
Supplementary Material
A1: Evolution of the average synaptic update rule

In this appendix we evaluate the derivative of Eq. (9), i.e., we need

to calculate

∂

∂wj

〈

log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
− γ log

P (yk|Y k−1)

P̃ (yk|Y k−1)

〉

Y k,Xk

. (18)

Before we start let us recall some notation. The average of an arbi-

trary function fw with arguments x and y is by definition

〈fw(x, y)〉
x,y =

∑

x

∑

y

pw(y, x) fw(y, x) (19)

where pw(y, x) denotes the joint probability of the pair (y, x) to occur

and the sum runs over all configurations of x and y. The subscript w

indicates that both the probability distribution pw and the function fw

may depend on a parameter w.

By definition we have pw(y, x) = pw(y|x)p(x) where p(x) is a given

input distribution and pw(y|x) the (parameter-dependent) conditional

probability of generating an output y given x. Hence Eq. (19) can be

transformed into

〈fw(x, y)〉
x,y =

∑

x

p(x)
∑

y

pw(y|x) fw(y, x) =

〈

∑

y

pw(y|x) fw(y, x)

〉

x

(20)

If we now take the derivative with respect to the parameter w, the

product rule yields two terms

∂

∂w
〈fw(x, y)〉

x,y =

〈

∑

y

pw(y|x)
∂

∂w
fw(y, x)

〉

x

(21)

+

〈

∑

y

pw(y|x)

[

∂

∂w
log pw(y|x)

]

fw(y, x)

〉

x

The first term contains the derivative of the function fw whereas the

second term contains the derivative of the conditional probability pw.

We note that Eq. (21) can also be written in the form

∂

∂w
〈fw(x, y)〉

x,y =

〈

∂

∂w
fw(y, x)

〉

x,y

+

〈 [

∂

∂w
log pw(y|x)

]

fw(y, x)

〉

x,y

, (22)
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i.e., as an average over the joint distribution of x and y. This formulation

will be useful for the problem at hand.

The gradient in Eq. (18) contains several terms and for the moment

we pick only one of these. The others will then be treated analogously.

Let us focus on the term
〈

log P (yk|Y k−1, Xk)
〉

Y k,Xk and apply steps

completely analogous to those leading from Eqs. (19) to (22).

∂

∂wj

〈

log P (yk|Y k−1, Xk)
〉

Y k,Xk

=

〈

∂

∂wj

log P (yk|Y k−1, Xk)

〉

Y k ,Xk

(23)

+

〈[

∂

∂wj

log P (Y k|Xk)

]

log P (yk|Y k−1, Xk)

〉

Y k,Xk

We now evaluate the averages using the identity

〈·〉Y k,Xk = 〈〈·〉yk |Y k−1,Xk〉Y k−1,Xk . We find that the first term on the

right-hand side of Eq. (23) vanishes, since

〈

∂

∂wj

log P (yk|Y k−1, Xk)

〉

yk|Y k−1,Xk

=
∑

yk∈{0,1}

∂

∂wj

[

log P (yk|Y k−1, Xk)
]

P (yk|Y k−1, Xk)

=
∂

∂wj





∑

yk∈{0,1}

P (yk|Y k−1, Xk)



 = 0 (24)

because of the normalization of probabilities. The same argument can

be repeated to show that 0 =
〈

∂
∂wj

log P (yk|Y k−1)
〉

yk|Y k−1,Xk
. The

reference distribution P̃ (yk|Y k−1) is by definition independent of wj .

Hence the only term that gives a non-trivial contribution on the

right-hand side of Eq. (23) is the second term. With an analogous ar-

gument for the other factors in Eq. (18) we have

∂

∂wj

〈

log
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P (yk|Y k−1)
− γ log

P (yk|Y k−1)
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〉
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=

〈[

∂ log P (Y k|Xk)

∂wj

] (

log
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− γ log
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)〉

Y k,Xk

(25)
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An identification of the factors C, F , and G in the main text is straight-

forward. From Eq. (4) in the main text we have

log P (yk|Y k−1, Xk) = yk log(ρk) + (1− yk) log(1− ρk) (26)

Hence we can evaluate the factors

F k = log
P (yk|Y k−1, Xk)

P (yk|Y k−1)
=yk log

ρk

ρ̄k
+(1−yk) log

1− ρk

1− ρ̄k

Gk = log
P (yk|Y k−1)

P̃ (yk|Y k−1)
=yk log

ρ̄k

ρ̃
+(1−yk) log

1− ρ̄k

1− ρ̃

Furthermore we can calculate the derivative needed in Eq. (25) using

the chain rule from Eq. (6) of the main text, i.e.,

P (Y k|Xk) =

k
∏

l=1

P (yl|Y l−1, X l) (27)

which yields

∂ log P (Y k|Xk)

∂wj

=
∂

∂wj

k
∑

l=1

log P (yl|Y l−1, X l) (28)

=

k
∑

l=1

[

yl

ρl
−

1− yl

1 − ρl

]

ρ′
l
∑

n

ε(tl − tn) xn
j (29)

We note that in Eq. (25) the factor ∂
∂wj

log P (Y k|Xk) has to be mul-

tiplied with F k or with Gk before taking the average. Multiplication

generates terms of the form 〈yl yk〉Y k,Xk = 〈〈yl yk〉Y k|Xk〉Xk For any

given input Xk, the autocorrelation 〈yl yk〉Y k|Xk with l < k of the post-

synaptic neuron will have a trivial value

〈yl yk〉Y k|Xk = 〈yl〉Y k |Xk〈yk〉Y k|Xk for k − l > ka (30)

where ka ∆t is the width of the autocorrelation. As a consequence
〈[

yl

ρl
−

1− yl

1 − ρl

]

(

F k −Gk
)

〉

Y k ,Xk

= 0 for k − l > ka (31)

Hence, for k > ka, we can truncate the sum over l in Eq. (25), i.e.,
∑k

l=1 →
∑k

l=k−ka
which yields exactly the coincidence measure Cj in-

troduced in the main text; cf. Eq. (11), and which we repeat here for
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convenience

Ck
j =

k
∑

l=k−ka

[

yl

ρl
−

1− yl

1− ρl

]

ρ′
l
∑

n

ε(tl − tn) xn
j (32)

A2: From averages to an online rule

The coincidence measure Ck
j counts coincidences in a rectangular

time window. If we replace the rectangular time window by an expo-

nential one with time constant τC and go to continuous time, the sum-

mation
∑k

l=k−ka
. . . in Eq. (32) turns into an integral

∫ t

−∞
dt′ exp[−(t−

t′)/τC ] . . . which can be transformed into a differential equation

dCj(t)

dt
=−

Cj(t−δ)

τC

+
∑

f

ε(t−t
(f)
j )S(t)

[

δ(t− t̂−δ)−g(u(t))R(t)
]

; (33)

cf. Eq. (15). Based on the considerations in the previous paragraph,

the time constant τC should best be chosen in the range ka∆t ≤ τC ≤

10 ka∆t.

Similarly, the average firing rate ρ̄(t) = ḡ(t) R(t) can be estimated

using a running average

τḡ

dḡ(t)

dt
= −ḡ(t) + g(u(t)) (34)

with time constant τḡ .

In Fig. 6 we compare the performance of three different update

schemes in numerical simulations. In particular, we show that (i) the

exact value of the truncation of the sum in Eq. (32) is not relevant, as

long as ka∆t is larger than the width of the autocorrelation; and (ii)

that the online rule is a good approximation to the exact solution.

To do so we take the scenario from Fig. 3 of the main text. For

each segment of 1 second, we simulate one hundred pairs of input and

output spike trains. We evaluate numerically Eq. (25) by averaging over

the 100 samples. After each segment of 1 second (=1000 time steps) we

update the weights using a rule without truncation in the sum of Eq.

(32). We call this the full batch update; cf. Fig. 6(top).
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Figure 6: Evolution of the synaptic efficacies for the pattern detec-

tion paradigm of Fig. 3 during the first 10 minutes of simulated time.

Red: mean synaptic efficacy of the 25 synapses that received pattern-

dependent input rates. Blue: mean synaptic efficacy of the remaining

75 synapses. The batch update rule (top), the truncated batch rule

(middle) and the online rule (bottom) yield comparable results.

Second, we use the definition of Ck
j with the truncated sum and

repeat the above steps; Fig. 6 (middle). The truncation is set to ka ∆t =

200ms which is well above the expected width of the autocorrelation

function of the postsynaptic neuron. We call this the truncated batch

rule.

Third, we use the online rule discussed in the main body of the paper

with τC = 1s; Fig. 6 (bottom).

Comparison of top and center graphs of Fig. 6 shows that there is no

difference in the evolution of mean synaptic efficacies, i.e., the truncation

of the sum is allowed, as expected from the theoretical arguments. A

further comparison with Fig. 6 bottom shows that updates based on the

online rule add some fluctuations to the results, but its trend captures

nicely the evolution of the batch rules.
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B. Supplement to the pattern detection paradigm

In Fig. 3 of the main text we presented a pattern detection paradigm

where patterns defined by input rates were chosen randomly and applied

for one second. After learning, the spike count over one second is sensi-

tive to the index of the pattern. Fig. 7A shows the histogram of spike

counts for each pattern. Optimal classification is achieved by choosing

for each spike count the pattern which is most likely. With this criterion

81 percent of the patterns will be classified correctly.

The update of synaptic efficacies depends on the choice of the pa-

rameter γ in the learning rule. According the the optimality criterion in

Eq. (8) of the main text, a high level of γ implies a strong homeostatic

control of the firing rate of the postsynaptic neuron whereas a low level

of γ induces only a weak homeostatic control. In order to study the role

of γ, we repeated the numerical experiments for the above pattern de-

tection paradigm with a value of γ = 100 instead of our standard value

of γ = 1. Fig. 7B shows that the output firing rate is still modulated by

the pattern index, the modulation at γ = 100 is, however, weaker than

that at γ = 1. As a results, pattern detection is less reliably with 45

percent correct classification only. We note that this is still significantly

higher than the chance level of 25 percent.
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A B

Figure 7: Pattern detection. A Histograms of spike counts nsp over

one second (horizontal axis, bin size 2) during presentation of pattern

1 (dark blue), pattern 2 (light blue), pattern 3 (yellow), and pattern

4 (red). Vertical scale: number of trials n with a given spike count

divided by total number Np of trials for that pattern. B Spike count

during one second (mean and variance) for each of the four patterns

with a parameter value γ = 1 (light blue) and γ = 100 (dark blue). The

values for γ = 1 are redrawn from Fig. 3.
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