

ipc over the euclidian
distance ‖Pi − pj‖2:

rj = e
−

(‖Pi−pj‖2)2

2σ2
ipc (6.14)

As with the HD system, such an activity profile may result from lateral interac-
tions between the IPC neurons. The estimated agent position Pi is updated using
dead-reckoning (amount of displacement) as well as HD (direction of movement) in-
formation. Figure 6.12 (a) illustrates the population activities at various places in
the square “Buildings” environment.
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In order to prevent the estimated agent position Pi from drifting away, the rep-
resentation needs to be recalibrated using allothetic information. At each time step,
the idiothetic and allothetic position estimates Pi and Pa are determined. The new
recalibrated position estimate P is then calculated as:

P = Pi − β · (Pi − Pa) (6.15)

where β ∈ [0, 1] determines the influence of the allothetic estimate. Similar to the
HD system, a value of zero means no allothetic influence and a value of one would
completely ignore idiothetic information. We used β = 0.1 in our experiments. As
in the HD system, a small value of β keeps the position estimate smooth, while still
removing systematic drifts.

In order to calculate the allothetic position estimate Pa, we use the position of
allothetic place field centres (xi in equation 6.13). This is not a biologically plausible
way of recalibrating the IPC population. Similarly to the HD system, however, we
could associate allothetic place cell activity to the firing of idiothetic place cells using
unsupervised Hebbian learning and use an attractor network for implementing equa-
tion 6.14. Then, no explicit spatial information would be needed for recalibration.

This calibration method removes the systematic drift inherent in a pure idiothetic
system. This is illustrated in figure 6.10 (a) for the explored “Buildings” environment:
The uncalibrated (β = 0) position error vector length drifts away whereas the the
error for the recalibrated system(β = 0.1) remains bounded.

The distribution of the recalibrated position errors is experimentally estimated for
all fully explored test environments. The agent navigates for 500 time steps in each
environment, continuously recalibrating its IPC system according to equation 6.15.
As for the allothetic place code, circular two-dimensional Gaussians are fitted to the
position vector errors ∆ ~P . The standard deviations of ∆ ~Pa (from figure 6.9 (a)) and

∆~P are plotted in figure 6.10 (b). As expected, the recalibrated estimate yields a
narrower distribution than the pure allothetic estimate.

Examples of the resulting place code are visualised in figure 6.12 (a) for the “Build-
ings” environment after 1000 time steps of exploration. The square represents the en-
vironment. Each dot represents an IPC neuron i. Cell i is drawn at the location where
the agent was when i was recruited. Its firing rate ri is coded by colour-temperature.
For instance, dark red corresponds to r = 1.0 and dark blue means r = 0.0. The
population vector is indicated by a cross. The agent’s heading is not indicated in
the plots. Unlike the APC population code in the central column (figure 6.12 (b)),
IPC cells are only tuned to position, and not to heading. The tuning curves of IPC
neurons is determined before exploration starts, and cells are uniformly distributed
over the environment.

Neural substrate: The medial entorhinal cortex (mEC) contains neurons with
spatial firing correlates. The spatial selectivity of an mEC place cell is lower than in
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Figure 6.10: Calibrating the idiothetic place code using allothetic information. (a)
Position error over time for pure and recalibrated idiothetic place code in the “Build-
ings” environment. The systematic drift is successfully removed. (b) The standard
deviations of the position estimation errors for all test environments. The higher val-
ues are for pure allothetic estimates Pa, whereas the lower values are for the combined
allothetic and idiothetic estimates P.

the hippocampus, but there is a clear peak activity at the cell’s preferred position.
mEC Neurons are likely to be active in any environment, regardless of shape and size.
The shape of the place fields is also preserved across environments [221,89,90]. Place
fields in the subiculum (Sb) are also environment-independent. They can, however,
be directional [23, 258].

We propose that mEC and possibly Sb are the neural substrates for an idiothetic
place code. mEC is innervated by presubicular neurons [329], which could provide
heading information to update the current position estimate in mEC. The lateral
entorhinal cortex strongly projects to mEC [221], which could serve as a positional
calibration signal using allothetic cues.

6.6 Combined place code

The idiothetic and allothetic place cells project to a layer of combined place code (PC)
neurons (see figure 6.1). At each time step, place cells are recruited according to
equation 6.10. Synapses originating in the APC and IPC layers are recruited and
initialised as defined by equation 6.11. The firing rate of PC neuron i is given by
equation 6.12. The input threshold θlow = 0.3 in the PC layer is higher than for APC
neurons. This results in a sparser representation and smaller receptive fields.
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Additionally, at each time step, weights wij of APC→PC synapses are modified
using a Hebbian-type learning rule:

∆wij = η ri(rj − wij) (6.16)

where ri is the firing rate of PC neuron i and rj is the firing rate of APC neuron j.
η is the learning rate.

Example population activities are shown in figure 6.12 (c) for the “Buildings”
environment after 1000 time steps of exploration. The square represents the envi-
ronment. Each dot represents a PC neuron i. Cell i is drawn at the location where
the agent was when i was recruited. Its firing rate ri is coded by colour-temperature.
For instance, dark red corresponds to r = 1.0 and dark blue means r = 0.0. The
population vector is indicated by a cross. The agent’s heading is not indicated in the
plots. The environment is densely covered by place cells. Most place cells near the
encoded position are active. This suggests that most cells are non-directional, unlike
the APC neurons in the central column (figure 6.12 (b)). The code is also more sparse
than the allothetic representation.

The receptive fields (RFs) of 50 cells has been visually inspected for all test en-
vironments. In figure 6.13 (b), the RFs of three PC neurons are visualised. They
are taken after 1000 time steps of exploration in the “Buildings” environment (see
section 5.1). A cell’s firing rate r in the contour-plots is coded by colour-temperature.
For instance, dark red corresponds to r = 1.0 and dark blue means r = 0.0. For each
cell, a block of nine contour plots is shown. Each of the small squares represents
the environment. The eight peripheral images illustrate the receptive field when the
agent is oriented towards the corresponding direction. For instance, the top-right im-
age shows the receptive field when the agent is facing north-east. The central image
is the average of all directional plots. The majority of place cells are heading inde-
pendent, like the cell shown at the top. Place fields are more compact than in the
APC layer. Around 20% of the observed cells are to some degree directional. Such a
cell is shown in the central row. We observed one cell only which does not respond
in all headings. This cell is shown at the bottom.

Neural substrate: The hippocampal areas are candidate locations for the com-
bined place representation. All regions (dentate gyrus, CA3 and CA1) show clear
spatial firing properties as well as sparse coding. The model PC activity is also
sparser than in both APC and IPC layers, consistent with experimental data. Our
model of PC is purely feed-forward. As DG and CA3 contain lateral interconnections
whose function is not yet resolved, our model best fits the hippocampal region CA1.
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Figure 6.11: (a) Position and heading error evolution when the agent is disoriented
and inserted into the explored “Buildings” environment. At time step 80, the agent is
again disoriented. (b) Mean number of time steps until the agent is localised for all
test environments.

Entering a familiar environment

In order to assess the performance of the full system, we test if the model is capable
of localising itself autonomously. We use the following procedure:

The agent is put at a random position and heading into a familiar environment.
Then, its IPC and HD systems are randomly initialised. This corresponds to a disori-
entation process often used in animal experiments. Next, the agent moves randomly
in the environment and tries to localise itself. Using the described calibration scheme,
the agent may recalibrate its path integrator using allothetic cues. At each time step,
the allothetic representation “pulls” the path integrator towards the allothetic estima-
tion of position and heading. An example of the temporal evolution of the recalibrated
path integrator (HD and IPC modules) estimation errors ∆Φ and ∆P is shown in
figure 6.11 (a) for the “Buildings” environment.

As can be seen in the first 10 time steps, the position estimation error heavily
depends on the correct heading direction: it may even continue to rise for some time
until the heading error is sufficiently low. At time step 80, the agent is again “disori-
ented”, but the calibration process continues to “draw” the idiothetic representation
towards the allothetic estimate in order to produce a consistent place code.

How many time steps does it take until the estimations are “locked” to the correct
values? This question is answered by the next series of experiments. In each of the
explored test environments, 100 “disorientation” experiments are performed: The
agent is placed at a random position with random heading. Its IPC and HD systems
are randomly initialised, and the agent starts to move randomly, trying to localise
itself. Whenever the heading and position error estimates ∆Φ and ∆P fall below the
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standard deviations for the allothetic estimates (figures6.8 (b) and 6.10 (b)) for five
consecutive time steps, we conclude that the agent has localised itself and the trial
is ended. The mean value and standard deviations of the trial lengths are shown in
figure 6.11 (b). If we assume that the rat “samples” its sensory input with a rate
of 8Hz [254, 41], which is in the frequency range of the theta rhythm, it takes our
simulated rat around four seconds to localise itself.
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(a) (b) (c)

Figure 6.12: Population activities in a 770 × 770mm environment. Each row shows
the population activity at a specific time step. Crosses indicate the population vectors.
(a) Idiothetic place code, (b) allothetic place code, (c) combined place code
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(a) (b)

Figure 6.13: Directional receptive field contour plots. (a) Allothetic place
cells (APCs). (b) Combined place cells (PCs)
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Chapter 7

Towards a model of multimodal
integration in the superior
colliculus

When combining information from several sensory organs into a common spatial rep-
resentation, each sensory modality must be assigned a certain level of influence on the
combined representation. However, the relevance of information from a specific sen-
sory organ depends on the current environmental conditions. An adaptive weighting
scheme is needed to solve this multimodal integration task. In this chapter, a model is
proposed to combine visual and “tactile” information into a common representation.
It is an extension to the hippocampal place cell model described in chapter 6. It is
implemented and tested on a Khepera mobile robot platform. The model is inspired
by neuronal properties of the superior colliculus (SC), a layered midbrain structure.
Its superficial areas are involved in oculomotor responses and the deep layers (dSC)
process multimodal information (visual, tactile and auditory). In section 2.3.1, some
single neuron and population properties, as well as behavioural implications of SC
are reviewed. To summarise, it is noted that:

• dSC contains separate topological maps for each sensory modality.

• These maps are combined into multimodal sensory-motor maps.

• Most dSC input neurons are unimodal, whereas the majority of output cells
show multimodal enhancement.

91
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• Some SC neurons show spatial firing properties.

• The majority of SC neurons show theta field activity in situations where hip-
pocampus also does.

We use some of these aspects in a simplified model of the deep layers of the superior
colliculus. The model is rather abstract. It focuses on the “gating” mechanism which
learns to assign appropriate weights to each sensory modality at each time step.

7.1 Architecture

The different modalities are combined in the allothetic place code layer (see sec-
tion 6.1). As an example, we address the integration of visual and tactile signals,
but the concept could easily be extended to other modalities. The weight of each
sense is modulated by a gating network which learns to adapt the importance of each
modality to the current environmental condition. Intermodal correlations are estab-
lished using uni- and multimodal units inspired by neurons in the superior colliculus.
Figure 7.1 shows the architecture of the system.

IPC

HPC

TCVC

Gater

SC

APC

Odometer

gvc

gtc

Idiothetic Allothetic

Figure 7.1: Architecture of our system for multimodal integration. Visual (VC) and
tactile (TC) cells are combined in the allothetic place code (APC). Their influence is
modulated by the output of a gating network. The superior colliculus (SC) population
stores and compares intermodal correlations.



7.2. UNIMODAL AND MULTIMODAL CELLS 93

We use the simpler visual processing proposed by Arleo et al. [16] rather than the
full system described in sections 5.2 and 6.21: Instead of the more or less heading-
insensitive column difference cells, four orientation-sensitive view cells (VCs) code for
the current place. In order to produce a heading independent representation, the
four views are always taken in the four cardinal directions (i.e. north, south, west and
east). This eliminates the problem of orientation versus position sensitivity in the
visual processing. The idiothetic pathway is similar to chapter 6.

At each time step, the agent turns to each of the four cardinal directions. It
recruits two sensory cells (a visual (VC) as well as a tactile (TC) cell) which store the
preprocessed sample of the visual [16] or tactile (section 5.3) input. The recruitment
method for APC neurons and VC→APC synapses follows equations 6.10 and 6.11.
Synapses from sensory cells to APC neurons evolve using the Hebbian learning rule
of equation 6.16. The same procedure is implemented one layer downstream in the
PC population.

For reasons of convenience, we define w̃ij = wij/(
∑

k wik) as the normalised weight
from the presynaptic neuron j to the postsynaptic cell i. The firing rate ri of HPC
neurons i is given by the weighted mean activity of its presynaptic neurons j:

ri =
∑

j

w̃ijrj (7.1)

In the APC population, however, the inputs from all presynaptic neurons of the
same modality are modulated by a gating factor gvc or gtc which depends on the envi-
ronmental conditions. This weighing factor is the output of the gating network (sec-
tion 7.3):

ri = gvc · (
∑

j∈VC

w̃ijrj) + gtc · (
∑

j∈TC

w̃ijrj) (7.2)

7.2 Unimodal and multimodal cells

In the deep layers of superior colliculus (dSC), most of the sensory input cells are uni-
modal, whereas the majority of output cells responds to multiple sensory modes [270].
Our abstract model of dSC contain also follows this principle. Sensory cells (VCs and
TCs) project to the input layer of dSC which consists of unimodal visual (UVs) and
tactile (UTs) cells. Those unimodal cells project to multimodal cells (MMs) in the
output layer of dSC. The architecture of the dSC model is shown in Figure 7.2 (a).

Unimodal input cells: Whenever the agent receives strong visual and tactile in-
put simultaneously, a tactile and a visual unimodal cell are recruited. Connections

1 This is mainly due to historical reasons: The results presented in this chapter are the earliest
part of this work. We focus on the gating mechanism and not on the visual processing
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SC
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<UV> <UT> <MM> <rV> <rT>

g gvc tc
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Figure 7.2: (a) Architecture of the deep superior colliculus model. VC: Visual cells,
TC: Tactile cells, UV/UT: Unimodal cells, MM: Multimodal cells. (b) Architecture
of the gating network. 〈XY 〉: average firing rate of population XY . 〈rV 〉: average
pixel brightness of the input image. 〈rT 〉: average activation of the proximity sensors.
gvc/gtc: output gating neurons.

between active TCs and UTs are established and their weight fixed using the Heb-
bian learning rule of equation 6.16. Equivalently, VCs are connected to UVs. The
firing rate of unimodal cells is given by the weighted mean activity of its presynaptic
neurons (equation 7.1).

Multimodal output cells: The most active unimodal cells connect to a newly re-
cruited multimodal cell and synaptic weights are again fixed according to equation 6.16.
The firing rate ri of multimodal cell i differs from equation 7.1 for unimodal cells in
that both UTs and UVs need to be active to trigger the firing of a multimodal cell.
This nonlinear interaction simulates the effect of multimodal enhancement, to which
the majority of multimodal dSC cells seems to be subject [270,306,132]:

ri = tanh

[

k (
∑

j∈UV

w̃ijrj) · (
∑

j∈UT

w̃ijrj)

]

(7.3)

where k governs the amount of input drive necessary to saturate the neuron.

7.3 Learning the gating network

During the initial exploration of the environment, locations where multimodal stimuli
are available are detected and the corresponding visual and tactile input is stored.
Due to the multiplicative interaction between visual and tactile input in the activation
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function of MM cells, inconsistencies can be detected. For instance, if a low obstacle
which cannot be seen by the visual model but sensed by the tactile input is associated
to a particular view, the absence of the obstacle activates corresponding UV cell, but
both UT and MM cells are silent. In general, a missing feature of a learnt multimodal
stimulus produces activity in unimodal, but not in multimodal cells.

In a second phase, a gating network learns to modulate the importance of vision
and touch according to the current environmental conditions. The gating network
consists of five input neurons which are fully connected to two output neurons as
shown in figure 7.2 (b). Each input neuron codes for the average activity of a popu-
lation. For example, 〈UV 〉 is the average activity of UV cells and so on. 〈rV 〉 is the
average pixel brightness of the raw (unprocessed) camera image. 〈rT 〉 is the average
proximity sensor input. A high value of 〈rT 〉 means that many obstacles are very
close.

The output neurons gvc and gtc provide the gating values of equation 7.2. Their
firing rate is calculated in two steps: First, the weighted sum hvc and htc of their
input activity is determined according to equation 7.1. In order to keep the total
input strength constant, a soft-max operation follows which keeps the sum of the
firing rates gvc and gtc constant:

gvc =
hvc

hvc + htc
and gtc =

htc

hvc + htc
(7.4)

The task is to adapt the synapses of the network such that the sensory modality
which is most useful for spatial coding is enhanced while the other is suppressed.

The weights between input neuron j with firing rate rj and gating neuron i with
firing rate i are updated according to a Hebbian-type rule, but the synaptic modifi-
cation ∆wij is also modulated by a reward signal q:

∆wij = q · η ri(rj − wij) (7.5)

The reward q depends on two properties of the allothetic place code: (a) variance σ
around centre of mass and (b) the number n =

∑

k H(rapc−θa) of APC neurons which
are more active than θa = 0.8. Positive reward is given if many cells are active and
the place code is compact (i.e. small variance σ). However, if the variance is high, the
reward still needs to be positive, because the tactile sensory input always produces
high variances due to the high ambiguity in the sensory input. An insufficient number
of active cells, however, always results in a negative reward. The equation for the
reward q is:

q = tanh [αa · (n − n0)] · sσ tanh [−ασ (σ − σ0)] (7.6)

The first factor evaluates amount of activity in the APC layer. If there are more
than n0 = 3 active APC, the reward is positive, else it is negative. αa = 0.5 determines
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Figure 7.3: Evolution of the gating weights for the raw sensory inputs 〈rV 〉 and
〈rT 〉 to the output gating neurons gvc and gtc. (a): 〈rV 〉 → gvc, (b): 〈rV 〉 → gtc,
(c): 〈rT 〉 → gtc, (d): 〈rT 〉 → gvc.

the slope of the nonlinear curve. It is set so as to saturate to a reward of ≈ 1.0 if
there are more than 10 active APC neurons.

The second factor evaluates the variance σ of the allothetic place code around its
centre of mass. The parameters sσ = 0.25, ασ = 0.1 and σ0 = 50cm are set such that
a normal APC variance of 20cm produces a reward of ≈ 1.0 whereas if a variance
of 80cm, which is unusually high, results in a value of ≈ 0.5.

Experiments are conducted on a Khepera mobile robot. An 60 × 60cm boarded
arena placed on a table in a normal office serves as environment. A large rectangular-
shaped object is placed in the arena to increase the amount of tactile input to the
system. After the environment is explored, a learning phase for the gating network
begins. The weights of the network are randomly initialised prior to learning.

During learning, the agent moves randomly in the explored environment and tries
to localise itself. At each time step, the illumination in the environment is either arti-
ficially turned down to 20% with probability PL or left at its normal value otherwise.
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The pixels of the raw camera image are scaled down, but Gaussian noise is also added
to simulate the reduced quality of visual input in the dark. The Gabor filters used to
process the image are much more sensitive to edges than they are to luminosity. This
means that with the light turned down, the filter activity might still be high, but it
now only inaccurately represents the image due to the increased noise.

At each time step, the weights are then updated according to equation 7.5. Fig-
ure 7.3 shows the evolution of the weights between 〈rV 〉 as well as 〈rT 〉 and the
output gating neurons gvc and gtc. As expected, high luminance in the input image
activates the visual gate, whereas high values of the proximity sensors contributes to
the tactile gate. Conversely, the luminance does not influence the tactile gate and
proximity sensors don’t contribute in activating the visual gate.

Once the gating neurons are tuned, two test-runs are performed: One in normal
lighting conditions, the other with the light dimmed down to 20%. The gating values
are for both tests are plotted against time.

Figure 7.4 (a) shows the gating values for the visual and tactile senses in the lit
environment. More than half the time, visual input is the only activated modality.
Each time the robot is near an obstacle however, the tactile sense is assigned a slightly
higher importance than vision. The abrupt changes are due to the binary nature of
the tactile sensors.

Figure 7.4 (b) shows the gate values when the illumination is reduced by 80%.
Most of the time, vision and tactile senses receive equal importance. Due to the
soft-max operation, both values are set to 0.5 Whenever an obstacle is near, however,
the agent relies mostly on its tactile input. Again, the abrupt changes show that the
tactile sensors either don’t sense an obstacle or they are saturated by a close object.
Indeed, as illustrated in figure 5.11 on page 64, the proximity sensors only have an
effective range of only ≈ 2cm.

Learning has been performed by dimming the light down to 20%. In figure 7.5, it
is illustrated that the activity of the visual gating neuron gvc also generalises to other
illumination conditions.

The main difficulty in learning the importance of sensory input lies in determining
the reliability and uncertainty of a percept. We use the average place cell activity
and the activity variance around the centre of mass as a quality measure to change
the weights of the gating network. However, accessing the variance in spatial repre-
sentations might be difficult to motivate biologically.
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Figure 7.4: Gate values in open-field and border positions. (a) good illumination.
(b) almost no light
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Figure 7.5: Activity of the visual gating neuron gvc versus illumination. During
learning, the illumination was either normal (100%) or reduced to 20%. However, gvc

generalises to intermediate illumination conditions.



Chapter 8

A new locale navigation model

In this chapter, a new model of rodent navigation is presented. In particular, we pro-
pose a locale navigation model according to the taxonomy introduced in section 3.3.
This type of navigation allows the animal to learn to find a stable but hidden re-
ward location in an environment. The navigation system makes use of the spatial
representation learnt according to chapter 6.

The hippocampus (HPC) is one of the main afferent structures of the nucleus
accumbens (NA), the ventral part of the striatum (see basal ganglia review in sec-
tion 3.1). HPC neurons projects to NA via the fornix fibre bundle. Lesions of the
fornix or nucleus accumbens impair the rats in the hidden, but not the visible water
maze task [76,279,209,318], whereas lesions in the caudate-putamen, which forms the
dorsal part of the striatum, don’t show an effect. If the platform is visible or cued,
however, the reverse is true: NA lesions don’t show an effect and caudate lesions
result in a decrease in performance [209, 161, 66]. These results suggest that NA is
involved in locale navigation and caudate-putamen is not.

The ventral tegmental area (VTA), which–like NA–is a part of the basal ganglia,
contains dopaminergic neurons (DNs). On top of a regular tonic firing pattern, DNs
also show transient phasic activity. This phasic firing seems to be related to the
processing of reward signals. In particular, there is evidence that DNs code for the
difference between actual and expected reward, and thus implement the temporal
difference error of the reinforcement learning paradigm (chapter 4) [122, 248, 244, 12,
247,304,245].

DNs of VTA also project to nucleus accumbens [320, 247, 149]. They tend to
synapse on the basal part of spines which host synapses from cortical [92, 252, 266]
as well as hippocampal [295,251,265,87] afferent projections. It is therefore possible

99
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that DNs modulate either synaptic transmission or synaptic plasticity of cortical and
hippocampal afferent connections to striatum [122,248,244,275,276,277].

Our model of locale navigation is based on reinforcement learning (RL, cf. chap-
ter 4) applied to HPC→NA synapses. In particular, we focus on a mechanism by
which states as well as actions are treated as continuous variables. Learning quickly
generalises in both spaces. RL has previously been used to solve navigation tasks
for autonomous mobile agents [39, 14, 88, 16, 65]. Some models operate in continuous
state and/or action spaces using function approximation [14,240,69,65]. However, we
are not aware of any neural model of locale navigation where both state and action
spaces are continuous.

In most RL-based models, an eligibility trace [280] is used. While such traces of
past state-action pairs result in a considerable learning speed-up, it is not clear if and
how such a memory is available to the brain. We discuss some possible mechanisms
for eligibility traces, which allow rewarding events to generalise back in time.

8.1 Architecture

In this model, a spatial representation based on place cells and constructed according
to chapter 6 serves as state space. It consists of a population of hippocampal place
cells (PCs) with highly overlapping receptive fields. Here we focus on the use of this
representation for navigation. PCs project onto a population of action cells (ACs).
As the nucleus accumbens (NA) is (i) a target of the hippocampus, (ii) receives
dopaminergic projections and (iii) is related to motor behaviour, we postulate NA as
the neuronal substrate for ACs. A navigation map is constructed using reinforcement
learning on PC→AC synapses.

Reinforcement learning has been used for problems where a small discrete set
of actions is available at each state. The number of states is usually discrete and
finite. The population vector of PCs, however, can be interpreted as the continuous
state variable s which represents the agent’s location P ∈ R

2 in the environment [14].
Similarly, the population vector Φac of the AC layer stands for the direction of the next
movement and represents a continuous action a. The model is tested on a real and
simulated mobile robot platform (see chapter 5). The architecture of the navigation
system is shown in figure 8.1.

8.2 Action cells

A population of Nac = 120 action cells (ACs) code for the motor-commands of the
agent’s next movement. Each AC i represents a particular compass heading φi, which
are uniformly distributed between 0 and 2π. In each time step, the agent gathers
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Figure 8.1: Architecture of our navigation system: A layer of hippocampal place cells
(PCs) represent the environment. Each PC is active in a region of the environment
and their receptive fields overlap. In order to learn to navigate to the goal, PCs are
connected to action cells (ACs) which code for the direction of the next movement.
The population vectors of both layers allow a continuous interpretation of position
(PCs) and direction of movement (ACs).

sensory information which activates the simulated hippocampal place code (PC) layer.
Based on PC activity, the AC module selects the next action.

Each action consists of two movement commands: (i) An in-place rotation by an
angle θ which orients the agent towards the allocentric orientation indicated by the
population vector Φac. (ii) A forward movement of a fixed distance d or until an
obstacle is blocking the way. The step size d is chosen so as to emulate a running
rat. The rate at which the rat processes spatial information is assumed to be related
to the theta rhythm (6–12Hz, see section 2.1.2). At each cycle, the rat “senses” the
world and reacts appropriately. We interpret one time step of the model as one theta
cycle, corresponding to a sampling rate of 8Hz [254,41,290,14]. For a running speed
of 48cm/s, we get d = 48/8 = 6cm.

The AC population vector Φac is calculated according to equation 6.8. It de-
termines the allocentric direction of the next movement. The interpretation of this
heading is tied to the population vector of the head direction system (section 6.3),
which defines the allocentric angular frame of reference. The rotation angle θ is the
angular difference between the population vectors of the HD and AC layers:

θ = Φhd − Φac (8.1)
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The activity of ACs is calculated in two stages. In each stage, ACs code for a
different property:

Action-evaluation: First, each AC i receives state information from all PCs j and
learns to attribute a value to each action. This tells the agent which actions are
good in the current state s. The input potential

hi =
∑

j

wij · rj (8.2)

to AC i represents the estimated value Q(s, ai) for the current state s and
action ai. In traditional Q-learning, an optimal action is a discrete action whose
Q-value is bigger or equal than all other action values. Here, we take a slightly
different approach: In contrast to most other models, we don’t use the max-
operator to determine the optimal action. Instead, we use the direction of
the AC population vector Φac

h (equation 6.8). Φac
h represents the continuous

action ao which supposedly maximises the return (i.e. the total discounted
future reward), given the current estimation of Q-values. This is called the
“greedy action” because it exploits the current estimation of Q-values instead
of trying to improve the estimations by exploration. Therefore, we sometimes
need to take non-greedy actions. This action selection method is described in
section 8.3.2. The optimal action ao is a continuous variable. The Q-values,
however, are only estimated for the discrete set of ACs, ie. Q(s, ao) is not
directly accessible. It is calculated by linear interpolation of the Q-values of the
two nearest discrete actions.

Generalisation: As soon as an action is selected, a generalisation mechanism is ap-
plied: A Gaussian AC activity profile with variance σ2

ac is enforced around the
selected action ax (direction Φac). If ∆φi stands for the angular distance be-
tween Φac and φi, the profile can be expressed as

ri = exp(−∆φ2
i /2σ

2
ac) (8.3)

The firing rates ri of the AC layer then represent the action which was selected
for execution. Recurrent connections within nucleus accumbens or via another
population could be responsible for the formation of this “blob” of activity. In
most neuronal RL models, the update of the Q-value estimation is proportional
to the activity of action cells. Traditional RL models employ a winner-take-
all mechanism which inhibits all non-selected actions. Only the winner neuron
may refine the estimation of its Q-value. In our model, however, many action
cells are active and thus eligible for learning. This results in a generalisation of
learning in action space.
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Figure 8.2: (a) Action evaluation stage: The activity of action cells represent the
Q-values of the corresponding directional movement. It only depends on the current
place cell activities and is purely feed-forward. The population vector (thin arrow)
points in the direction of the estimated optimal action. (b) Generalisation stage: An
action has been taken (in this case, the optimal action). Then, a Gaussian activity
profile is enforced around the selected action. This profile allows not only the selected–
but also similar actions to learn and forms the basis of the generalisation capability in
action space

Figure 8.2 illustrates the two stage process. In the evaluation stage, which is a
purely feed-forward operation, only the current place cell activities drive ACs. The
current estimation of action values, stored in the synaptic efficacies of the PC→AC
connections, supports the selection of an appropriate next action. Once this decision
is taken, the lateral interaction becomes effective and drive ACs above firing threshold.
In the example, the “greedy” action is taken.

The separation of the two stages of AC processing is subject to the following
constraints: First, an action selection system has to be given enough time to read
the optimal action Φac

h in the evaluation stage. Secondly, in an implementation of
the learning rule with spiking neurons, the firing of ACs must closely follow action
potentials emitted by PCs such that the pre– and postsynaptic spikes fall into the
timing window of spike timing dependent plasticity (see next section).

These constraints require a precise timing of the system. It has been suggested
that different phases of theta activate different processing stages in hippocampus [140,
114, 112]. Similarly, we propose that the theta-rhythm could provide a separation of
the two stages in nucleus accumbens: First, during the late phase, low theta-activity
allows hippocampal place cells to fire and thus pass spatial information to nucleus
accumbens. The pathway of a recurrent loop within NA or involving another area
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is disabled at this time, so as not to interfere with the estimation of Q-values. At a
later phase, when an action is selected, the recurrent loop shapes the activity profile
of the generalisation stage.

8.3 Learning and eligibility trace

Rats quickly learn to navigate to a rewarding location from any place in the environ-
ment. If, in the framework of reinforcement learning, the reward is solely given in
the goal state, the learning procedure is slow because only the last state before the
delivery of the reward may update its estimation of action values. Thus, information
only slowly propagates back to states further away from the goal state. As a work-
around, a decaying trace of recently active state/action pairs can be kept. Rewards
are then not attributed only to the most recent state/action pair, but to the whole
trace. In reinforcement learning, such a memory1 is termed eligibility trace (ET), be-
cause it keeps track of all state/action pairs which are eligible for learning. It enables
a generalisation of knowledge back in time and tremendously speeds up reinforcement
learning algorithms [280].

8.3.1 Neurophysiological evidence

The quick learning often observed in animals is an indication that they are equipped
with effective generalisation mechanisms. It is, however, unclear, whether or not an-
imals use ETs. Synaptic plasticity, and in particular long term potentiation (LTP)
and -depression (LTD) has been suggested to be the neuronal mechanism for learn-
ing [17, 18, 32]. Experiments show that repeated application of a spike pairing pro-
tocol, where presynaptic action potentials are closely followed by postsynaptic spikes
result in a potentiation of the synapse. Conversely, the synapse’s efficacity is de-
creased if the postsynaptic neuron repeatedly fires just before the presynaptic neu-
ron [156, 27, 151, 250, 223, 102]. This spike-timing-dependent plasticity (STDP) may
be the neuronal protocol to induce LTP/LTD.

If the neuronal mechanisms underlying ETs were also located at synapses, three
requirements must be fulfilled: (i) They must contain a decaying short-term memory
which stores recent activation, (ii) they induce LTP or LTD the magnitude of which
is modifiable by some reward signal, (iii) the modulation of the induced LTP/LTD
must be possible after the synapse has been activated. In the following, experimen-
tal results that are consistent with the idea that synapses can implement ETs are
discussed.

Synaptic memory: During LTP/LTD induction, Ca2+ ions enter the postsynaptic
cell through NMDA channels [17, 32, 18, 27]. It has been proposed that the pro-

1In the terminology introduced in section 3.3, this is a short-term memory
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longed change in calcium concentration after synaptic transmission could serve as
ET [322, 244]. More recently, it has been shown that dendritic depolarisation after
incoming spikes can be sustained for hundreds of milliseconds and remains local to
the dendritic branch [243, 316]. This sustained depolarisation could also mark the
synapse as “recently active”. Calmodulin-dependent protein kinase (CaM-k)2 is acti-
vated by Ca2+ and is suspected to remain in an activated state for several hundreds
of milliseconds [122], which could implement the required STM. Finally, a short-term
facilitation has been observed after synaptic stimulation. This facilitation also lasts
for ≈ 100ms and is suggested to be caused by a higher presynaptic neurotransmitter
release [303,299,67,337].

modulation of LTP/LTD: Dopamine seems to be an important factor which de-
termines the magnitude of synaptic potentiation in LTP induction experiments. In
striatum, prefrontal cortex and hippocampus, dopamine agonists enhance synaptic
potentiation whereas antagonists impair potentiation [206,109,138]. In most of these
experiments, the static level of dopamine concentration is altered several minutes be-
fore the LTP induction protocol begins. This protocol therefore emulates the tonic
activity of dopaminergic neurons. However, it is the transient or phasic activity which
seems to correspond to the error in reward prediction [246,248,244,84]. In recent ex-
periments, dopamine neurons in substantia nigra are electrically stimulated in order to
simulate a phasic activity. This results in potentiation of cortico-striatal [323,231] pro-
jections. Prefrontal and auditory cortex also show potentiation if a phasic dopamine
release is simulated [21,33].

modulation of previous LTP/LTD induction: The process of consolidation is re-
sponsible for fixating a memory trace. At a neuronal level, it requires the expression
of genes and the synthesis of proteins [62, 73, 147, 74]. Consolidation operates at a
timescale of minutes or hours [147]. During this period, the synaptic potentiation
is vulnerable. A cascade of molecular events change the properties of the synapse
and a disruption of any stage may block the consolidation of LTP [104,2,201,73]. In
most dopamine-dependent plasticity experiments, the concentration of dopaminergic
agents is altered several minutes before the LTP induction protocol begins. Never-
theless, dopamine administration after LTP induction has no effect on LTP [206].
This seems to be in contradiction to the hypothesis of a delayed rewarding signal in
reinforcement learning. However, low-frequency stimulation after LTP induction—
which normally results in a depotentiation of the synapse—is effectively blocked if
dopamine is applied after LTP induction [207, 144, 154]. Thus, many synapses could
be potentiated during an experiment, but only those that receive later a dopaminergic
“confirmation” signal remain strengthened.

Instead of being a synaptic process, the ET could also be the result of a network
effect. Sustained neural discharge could store the trace of recent state/action pairs.

2A postsynaptic protein involved in the induction (but not maintenance) of LTP [205]
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Figure 8.3: Schematic illustration of possible mechanisms for eligibility traces. Black
triangle: LTP induction. Red curves: LTP with dopamine. Blue curves: LTP without
dopamine. (a) Synaptic memory: A synaptic short-term memory “flags” recently
active synapses (dashed curve). Dopamine enhances LTP at flagged synapses. (b)
Inhibition of depotentiation: Per default, all active synapses are potentiated. However,
if dopamine is not administered after induction, the synapse is depotentiated. (c)
Replay/Transfer: Dopamine might act on a “replay” of the original synaptic activity,
which may transfer relevant memories to other networks. Dopamine is then available
before the replay is activated and thus standard dopamine dependent plasticity applies.

Graded sustained activity–proposed to implement short term memory–has been found
in entorhinal cortex [75, 140] and in striatum [246]. Its time-span is in the order of
seconds. For this implementation of short term memory, it is not a problem that
dopamine does not modulate LTP if applied after initial LTP induction, because the
neuronal activity is still present when the reinforcement occurs. Finally, it is also
suggested that learning does not occur on the synapses of the original activity, but
rather on a “replay” of this activity which transfers the memory from one network to
another [45, 207]. As this replay may follow the reward administration, this idea is
consistent with the dopamine-dependent plasticity experiments.

To summarise, there are three main proposals on how an eligibility trace can be im-
plemented in the brain. (i) Biochemical markers may “flag” recently active synapses.
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When a reward-related learning signal arrives within about 100ms, the synapse may
be potentiated more than without the reward signal (figure 8.3 (a)). Instead of a
chemical marker, sustained decaying neuronal activity may serve as short term mem-
ory which could span seconds. (ii) Synapses are potentiated by default. If, however,
a dopamine signal fails to arrive within a vulnerable period of seconds or minutes, the
synapse is likely to be depotentiated (figure 8.3 (b)). (iii) Reward-based learning does
not operate on the synapses that were initially active, but rather on a “replay” of this
activity, which may also transfer the memory to another network (figure 8.3 (c)).

In our model of locale navigation, an eligibility trace is assumed to operate on
PC→AC synapses. We propose that ETs are a synaptic process rather than a net-
work effect. The time scale is in the order of seconds. This is not consistent with
the prolonged postsynaptic calcium Ca2+ or CaM-k concentration, which only lasts
for about 100ms. We therefore propose that the ET in our system is the result of
dopamine-dependent depotentiation inhibition outlined above [207,144,154]. Further-
more, we extend the effect on LTD: If the dopamine level following synaptic activation
is decreased, the synapse will be depressed rather than potentiated. The trace pij on
the synapse from PC j to AC i decays exponentially in time. It is formally expressed
as:

pij(t) = α · pij(t − 1) + ri(t) · rj(t)

where rj and ri are the pre- and postsynaptic rates and α = γ · λ is the time
constant which is composed of a future discount rate γ = 0.95 and a trace decay
factor λ = 0.88 (see equation 4.3. If γ is set too small, the system could suffer
from a distant reward problem. The rate we use makes sure that Q-values are never
discounted more than 70% during the traversal of the entire test environment. λ is
set such that the time scale of the ET is one second, i.e. eight time steps or theta
cycles.

Eligibility traces can be interpreted as a generalisation mechanism in time. Un-
expected rewards induce an update of the value functions also for previously visited
states. Due to the distributed coding scheme for states and actions in our model,
learning is also generalised in space, even if ETs were not used. The large tuning
curves of place cells (figure 6.13 (b)) and dense coverage result in highly overlapping
receptive fields. At each position, many place cells are activated (figure 6.12 (c)) and
thus eligible for learning. The large Gaussian activity profile enforced in the action
cell layer of nucleus accumbens serves the same purpose. With each selected action,
all similar actions are also eligible for learning. While the high overlap in state space
is due to similarities in the acquired sensory input, i.e. it is purely feed-forward, the
overlap in action space requires lateral interactions between action cells.

This temporal and spatial generalisation is illustrated in a visualisation of the
eligibility trace (figure 8.4). For this graph, a set of perfectly tuned Gaussian place
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(a) (b)

Figure 8.4: Two examples of the modelled eligibility trace. The yellow curvy arrow
shows the agent’s path. Each black point represents the receptive field centre of a
perfectly Gaussian place cell (variance σ2). The red drop-shaped form visualises the
eligibility trace (time constant α) memorised for each place cell. The inset shows a
schematic example of a memorised south-west movement. Due to the generalisation in
action space, similar actions like south-southwest are also eligible for learning. (a) long
and narrow trace (σ = 4cm, α = 0.88). (b) short but wide trace (σ = 8cm, α = 0.56).

cells is generated. Each place cell is represented by a black dot at the centre of its
receptive field. The synaptic memory from place cell j to action cell i is visualised as
a red line, starting at the place cell. The line direction corresponds to the direction
of movement φi associated with cell i. The inset is a schematic enlargement of the
trace for a place cell which memorises a south-west movement. The drop-shaped ET
means that, for instance, the action cell coding for south-south-west is also eligible
for learning. The line length represents the strength pij of the memory trace. In the
example to the left, the agent’s path is drawn as a yellow curve. Here, the place fields
are small (σ = 4cm) but the trace is long (α = 0.88). To the right, the width of the
Gaussian place fields is enlarged (σ = 8cm) and the trace shortened (α = 0.56). This
results in a wide generalisation in space, but not time.

8.3.2 Learning algorithm

This section assembles the ideas from above and describes the procedure we use to
learn a navigation map. Similar to animal experiments, the agent is first allowed to
explore the arena. During this period, no reward is given. Once the environment is
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fully explored, i.e. place cells densely cover the whole surface, a set of reward training
trials follows. An invisible reward is placed at a fixed location. At the beginning of
each trial, the agent is inserted into the environment at a random location and with
random heading. The trial ends when the agent finds the reward. During these trials,
the agent learns a navigation map.

As in all temporal difference learning rules, the environment must be sensed before
and after each action in order to update the estimation of value functions. These
sensory input values stem from two adjacent time steps. Here we present the algorithm
from the beginning of a learning iteration to its end, not from one time step to the
next:

First, the action values Q(s(t−1), ai), i.e. the input potentials hi to all action cells i
are calculated. Next, a continuous action ax(t − 1) is selected. Most of the time, the
optimal action ao(t−1), i.e. Φac

h is chosen. With a small probability ε = 0.2, however,
the new direction of movement is drawn randomly from a Gaussian distribution with
variance σx = 30◦ around the current heading. This ε-greedy policy with constant ε
balances exploration versus exploitation [280]. The action selection process is assumed
to operate on a slower time scale than the processing of sensory input. The decision
to either explore or exploit is only taken every fourth time step, i.e. twice per second.
Then, the AC activity profile is enforced around the selected action ax(t − 1) and
the eligibility trace pij(t − 1) is updated. Here, the time step ends (t − 1 → t). In
the beginning of the new time step, the agent receives the immediate reward R(t).
The agent processes its input, i.e. the place cell activities and hi(t) are updated.
The standard reward prediction error δ(t) for Q-learning is calculated. Finally, the
PC→AC synaptic weights wij from place cells j to action cells i are modified using
the standard RL update rule with learning rate η = 0.001. The following list briefly
summarises these steps:

1. Calculate action values: Q(s(t), ai) = hi(t).

2. Select action: ax(t) = ao(t) with probability 1 − ε (exploitation) or randomly
select action with probability ε (exploration).

3. Generalise in action space: Lateral connections impose activity profile ri(t)
around the selected action ax(t).

4. Update eligibility trace pij(t).

5. t → t + 1. Calculate hi(t + 1).

6. Calculate reward prediction error:
δ(t + 1) = R(t + 1) + γ · Q(s(t + 1), ao(t + 1)) − Q(s(t), ax(t)).

7. Update synaptic strengths: ∆wij(t + 1) = η · δ(t + 1) · pij(t).
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The reward prediction error δ(t) can be interpreted as the output of dopaminergic
neurons in the ventral tegmental area. One problem which is not addressed here
is how dopaminergic neurons can process information coming from different time
steps. We assume that dopamine neurons receive action values via a direct and an
indirect pathway, which is consistent with basal ganglia anatomy [3,265,122,175,267]
(cf. section 3.1).

One problem of RL is “the curse of dimensionality”. When the state-and action
spaces are large, learning all parameters is very slow. In our case, we have ≈ 1000
place cells and ≈ 100 action cells. However, these state variables are not uncorrelated.
Due to the high overlap, learning quickly generalises in both spaces. The size of a
place cell’s receptive field has a physical meaning (a portion of the environment)
whereas in action space, the enforced activity profile has a width σ = 30◦ which
represents a range of headings. Both sizes are independent of the number of cells,
and therefore, the learning speed is independent of the number of cells.

8.3.3 Validation in test environments

The model is tested in all simulated test environments. A circular goal area of 7cm
diameter and value Rg = 15 is the only rewarding location. However, each time
the agent hits the wall, it receives a punishment of Rw = −5. This results in an
obstacle-avoidance behaviour.

Each trial starts with a random heading at a random location whose distance to
the goal is at least 20cm. The number of time steps per trial is a measure of how well
the task has been learnt. Nevertheless, this “escape latency” does not only depend on
the quality of the navigation map. It heavily depends on the starting point, especially
during early learning. As a second factor, the ε-greedy navigation strategy adds noise,
especially because the choice of exploration or exploitation is only made once every
four time steps. In order to get a good estimation of the navigation map’s quality, the
escape latency is therefore measured several times before each trial. These test-trials
use the same ε-greedy navigation strategy, but learning is disabled.

Figure 8.5 (a) presents the average number of time steps to find the goal versus
the number of learning trials for the “Buildings” environment. After about 20 trials,
the task is learnt. In order to assess the model for navigation independently of the
model of spatial representation, the same experiment is simulated, but instead of the
learnt place code, a set of perfectly Gaussian place cells serves as state space. The
escape latency for this perfect place code is shown in figure 8.5 (b). It is averaged
over 100 instead of only 10 test trials. As expected, the mean escape latency and its
variance decrease with the number of trials. The variance, however, starts with a very
large value. The reason is that our ε-greedy policy does not perform well when there
is no information about the goal yet. For instance, the agent could visit some places
several times even if they are apparently not rewarding locations. Real animals show
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Figure 8.5: Escape latency (in time steps) versus number of trials. (a) For the
“Buildings” environment, the average of 10 test trials is plotted. (b) The mean es-
cape latency over 100 test trials in an artificial simulated environment with perfectly
Gaussian (σ = 6cm) tuned place cells as spatial representation.

much more sophisticated behaviours and therefore don’t show such a high variability.
The learning algorithm improves the estimations of action values. The input

potential hi to action cell i represents the Q-value for action i. Because the state
and action spaces are continuous, the values can be estimated for any location and
heading in the environment. In order to visualise the action values, the agent is
placed at regularly spaced sampling points (figure 8.6). At each point, a line is
drawn in the direction of each action cell’s preferred heading. Red lines represent
negative values, blue stands for positive values. The line length is proportional to
the magnitude of the Q-value. Before learning (on the left), the values are random
due to the random initialisation of the place cell to action cell connection strengths.
After 10 learning trials (on the right), blue lines near the goal indicate that the goal
location is attributed a high value.

An example navigation map before learning is shown in figure 8.7 (a). At each
sample location, a line points in the direction of the population vector Φac

h which
represents the action which is considered optimal. The green area represents the goal
location.

The navigation maps in figure 8.8 are taken for each of the four test environ-
ments (see section 5.1) after 20 learning trials. The task has been learnt in all envi-
ronments. In the region below the goal, the navigation map does not point towards
the goal in most cases. One reason is that the starting points of all trials have been
set at a minimum distance of 20cm. It means that the agent never starts beneath
the goal. In general, the probability that the agent is located at place p at any time
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(a) (b)

Figure 8.6: The Q-values as estimated by the input potential of action cells. At
each sample point of the environment (Black points), the Q-values are plotted for all
actions (directions). Blue means positive, red negative. The green area indicates the
goal location. (a) Before learning. The values are random. (b) After 10 trials, regions
near the goal get much higher values than location further away.

step t is higher for central positions than for locations near the walls. Therefore, the
agent approaches the target more often from the north than from the south. As a
consequence, the estimates of Q-values are better for central locations because they
have been adapted more often. This is clearly visible also in figure 8.6 (b), where the
action values below the goal are underestimated for northward movements. Secondly,
the generalisation in state space, i.e. the large tuning curves of place cells, reinforce
the “go-south” actions in places to the south of the goal even when reaching the goal
from the north. This is also visible in figure 8.6 (b), where the area south of the goal
falsely shows high positive Q-values for the south-direction, even though going south
would lead the agent near the “dangerous” wall.

In all four test environments, the escape latencies after 20 learning trials is around
15 time steps, as shown in figure 8.7 (b). This corresponds to around four seconds if
one time step is assumed to correspond to a theta cycle. The fluctuations are due to
the randomness of the starting positions and the ε-greedy policy.

8.3.4 Convergence of the algorithm

In all our experiments, we observe that the navigation map and especially escape
latencies are stable long before the Q-values have converged. Navigation maps after
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Figure 8.7: (a) Navigation map before learning. At each sample location marked
with a black dot, a line points in the direction of the optimal action. The green area
is the goal-location. Before learning, the map is random. (b) Average escape latencies
after 20 learning trials for all environments. From left to right: “Office”, “Buildings”,
“Davos” and “Minimal”.

10 and 100 trials look rather similar, but the changes in Q-values are non negligible.
This is illustrated in figure 8.9.

The convergence of Q(λ), i.e. Q-learning with eligibility traces, is only proved to
converge if ETs are reset at each exploratory action [311,312]. As it is questionable if
the brain implements such resets, we prefer not to include them in our model. Other
online updates with eligibility traces for off-policy learning have been proposed [215],
but no proof of convergence exists. Recently, convergence of new algorithms have
been proved [219]. These are however only valid for offline updating, which means
that all estimates are updated only at the end of each trial. Such an offline update
rule does not seem to be biologically plausible.

Temporal difference learning in continuous spaces using function approximation
is in general not proved to converge [105]. For Q-learning, explicit divergence has
even been demonstrated [20]. Recently, a new off-policy algorithm with function
approximation and eligibility trace has been proved to converge, but only with offline
updates [218].

Nevertheless, our model seems to work with both eligibility trace and function ap-
proximation, i.e. generalisation in time and space. No proof of convergence, however,
can be presented.
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(a) (b)

(c) (d)

Figure 8.8: Navigation maps acquired after 20 trials for all test environments (see
figure 8.7 on how to interpret navigation maps). In all environments, the task has
been solved. The map has errors in the south of the goal. These are due to the large
receptive fields of the place cells and the inhomogenous sampling (the agent spends
more time to the north than to the south of the goal). (a) “Office”. (b) “Buildings”.
(c) “Davos”. (d) “Minimal”.
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(a) (b)

(c) (d)

Figure 8.9: The navigation map converges well before the Q-values (see figures 8.7
and 8.6 on how to interpret the figures). (a,b) Navigation maps after 10 and 100 trials.
The map does not change much. (c,d) Q-values after 10 and 100 trials. The estimates
for action values continues to be improved, but it does not influence the navigation
map.
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Chapter 9

Conclusions

Now, at the end of this thesis, we would like to take the time to look back and
summarise what has been presented and put it into a larger context. First, we outline
the contributions of this work to the field of spatial learning. As any model of animal
learning, our proposal is based on certain assumptions. These, together with our
results, allow us to make some experimental predictions. Other models of spatial
learning in the rat have been proposed in the literature. We discuss the differences
and similarities to those models which are most closely related to our approach.
Finally, we turn to the limitations of our system and propose future directions to
improve our model. We also formulate some essential general questions in the area of
spatial learning that are still open.

9.1 Contributions

In this thesis, we develop a connectionist model of the interactions between several
brain areas involved in spatial learning. Each area hosts a population of neurons which
serves a particular purpose. Figure 9.1 illustrates the architecture of the full system.
To the left of each population, its functional name is indicated. To the right, we
indicate the proposed neural substrate. We will briefly discuss how these populations
solve their tasks. First, the construction of cognitive maps presented in chapter 6 is
summarised. Then, we turn to the simple mechanism for multimodal integration of
chapter 7 and finally to the locale navigation model detailed in chapter 8.

In order to evaluate our model, we test it on a real mobile robot platform in an
office environment. The cognitive map formation and locale navigation model are also
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Figure 9.1: The architecture of the full model. The labels to the left of each popu-
lation indicates its function. To the right, the proposed neural substrate is indicated.
See text for details.

validated on a simulated agent in three different virtual environments. Two of them
provide rich realistic visual input whereas the last is an impoverished environment
similar to what is often used in animal experiments. In all environments, the agent
successfully establishes a spatial representation. It also quickly learns to directly
navigate to a hidden goal location in all cases.

Cognitive map

In chapter 6, we propose that a cognitive map is comprised of five interacting represen-
tations, each coding for a different aspect of the agent-environment relation. These
aspects are: (i) the local view (LV), (ii) head direction (HD), (iii) allothetic place
code (APC), (iv) idiothetic place code (IPC) and (v) a combined place code (PC).

Local view (LV): Two populations of neurons process the input of our artificial
retina (section 5.2.2). Multicolumn cells (MCCs) combine information from several
retina points to achieve a graded response to rotations of the agent. These cells are
not very sensitive to place. Column difference cells (CDCs) respond to the difference
in activity of two retinal columns. This difference depends on the agent’s position,
but it is rotation insensitive within some limits. We propose that posterior parietal
cortex (ppC), as well as perirhinal (peRC) and postrhinal (poRC) cortices code for
the local view.
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Head direction (HD): A population of head direction cells continuously inte-
grates idiothetic information in order to track the agent’s heading. During exploration
of an environment, multicolumn cells associate the current local view with the current
heading using an unsupervised Hebbian type learning rule. Due to these associations,
idiothetic drift can be eliminated. Postsubiculum (poSb), anterodorsal (adT) and lat-
eral mammillary (lmT) nuclei of thalamus are the proposed neural substrate for the
head direction system.

Allothetic place code (APC): At each unknown location, the system re-
cruits an allothetic place cell. This cell is then contacted by active column difference
cells using unsupervised learning. Thus, the current local view is associated to the
current place. This results in broadly tuned directional place cells. We postulate that
the lateral entorhinal cortex (lEC) contains such an allothetic spatial representation.

Idiothetic place code (IPC: A population of idiothetic place cells continu-
ously integrates positional increments using internal cues. The head direction system
provides the direction of the increment. However, the representation continuously
incorporates information from the allothetic place code. This results in a stable
nondirectional representation. Idiothetic drifts are effectively removed. We suggest
the medial entorhinal cortex (mEC) as the biological locus of this representation.

Combined place code (PC): The allothetic and idiothetic place represen-
tations converge onto a layer of combined place cells. Hebbian type unsupervised
learning is used to update synaptic connections. The resulting place fields are mildly
direction sensitive and more compact than in the purely idiothetic or allothetic cells.
This layer is suggested to represent place cells in the CA1 region of the hippocampus
proper.

Our model implements a spatial representation based on realistic visual input.
Indeed, the results for the real and simulated environments are comparable. The
relevant visual cues are associated to the correct positions and headings by an un-
supervised learning rule. We are not aware of any other neural model which can
construct a cognitive map and localise itself in a real environment without a compass
or a strong polarising visual cue.

Multimodal integration

In chapter 7, we present a simple model for multisensory integration. It is inspired by
neurophysiological properties of the deep layers of superior colliculus (SC). This brain
area is involved in the alignment of visual, somatosensory and auditory topological
maps. We propose a gating mechanism which learns to weigh visual and tactile
sensory input for the hippocampal place code.

Unimodal and multimodal cells (UV, UT, MM): An abstract model of
neurons in the deep layers of superior colliculus is proposed. During an exploration
stage, unimodal input cells store the visual and tactile stimuli separately. Unimodal
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cells contact a newly recruited multimodal cell according to an unsupervised Hebbian-
type learning rule.

Gating network: After the locations of multimodal coactivation has been ac-
quired, a gating network learns to weigh visual and tactile input according to envi-
ronmental conditions.

While sensor-fusion mechanisms in classical robotics systems are quite common,
few biologically inspired solutions have been proposed. Most robotics applications
employ probabilistic methods in the context of “occupancy grids”, which seem to
be difficult to relate to brain functions. We do not know of any other biologically
plausible model of spatial representations which learns to weigh sensory modalities
according to the environmental conditions.

Locale navigation

In chapter 8, a model of locale navigation is developed based on hippocampal place
cells and action cells in nucleus accumbens. Reinforcement learning in continuous
state and action spaces is employed.

Action cells (AC): The place cells of our cognitive map project to a layer of
directional action cells thought to be located in the nucleus accumbens (NA). These
action cells estimate the total future reward for each direction of movement. The large
activity profile enforced around the selected action results in a quick generalisation
in action space. A population vector decoding scheme enables the interpretation of
continuous actions.

Reinforcement learning: In order to learn the navigation map to a hidden
target, a reinforcement learning method is used for adapting the synaptic connections
form place cells to action cells. The system learns to navigate to a rewarding location
from anywhere in the environment in around 20 trials.

Eligibility trace: Dopamine has been shown to enhance the long term po-
tentiation of synapses. It has also been related to the reward prediction error used
in reinforcement learning. It remains unclear, however, how dopamine can modulate
the potentiation of synapses which were active before the animal finds a reward. A
memory trace is required. We discuss several biologically plausible mechanisms for
such an eligibility trace.

Our navigation system neurally implements a reinforcement learning mechanism
in continuous state and action spaces. We are not aware of any other neural model
of locale navigation which is continuous in state and action spaces.
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9.2 Experimental predictions

In this section, we discuss some predictions that this work allows us to make. The
predictions are based on the assumptions and results of each component of our system.

Cognitive map

Local view: we suggest that the posterior parietal cortex (ppC) as well as perirhi-
nal (peRC) and postrhinal (poRC) cortices process the local view. These neurons
should therefore show firing properties selective to the current allothetic sensory in-
put in general, and visual input in particular. In conflict situations between idiothetic
and allothetic cues, ie. when the rat moves but the external input remains stable or
vice verse, these areas should follow the allothetic stimulus.

Head direction system: The proposed neural substrates of our head direction (HD)
system include postsubiculum (poSb), anterodorsal (adT) and lateral mammillary
(lmT) nuclei of thalamus. Our results suggest that lesions in ppC,peRC and poRC
should produce drifting idiothetic head direction cells because recalibration using
visual input would be disabled. Lesions in the idiothetic pathway should cause broadly
tuned HD cells in known environments and impair acquisition of HD tuning in new
environments.

Allothetic place code: Our model proposes the lateral entorhinal cortex (lEC)
as neural substrate for an allothetic place code. It receives sensory input from the
local view module and extracts information relevant to encode the rat’s position.
Therefore, lesions in ppC,peRC and poRC, which convey the local view in our model,
should abolish spatial firing in lateral entorhinal cortex. In conflict situations between
idiothetic and allothetic cues, lEC cells should follow the allothetic cue. Lesions in
the idiothetic pathway should not affect this area. Finally, we predict that place cells
in lEC are directional.

Idiothetic place code: the medial entorhinal cortex (mEC) and the subiculum (Sb)
are the suggested neural substrates of our idiothetic spatial representation. Place cells
in mEC should be mostly non-directional. Disrupting the allothetic pathway and in
particular lesioning lEC→mEC connections should produce a drifting idiothetic place
code. Lesions in the idiothetic pathway should abolish firing in mEC. Lesions in poSb,
adT and ldT, which provide mEC with the animal’s heading, should produce severe
inconsistencies in the idiothetic place code.

Combined place code: The idiothetic and allothetic representations combine into a
spatial map the locus of which is predicted to be the hippocampal region CA1. Lesions
in mEC should leave CA1 with more broadly tuned, purely allothetic, directional
place cells. Lesions of the head direction system should severely disrupt spatial firing,
except if mEC is also lesioned, which should produce similar results than disrupting
mEC alone.
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Multimodal integration

In the dark, it should be possible to establish spatial representations in lEC using
non-visual allothetic cues (olfactive, somatosensory etc.). If, however, the same envi-
ronment is illuminated but contains no visual cues, it should not be possible to tune
place fields in lEC because vision would be given a high weight and suppress the other
modes, even if the visual input contains no information.

Locale navigation

Nucleus accumbens: Our model postulates the existence of a population of allocentric
directional action cells in nucleus accumbens (NA). We predict that lesions in CA1
disrupts directional firing in NA and impairs locale navigation. Damaging NA itself
should also impair locale navigation while leaving the hippocampal place code intact.
We propose that the firing properties of cells in nucleus accumbens predict the future
direction of movement in an allocentric coordinate frame. We also suggest that lateral
interactions exist within NA. Finally, reward-driven learning should not be impaired
when blocking plasticity in the hippocampus after the spatial representation has been
learnt.

Dopamine: Learning a navigation map is suggested to be driven by a dopaminergic
error signal from the ventral tegmental area (VTA). Lesions in VTA should therefore
impair acquisition of a new task but not affect the navigation to an already learnt goal
location. Stimulating VTA whenever the rat is at a certain location should resemble
the case where a reward is given at this location.

Eligibility trace: If eligibility traces are implemented by dopamine-dependent in-
hibition of depotentiation due to low-frequency stimulation, then the blocking of
presynaptic firing after reward delivery should disrupt learning, because with a lack
of low-frequency stimulation, none of the synapses get depotentiated.

9.3 Relation to other models

Here we discuss the similarities and differences to existing models of spatial learning.
In the case of our simple superior colliculus (SC) model for multimodal integration,
no comparable models exist. Most experimental work on SC is done in the superficial
layers in monkeys or cats. Existing models of deep SC are on a neuronal level with the
aim of finding the mechanisms of multimodal enhancement. We therefore focus our
comparison on the spatial representation and locale navigation parts of this thesis.
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Brown and Sharp (1991, 1995)

Brown and Sharp’s model [254, 39] relies on an artificial local view system where
the distance to all uniquely identifiable landmarks is available. In contrast, our sys-
tem uses realistic camera images without a high-level object recognition mechanism.
Whereas our model results in a highly redundant and distributed place code consistent
with experimental data, their winner-take-all mechanism prevents all but one place
cell from firing. Their representation, unlike ours, has no path integration component
and therefore doesn’t support location-specific firing in the dark.

Our navigation system is similar to theirs. We also rely on reward-driven learning
in nucleus accumbens. Their output neurons, however, code for egocentric directions
whereas our action cells code for an allocentric direction. While their model needs a
long temporal trace in order to overcome a distal reward problem, our approach does
not suffer such a limitation.

Burgess et al. (1994)

Burgess et al. [41] use a mathematical similarity measure, namely the euclidian dis-
tance to the arena walls, as allothetic stimulus. Our system relies on real camera
images. Their proposal includes competition in the hippocampus and subiculum.
Our place cell layer does not include lateral connections or any other competition
mechanism. In the absence of allothetic input, their model can not sustain place
cell firing, whereas our path integrator can drive place cells in the dark. In their
model, the effect of phase precession is produced in entorhinal cortex by an abstract
geometrical mechanism. Our model does not address this issue.

The goal-learning mechanism is also reward-driven in their proposal. However,
their approach suffers a “distal reward” problem because only those place cells whose
fields contain the goal may learn place to action associations. Our approach is based
on temporal difference learning which does not suffer this limitation. Locale naviga-
tion is impaired in our model if the connection between hippocampus and nucleus
accumbens is lesioned [76,279,209]. Their system is not consistent with these exper-
imental findings.

Wan, Redish and Touretzky (1994, 1996, 1997)

The model proposed by Wan, Redish and Touretzky [310,296,228,229] encodes allo-
thetic signals mathematically by type, distance and bearing to a set of landmarks and
does not work in realistic environments. Another difference is that there is no purely
allothetic place code, like our lEC population. In general, their neuronal model is
more abstract.
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Gaussier and colleagues (1998, 2000, 2002)

The system proposed by Gaussier and colleagues [96,95,97] like our proposal extracts
information from real panoramic camera images. However, their model relies on
a compass for the construction of a spatial representation whereas ours does not
suffer this limitation. Their hippocampus model is more detailed than ours in that it
distinguishes between a place recognition layer in entorhinal cortex and dentate gyrus,
a transition prediction module in CA3 and a transition recognition population in CA1.
Nevertheless, their representation does not include a path integration component and
can, unlike our system and the rat, only operate when allothetic input is available.
A winner-take-all mechanism is applied in several of their populations whereas our
approach supports a distributed place code consistent with experimental data.

According to their model, locale navigation is implemented in the hippocampus,
which is in contradiction with experimental data [76, 279, 209]. Our model, on the
other hand, postulates the implication of nucleus accumbens. The symbolic nature
of place transitions might reduce the robustness and the flexibility of their system.
Our distributed approach is at the same time robust and flexible. Finally, the output
of their navigation system is an egocentric direction, whereas we use an allocentric
representation of actions.

Arleo et al. (2000, 2001)

The model by Arleo et al. [14,16,15] also uses real camera images in order to establish
a place code. At each visited location, they take four snapshots in the four cardinal
directions, whereas our system handles images taken in any direction. Their head
direction system is more detailed in that it models the interaction between different
populations involved in the processing of head direction. Recalibration using allo-
thetic cues is also performed differently. Whereas we calibrate the HD system using
unsupervised learning between the local view representation and HD cells, Arleo et al.
use a stable light source at the border of the arena as a reference. As this directional
cue is not location independent, the association between the allothetic place code in
entorhinal cortex and the egocentric bearing of the light source is learnt in an offline
supervised learning stage. Lesions in entorhinal cortex thus disrupts their heading
calibration. This is in contrast to our system where the calibration depends on the
local view only. In their work, the place cells in lateral entorhinal cortex are predicted
to be non-directional whereas we predict directional firing.

Finally, our action learning mechanism differs from theirs in that it supports
continuous action selection and generalisation in action space. Their system uses
four discrete actions, which means that during learning, the agent can only move in
four different directions in their proposal.
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Abbot and colleagues (1996, 1997)

Hippocampal place cells in Abbott and colleagues’ work [34,101] have perfectly Gaus-
sian tuned receptive fields prior to action learning. They do not depend on allothetic
cues whereas we learn the place fields from real images. After navigation learning,
place cell firing is sensitive to the goal location in their model whereas our place cells
are task independent.

They propose a goal-oriented navigation mechanism which only depends on the
hippocampus. A navigation map is stored in the CA3 collaterals. This conflicts with
experimental data showing that lesioning the fornix or nucleus accumbens impairs
locale navigation [76,279,209]. Our model is consistent with these findings because a
navigation map is learnt in nucleus accumbens, which receives spatial information via
the fornix. In order to generate movement commands, the original place field centres
are accessed explicitly, which is a biologically implausible operation. In our model,
positions and actions are implicitly coded.

Foster, Morris and Dayan (2000)

The model proposed by Foster, Morris and Dayan [88] relies a population of perfectly
Gaussian tuned place cells with no allothetic component. Our place fields are learnt
by experience.

Their navigation model postulates a set of eight action neurons which code, like
our action cells, for the allothetic direction of movement. Unlike our approach, learn-
ing does not generalise to similar actions and does not allow for continuous directions
of movement. Their navigation learning rule is based on an actor-critic temporal
difference learning algorithm whereas we use Q-learning. In order to overcome in-
terference with previously learnt goal locations, their model features a coordinate
system module which learns to transform place code activity into Cartesian coordi-
nates. Once learnt, algorithmic vector subtraction replaces the action selection based
on the local view. Local obstacle avoidance is no longer possible. Our model does
not address the quick relearning of a goal location.

9.4 Limitations and perspectives

Here we discuss some limitations of our approach and propose future directions which
could improve the performance or biological plausibility of our model. We also address
some essential general questions in the area of spatial learning that are still unresolved.

Path integration: Our path integration system (both IPC and HD system) con-
sists of neurons with artificially tuned receptive fields. Furthermore, the idiothetic
update and the new firing rates are algorithmically calculated. Instead, lateral in-
terconnections and a plausible update mechanism should be implemented in order to



126 CHAPTER 9. CONCLUSIONS

improve the biological plausibility of our model.
Calibration of IPC: In order to calibrate the idiothetic place code, we rely on the

APC population vector. This may not be biologically plausible. Direct associations
between local view or APC cells and IPC neurons should be established during explo-
ration. These connections, however, would then need to be weighted appropriately in
order to efficiently calibrate the idiothetic representation.

Multiple environments: A hippocampal place cell which is active in a particular
environment is not necessarily active in second environment. If it is, however, the cell
does not generally code for a similar location within the second environment [142,291].
The change in the firing properties occurs suddenly and is termed a “remapping” [159].
Our model does not have the capability to perform a “remapping”. Indeed, the
underlying principle of this effect is still an open question.

Sequence learning: Sequence learning is the ability to store and retrieve sequential
activation of place cells. We suggest that this is implemented in the CA3 region of the
hippocampus. The association between places might be stored in the lateral inter-
connections present in CA3. Our model, however, doesn’t feature sequence learning.

Directionality of place fields: Place cells in our combined place code layer are
mainly non-directional. However, hippocampal place cells can have directional fields
when the rat’s movement is restricted, e.g. in a linear track. We suggest that the
hippocampal place fields are initially driven mainly by path integration, and are
therefore non-directional at an early stage of exploration. If, however, a position is
always paired with a particular view, which is the case for restricted movement but
not in free exploration, allothetic information might become more important than
path integration. As our allothetic place code in lEC is directional, we propose that
the lEC→CA1 projections become stronger than mEC→CA1 connections.

Consolidation of cognitive maps: Locale navigation tasks depend on the hip-
pocampus shortly after learning. After a few weeks, however, rats can perform the
task even if their hippocampus is lesioned. It is suggested that the cognitive map is
consolidated and transferred to a different brain region [193]. The mechanism of con-
solidation is, however, an open question and our model does not propose a solution.

Working memory: Our model can not solve working memory tasks. We find that
path integration (PI) is extremely useful in order to “smooth” the cognitive map
in time and reproduce the clean place fields of the hippocampus. PI is a form of
working memory in the sense we interpret it in this thesis (section 3.2). However,
it is not sufficient to solve the win-shift working memory task in the radial arm
maze (section 3.4). The task we addressed in this thesis, namely finding a hidden
goal location, can also be solved by a memoryless stimulus-response mechanism. In
our model, this would correspond to disabling the PI components.

Relevance of a sensory mode: Our simple model of multimodal integration con-
tains a gating network which learns to adapt the weight of each sensory mode ac-
cording to environmental conditions. Learning is driven by a reward function which
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assesses the quality of the place code. An approach based on the information content
of a sensory signal could provide a better estimate of the relevance of a sensory signal.

Multiple goal locations: Our model can only store one navigation map. A natural
extension would provide each target with its own population of action cells. A form
of working memory could then specify which target is currently the most interesting,
based on motivation for instance. This extension could solve the win-shift working
memory task in the radial arm maze mentioned above. However, the working memory
would be modelled outside of the hippocampus. A different mechanism could include
working memory in the form of goal-dependent cells in the hippocampal model and
use only one action cell population. Such an architecture could also solve the win-shift
task.

Different navigation strategies: We have modelled a locale navigation mechanism.
An interesting extension would be to incorporate other modes of navigation such
as homing by dead reckoning or taxon navigation. A model of the basal ganglia
could then select an appropriate strategy according to motivation, sensory input and
complexity of the task.

Action selection: We employ an ε-greedy policy to select the next action in our
navigation model. A sophisticated method which adapts the action selection to the
current conditions would be an important improvement. For instance, the selection
could depend on a quality estimation of the navigation map, or it could avoid already
visited places etc.

Finding a sound navigation learning algorithm: We use Q-learning with eligibility
traces and function approximation in order to learn a navigation map. The soundness
of such methods is no longer an open question: It has been shown that this approach
may lead to divergence [20]. Nevertheless, our model and many others seem to work
in practice. Obviously, it would be better to find sound solutions. So far, we are not
aware of any proposal of a sound online temporal difference learning algorithm which
uses function approximation.

Eligibility trace: We discuss some potential neuronal mechanism which could im-
plement an eligibility trace. They are based on neuronal properties which can not be
captured by our rate-coded neurons. A possible extension of our work is to transpose
the entire model to the case of spiking neurons. The mechanism for eligibility traces
proposed in section 8.3 could then be validated.

Other mazes: Finally, we only test our model in small open-field environments. It
would be interesting to run experiments it in all environments of figure 3.3 (page 37)
and compare the results to animal experiments.
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oscillations in the hippocampus of the behaving rat.” Neuron, 37(2): pp. 311–
322, 2003. 12

[60] da Silva F.H.L., Witter M.P., Boeijinga P.H. and Lohman A.H.M.: “Anatomical
organization and physiology of the limbic cortex.” Physiological Reviews , 70:
pp. 453–511, 1990. 10

[61] Daugman J.G.: “Two-dimensional spectral analysis of cortical receptive field
profiles.” Vision Research, 20: pp. 847–856, 1980. 60

[62] Davis H.P. and Squire L.R.: “Protein synthesis and memory: a review.” Psychol
Bull , 96(3): pp. 518–59, 1984. 32, 105

[63] Dayan P.: “The Convergence of TD(λ) for General λ.” Machine Learning ,
8(3-4): pp. 341–362, 1992. 51, 52

[64] Dayan P. and Sejnowski T.J.: “TD(λ) Converges with Probability 1.” Machine
Learning , 14(3): pp. 295–301, 1994. 52

[65] del R. Millán J., Posenato D. and Dedieu E.: “Continuous-Action Q-Learning.”
Machine Learning , 49: pp. 247–265, 2002. 100

[66] Devan B.D. and White N.M.: “Parallel information processing in the dorsal
striatum: relation to hippocampal function.” J Neurosci , 19(7): pp. 2789–98,
1999. 38, 99

[67] Dittman J.S., Kreitzer A.C. and Regehr W.G.: “Interplay between facilitation,
depression, and residual calcium at three presynaptic terminals.” J Neurosci ,
20(4): pp. 1374–85, 2000. 32, 105



BIBLIOGRAPHY 135

[68] Doya K.: “Temporal Difference Learning in Continuous Time and Space.” In
Touretzky D.S., Mozer M.C. and Hasselmo M.E. (editors) “Advances in Neural
Information Processing Systems,” volume 8, pp. 1073–1079. The MIT Press,
1996. 48

[69] Doya K.: “Reinforcement learning in continuous time and space.” Neural Com-
putation, 12: pp. 219–245, 2000. 48, 54, 100

[70] Doya K.: “Metalearning and neuromodulation.” Neural Netw , 15(4-6): pp.
495–506, 2002. 53, 54
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