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Summary

We studied the hypothesis that synaptic dynamics is controlled by three ba-
sic principles: (A) Synapses adapt their weights so that neurons can effectively
transmit information; (B) homeostatic processes stabilize the mean firing rate
of the postsynaptic neuron; and (C) weak synapses adapt more slowly than
strong ones, while maintenance of strong synapses is costly. Our results show
that a synaptic update rule derived from these principles shares features with
spike-timing dependent plasticity, is sensitive to correlations in the input, and
is useful for synaptic memory. Moreover, input selectivity (sharply tuned re-
ceptive fields) of postsynaptic neurons develops only if stimuli with strong
features are presented. Sharply tuned neurons can co-exist with unselective
ones and the distribution of synaptic weights can be unimodal or bimodal. The
formulation of synaptic dynamics through an optimality criterion provides a
simple graphical argument for the stability of synapses, necessary for synaptic
memory.
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1 Introduction

Synaptic changes are thought to be involved in learning, memory, and cortical
plasticity, but the exact relation between microscopic synaptic properties and
macroscopic functional consequences remains highly controversial. In experi-
mental preparations, synaptic changes can be induced by specific stimulation
conditions defined through pre- and postsynaptic firing rates (Bliss and Lomo
1973; Dudek and Bear 1992), postsynaptic membrane potential (Kelso et al.
1986), calcium entry (Malenka et al. 1988; Lisman 1989), or spike timing
(Markram et al. 1997; Bi and Poo 2001). In the theoretical community, condi-
tions for synaptic changes are formulated as ‘synaptic update rules’ or ‘learning
rules’ (von der Malsburg 1973; Bienenstock et al. 1982; Miller et al. 1989)
(for reviews see (Gerstner and Kistler 2002; Dayan and Abbott 2001; Cooper
et al. 2004) but the exact features that make a synaptic update rule a suitable
candidate for cortical plasticity and memory are unclear.

From a theoretical point of view, synaptic learning rule should be (i) sen-
sitive to correlations between pre- and postsynaptic neurons (Hebb 1949) in
order to respond to correlations in the input (Oja 1982); they should (ii) allow
neurons to develop input selectivity (e.g., receptive fields) (Bienenstock et al.
1982; Miller et al. 1989), in the presence of strong input features, but (iii)
distribution of synaptic strength should remain unimodal otherwise (Gütig
et al. 2003). Furthermore (iv) synaptic memories should show a high de-
gree of stability (Fusi et al. 2005) and nevertheless remain plastic (Grossberg
1987). Moreover, experiments suggest that plasticity rules are (v) sensitive to
the presynaptic firing rate (Dudek and Bear 1992), but (vi) depend also on the
exact timing of the pre- and postsynaptic spikes (Markram et al. 1997; Bi and
Poo 2001).

Many other experimental features could be added to this list, e.g., the role
of intracellular calcium, of NMDA receptors, etc., but we will not do so; see
(Bliss and Collingridge 1993; Malenka and Nicoll 1993) for reviews.

The items in the above list are not necessarly exclusive, and the relative
importance of a given aspect may vary from one subsystem to the next; for
example, synaptic memory maintenance might be more important for a long-
term memory system than for primary sensory cortices. Nevertheless, all of
the above aspects seem to be important features of synaptic plasticity. How-
ever, the development of theoretical learning rules that exhibit all of the above
properties has posed problems in the past. For example, traditional learning
rules that have been proposed as an explanation of receptive field development
(Bienenstock et al. 1982; Miller et al. 1989), exhibit a spontaneous separation
of synaptic weights into two groups, even if the input shows no or only weak
correlations. This is difficult to reconcile with experimental results in visual
cortex of young rats where a unimodal distribution was found (Sjöström et al.
2001). Moreover model neurons that specialize early in development on one
subset of features cannot readily re-adapt later on. Other learning rules, how-
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ever, that exhibit a unimodal distribution of synaptic weights (Gütig et al.
2003) do not lead to a longterm stability of synaptic changes.

In this paper we want to show that all of the above features (i) - (vi)
emerge naturally in a theoretical model where we require only a limited number
of objectives that will be formulated as postulates. In particular, we study
how the conflicting demands on synaptic memory maintenance, plasticity, and
distribution of synaptic synapses could be satisfied by our model. Even though
the postulates are rather general and could be adapted to arbitrary neural
systems, we had in mind excitatory synapses in neocortex or hippocampus
and exclude inhibitory synapses and synapses in specialized systems such as
the calix of held in the auditory pathway. Our arguments are based on three
postulates:

(A) Synapses adapt their weights so as to allow neurons to efficiently trans-
mit information. More precisely, we impose a theoretical postulate that the
mutual information I between presynaptic spike trains and postsynaptic firing
be optimized. Such a postulate stands in the tradition of earlier theoretical
work (Linsker 1989; Bell and Sejnowski 1995), but is formulated here on the
level of spike trains rather than rates.

(B) Homeostatic processes act on synapses to ensure that the long-term
average of the neuronal firing rate becomes close to a target rate that is char-
acteristic for each neuron. Synaptic rescaling and related mechanism could
be a biophysical implementation of homeostatis (Turrigiano and Nelson 2004).
The theoretical reason for such a postulate is that sustained high firing rates
are costly from an energetic point of view (Laughlin et al. 1998; Levy and
Baxter 2002).

(C). C1: Maintenance of strong synapses is costly in terms of biophysical
machinery, in particular in view of continued protein synthesis (Fonseca et al.
2004). C2: Synaptic plasticity is slowed down for very weak synapses in order
to avoid a (unplausible) transition from excitatory to inhibitory synapses.

Optimality approaches have a long tradition in the theoretical neurosciences
and have been utilized in two different ways. Firstly, optimality approaches
allow to derive strict theoretical bounds against which performance of real neu-
ral systems can be compared (Barlow 1956; Laughlin 1981; Britten et al. 1992;
de Ruyter van Steveninck and Bialek 1995). Secondly, they have been used
as a conceptual framework since they allow to connect functional objectives
(e.g., ‘be reliable!’ ) and constraints (e.g., ‘don’t use too much energy!’) with
electrophysiological properties of single neurons and synapses or neuronal pop-
ulations (Barlow 1961; Linsker 1989; Atick and Redlich 1990; Levy and Baxter
2002; Seung 2003). Our study, i.e., derivation of synaptic update rules from
an optimality viewpoint, follows this second, conceptual, approach.

2 The Model

Neuron Model
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We simulated a single stochastic point neuron model with N = 100 in-
put synapses. Presynaptic spikes at synapse j are denoted by their arrival
time tfj and evoke EPSPs with time course exp[−(t− tf

j )/τm] for t ≥ tfj where
τm = 20ms is the membrane time constant. Recent experiments have shown
that action potentials propagating back into the dendrite can partially suppress
EPSPs measured at the soma (Froemke et al. 2005). Since our model neuron
has no spatial structure, we included EPSP suppression by a phenomenological
amplitude factor a(tfj − t̂) that depends on the time difference between presy-

naptic spike arrival and the spike trigger time t̂ of the last (somatic) action
potential of the postsynaptic neuron.

In the absence of EPSP suppression, the amplitude of a single EPSP at
synapse j is characterized by its weight wj and its duration by the membrane
time constant τm. Summation of the EPSPs caused by presynaptic spike arrival
at all 100 explicitly modeled synapses gives the total postsynaptic potential

u(t) = ur +

N
∑

j=1

wj

∑

tfj <t

exp

(

−
t − tfj
τm

)

a(tfj − t̂) (1)

where ur = −70mV is the resting potential and the sum runs over all spike
arrival times tfj in the recent past, t̂ < tfj ≤ t. The EPSP suppression factor

takes a value of zero if tf
j < t̂ and is modeled for tfj ≥ t̂ as exponential recovery

a(tfj − t̂) = 1−exp[−(tfj − t̂)/τa] with time constant τa = 50ms (Fig. 1A) unless
stated otherwise. The parameters wj for 1 ≤ j ≤ N denote the synaptic weight
of the N = 100 synapses and are updated using a learning rule discussed below.

In order to account for unspecific background input that was not modeled
explicitly, spikes were generated probabilistically with density

ρ(t) = ρr + [u(t)− ur] · g (2)

where ρr = 1Hz is the spontaneous firing rate (in the absence of spike input
at the 100 explicitly modeled synapses) and g = 12.5Hz/mV is a gain fac-
tor. Thus, the instantaneous spike density increases linearly with the total
postsynaptic potential u(t). Note, however, that due to EPSP suppression the
total postsynaptic potential increases sublinearly with the the number of input
spikes and so does the mean firing rate of the postsynaptic neuron (Fig. 1B).

The neuron model is simulated in discrete time with time steps of ∆t =
1ms on a standard personal computer using custom made software written in
Matlab.

Objective Function

Postulates A and B have been used previously (Toyoizumi et al. 2005) and
lead to an optimality criterion L′ = I − γD where I is the mutual information
between presynaptic input and postsynaptic output and D a measure of the
distance of the mean firing rate of the neuron from its target rate. The param-
eter γ scales the importance of the information term I (postulate A) compared
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Figure 1: Properties of the stochastically spiking neuron model. (a) Neuron
model and EPSP suppression. EPSPs arriving just after a postsynaptic spike
at t = 0 are attenuated by a factor (1 − e−t/τa) and recover exponentially to
their maximal amplitude wj. (b) The output firing rate ρ̄ of a neuron that
receives stochastic spike input at rate ν at all 100 synapses. Each presynaptic
spike evokes an EPSPs with maximal amplitude wj = 0.4mV. (c) Interspike
interval (ISI) distribution with input frequency ν = 10Hz (solid line), 20Hz
(dashed line), and 30Hz (dotted line) at all 100 synapses. (d) Autocorrelation
function of postsynaptic action potentials at an input frequency of 10Hz (solid
line), 20Hz (dashed line), and 30Hz (dotted line).

to the homeostatic term D (postulate B). It was shown that optimization of
L′ by gradient ascent yields a synaptic update rule which shows sensitivity
to correlations (see point (i) above), input selectivity (see point (ii) above),
and depends on presynaptic firing rates (see point (v) above) (Toyoizumi et al.
2005). However, while the learning rule in (Toyoizumi et al. 2005) showed
some dependence on spike timing, it did not (without additional assumptions)
have the typical features of STDP as measured in vitro (point (vi) above); and
exhibited, like earlier models (Bienenstock et al. 1982), spontaneous synaptic
specialization, even for very weak input features, which is in contrast to point
(iii) above.

In this earlier theoretical study, synaptic potentiation was artificially stopped
at some upper bound wmax (and synaptic depression was stopped at weight
w = 0), so as to ensure that weights w stayed in a regime 0 ≤ w ≤ wmax. In
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the present paper we take the more realistic assumption that strong weights
are more likely to show depression than weaker ones but do not impose a hard
upper bound. Similarly, we require that adaptation speed is slowed down for
very weak synapses, but do not impose a hard bound at zero weight. We will
show that with these assumptions the resulting synaptic update rule shows
properties of STDP (see point (vi) above), is suitable for memory retention
(see point (iv) above) and leads to synaptic specialization when driven by
strong input (see point (iii) above), while keeping the properties (i), (ii) and
(v), that were found in (Toyoizumi et al. 2005).

To avoid hard upper bounds for the synapses, we use postulate C1 and
add a term Ψ to the optimality criterion L′ that is proportional to w2 (i.e., the
square of the synaptic weight) and proportional to the presynaptic firing rate.
This term comes with a negative sign, since a cost is associated to big weights.
Hence from our optimality viewpoint, synapses change so as to maximize a
quantity

L = I − γD − λΨ (3)

where I is the information to be maximized, D a measure of the firing rate
mismatch to be minimized, and Ψ the cost induced by strong synapses to be
minimized. The factors γ and λ control the relative importance of the three
different terms. In other words, synapses adjust their weights so as to be
able to transmit information while keeping the mean firing rate and synaptic
weights at low values. Thus our three postulates A, B, and C give rise to
one unified optimality criterion L. We hypothesize that a significant part of
findings regarding synaptic potentiation and depression can be conceptually
understood as the synapse’s attempt to optimize the criterion L.

The learning rule used for the update of the synaptic weights wj is derived
from the objective function (3) i.e., L = I − γD − λΨ which contains three
terms.

The first term is the mutual information between the ensemble of 100 input
spike trains (spanning the interval of a single trial from 0 to T ; the ensemble of
all presynaptic trains is formally denoted by X(T ) = {xj(t) =

∑

tfj
δ(t−tfj )|j =

1, . . . , 100, 0 ≤ t < T}) and the output spike train of the postsynaptic neuron
over the same interval (denoted by Y (T ) = {y(t) =

∑

tfpost
δ(t − tfpost)|0 ≤ t <

T}, where tfpost represent output spike-timing), i.e.,

I =

〈

log
P (Y |X)

P (Y )

〉

Y,X

, (4)

where angular brackets 〈 · 〉Y,X denote averaging over all combinations of input

and output spike trains1. Here P (Y |X) is the conditional probability density

1From now on, when X or Y are without argument, we take implicitly X ≡ X(T ) and
Y ≡ Y (T ), i.e., the spike trains over the full interval T
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of our stochastic neuron model to generate a specific spike train Y with (one or
several) spike times {tfpost} during a trial of duration T given 100 known input
spike trains X. This conditional probability density is given as a product of
the instantaneous probabilities ρ(tf

post) of firing at the postsynaptic spike times

{tfpost} and the probability of not firing elsewhere, i.e.,

P (Y |X) =







∏

tfpost

ρ(tfpost)






exp

[

−

∫ T

0

ρ(t)dt

]

. (5)

Similarly, P (Y ) is the probability to generate the very same output spike
train Y not knowing the input. Here ‘not knowing the input’ implies that we
have to average over all possible inputs so as to get the expected instantaneous
firing density ρ̄(t) at time t. However, because of the EPSP suppression factor,
the expected firing density will also depend on the last output spike before t.
We therefore define

ρ̄(t) = 〈ρ(t)〉X(t)|Y (t), (6)

i.e., we average over the inputs but keep the knowledge of the previous output
spikes tfpost < t. P (Y ) is then given by a formula analogous to (5), but with
ρ replaced by ρ̄. Hence, given our neuron model, both P (Y |X) and P (Y ) in
Eq. (4) are well-defined. The information term I of Eq. (4) is the formal
instantiation of postulate A.

The second term is the homeostatic term

D =

〈

log
P (Y )

P̃ (Y )

〉

Y

, (7)

which compares the actual distribution of output spike trains P (Y ) with that
of an ideal distribution P̃ (Y ) generated by the same neuron firing at target rate
of ρ̃ = 5Hz, i.e., formula (5) with ρ replaced by ρ̃. Mathematically speaking, D
is the Kullback-Leibler distance between two distributions (Cover and Thomas
1991), but in practice we may think of D simply as a measure of the difference
between actual and target firing rates (Toyoizumi et al. 2005). The term D is
our mathematical formulation of postulate B.

The third term is the cost associated with strong synapses. We assume
that the cost increases quadratically with the synaptic weights but that only
those synapses that have been activated in the past contribute to the cost.
Hence the mathematical formulation of postulate C1 yields a cost

Ψ =
1

2

∑

j

w2
j 〈nj〉X (8)

where nj is the number of presynaptic spikes that have arrived at synapse j
during the duration T of the interval under consideration. Cost terms that
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are quadratic in the synaptic weights are common in the theoretical literature
(Miller and MacKay 1994), but the specific dependence upon presynaptic spik-
ing induced by the factor nj in Eq. (8) is not. The dependence of Ψ upon
presynaptic spike arrival means that, in our model, only activated synapses
contribute to the cost. The specific formulation of Ψ is mainly due to the-
oretical reasons to be discussed below. The intuition is that activation of a
synapse in absence of any postsynaptic activity can weaken the synapse if the
factor λ is sufficiently positive (see also Fig. 3D). The restriction of the cost
to previously activated synapses is reminiscent of synaptic tagging (Frey and
Morris 1997; Fonseca et al. 2004) even though any relation must be seen as
purely hypothetical.

The three terms are given a relative importance by choosing γ = 0.1 (for a
discussion of this parameter see (Toyoizumi et al. 2005)) and λ = 0.026 so as
to achieve a baseline of zero in the STDP function (see Appendix A).

Synaptic update rule

We optimize the synaptic weights by gradient ascent

∆wj = α(wj)
∂L

∂wj
(9)

with a weight-dependent update rate α(wj). According to postulate C2, plas-
ticity is reduced for very small weights. For the sake of simplicity we chose

α(wj) = 4 · 10−2 w4

j

w4

j +w4
s
, where ws = 0.2mV. i.e., learning slows down for weak

synapses with EPSP amplitudes around or less than 0.2mV. Note that updates
according to Eq. (9) are always uphill; however, because of the wj dependence
of α, the ascent is not necessarily along the steepest gradient.

Using the same mathematical arguments as in (Toyoizumi et al. 2005), we
can transform the optimization by gradient ascent into a synaptic update rule.
First, differentiating each term, we find

∂I

∂wj
=

〈

1

P (Y |X)

∂P (Y |X)

∂wj
log

P (Y |X)

P (Y )

〉

Y,X

, (10)

∂D

∂wj
=

〈

1

P (Y |X)

∂P (Y |X)

∂wj
log

P (Y )

P̃ (Y )

〉

Y,X

, (11)

∂Ψ

∂wj
= wj 〈nj〉X . (12)

We will rewrite the terms appearing in Eqs. (10) and (11) by introducing the
auxiliary variables

cj(t) =
dρ/du|u=u(t)

ρ(t)
[y(t)− ρ(t)]

∫ ∞

0

ds′ε(s′)xj(t− s′) (13)

and

Bpost(t) =

[

y(t) log
ρ(t)

ρ̄(t)
− (ρ(t)− ρ̄(t))

]

− γ

[

y(t) log
ρ̄(t)

ρ̃
− (ρ̄(t)− ρ̃)

]

, (14)
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Using the definitions in Eqs. (13) and (14), we find the derivative of the
conditional probability density that appears in Eqs. (10) and (11)

∂P (Y |X)

∂wj
= P (Y |X)

∫ T

0

cj(t
′)dt′ (15)

and

log
P (Y |X)

P (Y )
− γ log

P (Y )

P̃ (Y )
=

∫ T

0

Bpost(t)dt. (16)

As a first interpretation we may say that cj represents the causal correlation
between input and output spikes (corrected for the expected correlation); and
Bpost is a function of postsynaptic quantities, namely, the output spikes y,
current firing rate ρ via the membrane potential u, average firing rate ρ̄ and
the target firing rate ρ̃. More precisely, Bpost compares the actual output with
the expected output and, modulated by a factor γ, the expected output with
the target.

Hence, with the results from Eqs. (10) — (16) the derivative of the objec-
tive function is written in terms of averaged quantities 〈·〉Y,X as

∂L

∂wj
=

∫ T

0

dt

〈[
∫ T

0

cj(t
′)dt′

]

Bpost(t) − λwjxj(t)

〉

Y,X

. (17)

An important property of cj is that its average 〈cj〉Y |X vanishes. On the other
hand, the correlations between cj(t

′) and Bpost(t) are limited by the time scale
τAC of the auto-correlation function of the output spike train. Hence we can
limit the integration to the relevant time scales without loss of generality and
introduce an exponential cut-off factor with time constant τC > τAC

Cj(t) = lim
ε→+0

∫ t+ε

0

cj(t
′)e−(t−t′)/τC dt′. (18)

With this factor Cj, we find a batch learning rule (i.e., with expectations over
the input and output statistics on the right-hand side) of the form

∂L

∂wj
≈

∫ T

0

dt
〈

Cj(t)B
post(t)− λwjxj(t)

〉

Y,X
. (19)

Finally, for slow learning rate α and stationary input statistics, the system
becomes self-averaging (i.e. expectations can be dropped due to automatic
temporal averaging (Gerstner and Kistler 2002)) so that we arrive at the on-
line gradient learning rule

dwj

dt
= α(wj)

[

Cj(t)B
post(t)− λwjxj(t)

]

. (20)

See Fig. 2 for an illustration of the dynamics of Cj and Bpost. The last term
has the form of an ‘weight decay’ term common in artificial neural networks
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(Hertz et al. 1991) and arises from the derivative of the weight-dependent
cost term Ψ. The parameter λ is set such that dwj/dt = 0 for large enough
|tpre − tpost| in the STDP in vitro paradigm. A few steps of calculation (see
Appendix A) yield λ = 0.026. In our simulations, we take τC = 100ms for the
cut-off factor in Eq. (18).
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Figure 2: Illustration of the dynamics of Bpost (Top), Cj (Middle) and ∆w/w =
(w−winit)/winit (Bottom). We always start from an initial weight winit = 4 mV
and induce postsynaptic firing at time tpost = 0. (a) Pre-before-post timing
with tpre = −10 ms (solid line) induces a large potentiation whereas tpre =
−50 ms (dashed line) induces almost no potentiation. (b) Due to the EPSP
suppression factor, a post-before-pre timing with tpre = 10 ms (solid line)
induces a large depression whereas tpre = 50 ms (dashed line) induces a smaller
depression. The marks (circle, cross, square and diamond) correspond to the
weight change due to a single pair of pre- and postsynaptic spike after weights
have converged to their new values. Note that in Fig. 3, the corresponding
marks indicate the weight change after 60 pairs of pre- and postsynaptic spikes.

For a better understanding of the learning dynamics defined in Eq. (20),
let us look more closely at Fig. 2a. The time course ∆w/w of the potentiation
has three components: first, a negative jump at the moment of the presynaptic
spike induced by the weight decay term; second, a slow increase in the inter-
val between pre- and postsynaptic spike times induced by Cj(t)B

post(t) > 0;
third, a positive jump immediately after the postsynaptic spike induced by the
singularity in Bpost combined with a positive Cj.

As it is practically difficult to calculate ρ̄(t) = 〈ρ(t)〉X(t)|Y (t), we estimate ρ̄
by the running average of the output spikes, i.e.,

τρ̄
dρ̄est

dt
= −ρ̄est(t) + y(t) (21)
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with τρ̄ = 1min. This approximation is valid if the characteristics of the stim-
ulus and output spike trains are stationary and uncorrelated. To simulate in
vitro STDP experiments, the initial value of ρ̄est is set equal to the injected
pulse frequency. Other, more accurate estimates of ρ̄est are possible, but lead
to no qualitative change of results (data not shown). In the simulations of
Fig. 4-6, the initial synaptic strength is set to be winit = 0.4± 0.04mV.

Stimulation paradigm

Simulated STDP in vitro paradigm. For the simulations of Fig. 3, spike
timings tpre = tfj at synapse j and postsynaptic spike times tpost are imposed
with a given relative timing tpre − tpost. For the calculation of the total STDP
effect according to a typical in vitro stimulation paradigm, the pairing of pre-
and postsynaptic spikes is repeated until a total of 60 spike pairs have been
accumulated. Spike pairs are triggered at a frequency of 1Hz except for Fig.
3C where the stimulation frequency was varied.

Simulated stochastic spike arrival. In most simulations presynaptic spike
arrival was modeled as Poisson spike input either at a fixed rate (homogeneous
Poisson process) or modulated rate (inhomogeneous Poisson process).

For example for the simulations in Fig. 6, with a Gaussian profile, spike
arrival at synapse j is generated by an inhomogeneou Poisson process with
the following characteristics. During a segment of 200 ms, the rate is fixed at
νj = (νmax − ν0) exp[−0.01 ∗ d(j − k)2] + ν0 where ν0 = 1 Hz is the baseline
firing rate and d(j − k) is the difference between index j and k. The value
of k denotes the location of the maximum. The value of k was reset every
200ms to a value chosen stochastically between 1 and 100. [As indicated in
the main text, presynaptic neurons in Fig. 6 were considered to have a ring
topology which has been implemented by evaluating the difference d(j − k) as
d(j − k) = min{|j − k|, 100− |j − k|}.]

However, in the simulations for Fig. 5, input spike trains were not inde-
pendent Poisson, but we included spike-spike correlations. A correlation index
of c = 0.2 implies that between a given pair of synapses 20 percent of spikes
have identical timing. More generally, for a given value of c within a group of
synaptic inputs, 100 c percent of spike arrival times are identical at an arbitrary
pair of synapse within the group.

3 Results

The mathematical formulation of postulates A, B and C1 led to an optimal-
ity criterion L which was optimized by changing synaptic weights in uphill
direction. In order to include postulate C2, the adaptation speed was made
to depend on the current value of the synaptic weight so that plasticity was
significantly slowed down for synapses with excitatory postsynaptic potentials
(EPSPs) of amplitude less than 0.2mV (see Section 2 for details).

As in a previous study based on postulates A and B (Toyoizumi et al.
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Figure 3: The synaptic update rule of the model shares features with STDP.
(a) STDP function (percentage change of EPSP amplitude as a function of
tpre − tpost) determined using 60 pre-and-post spike-pairs injected at 1Hz. The
initial EPSP amplitudes are 4mV (dashed line) and 6mV (dotted). Marks
(circle, cross, square and diamond) correspond respectively to tpre = −50ms,
tpre = −10ms, tpre = 10ms and tpre = 50ms also depicted on Fig. 2. (b)
The percentage change in EPSP amplitude after 60 pre-and-post spike-pairs
injected at 1Hz for pre-before-post timing ((tpre − tpost) = −10ms, solid line)
and post-before-pre timing ((tpre−tpost) = +10ms, dashed line) as a function of
initial EPSP amplitude. Our model results qualitatively resemble experimental
data (see Fig. 5 in Bi and Poo, 1998).(c) Frequency dependence of the STDP
function: spike-pairs are presented at frequencies of 0.5Hz (dashed line), 1Hz
(dotted line), and 2Hz (dot-dashed line). The STDP function exhibits only a
weak sensitivity to the change in stimulation frequency. (d) STDP function for
different choices of model parameters. The extension of the synaptic depression
zone for ‘pre-after-post’ timing (tpre−tpost > 0) depends on the time scale τa of
EPSP suppression (dot-dashed line, τa = 50ms; dashed line, τa = 25ms). The
dotted line shows the STDP function in the absence of a weight-dependent cost
term Ψ. The STDP function exhibits a positive offset indicating that without
the cost term Ψ unpaired presynaptic spikes would lead to potentiation, i.e.,
a non-Hebbian form of plasticity.
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2005), the optimization of synaptic weights can be understood as a synap-
tic update rule that depends on presynaptic spike arrival, postsynaptic spike
firing, the postsynaptic membrane potential and the mean firing rate of the
postsynaptic neuron. In addition, the synaptic update rule in the present study
included a term that decreases the synaptic weight upon presynaptic spike ar-
rival by a small amount proportional to the EPSP amplitude (see Section 2
for details). This term can be traced back to the additional weight-dependent
cost term Ψ in Eq. (3) that accounts for postulate C1.

In order to study the consequences of the synaptic update rule derived from
postulates A, B, and C, we used computer simulations of a model neuron that
received presynaptic spike trains at 100 synapses. Each presynaptic spike
evoked an EPSP with exponential time course (time constant τm = 20ms). In
order to account for dendritic interaction between somatic action potentials
and postsynaptic potentials, the amplitude of EPSPs was suppressed immedi-
ately after postsynaptic spike firing (Froemke et al. 2005) and recovered with
time constant τa = 50ms (Fig. 1A). As a measure of the weight of a synapse
j we used the EPSP amplitude wj at this synapse in the absence of EPSP
suppression. With all synaptic parameters wj set to an fixed value, the model
neuron fired stochastically with a mean firing rate ρ̄ that increases with the
presynaptic spike arrival rate (Fig. 1B), has a broad interspike interval distri-
bution (Fig. 1C) and an autocorrelation function with a trough of 10-50 ms
that is due to reduced excitability immediately after a spike because of EPSP
suppression (Fig. 1D).

The learning rule exhibits STDP.

In a first set of plasticity experiments, we explored the behavior of the
model system under a simulated in vitro paradigm as used in typical STDP
experiments (Bi and Poo 1998). In order to study the influence of the pre-
and postsynaptic activity on the changes of weights as predicted by our on-line
learing rule in Eq. 20, we plotted in Fig. 2 the postsynaptic factor Bpost and
the correlation term Cj that both appear on the right-hand side of Eq. 20
together with the induced weight change ∆w/w as a function of time. Indeed,
the learning rule predicts positive weight changes when the presynaptic spike
occurs 10 ms before the postsynaptic one and negative weight changes under
reversed timing.

For a comparison with experimental results, we used sixty pairs of pre-
and postsynaptic spikes applied at a frequency of 1Hz and recorded the total
change ∆w in EPSP amplitude. The experiment is repeated with different
spike timings and the result is plotted as a function of spike timing difference
tpre − tpost. As in experiments (Markram et al. 1997; Zhang et al. 1998; Bi
and Poo 1998; Bi and Poo 2001; Sjöström et al. 2001), we find that synapses
are potentiated if presynaptic spikes occur about 10 ms before a postsynap-
tic action potential, but are depressed if the timing is reversed. Compared
to synapses with amplitudes in the range of 1 or 2 mV, synapses which are
exceptionally strong show a reduced effect of potentiation for pre-before-post
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timing, or even depression (Fig. 3A and B), in agreement with experiments
on cultured hippocampal neurons (Bi and Poo 1998). The shape of the STDP
function depends only weakly on the stimulation frequency (Fig. 3C), even
though a significant reduction of the potentiation amplitude with increasing
frequency can be observed.

In a recent experimental study (Froemke et al. 2005) a strong correlation
between the time scale of EPSP suppression (which was found to depend on
dendritic location) and the duration of the LTD part in the STDP function
were observed. Since our model neuron had no spatial structure, we artifi-
cially changed the time constant of EPSP suppression in the model equations.
We found that indeed only the LTD part of the STDP function was affected
whereas the LTP part remained unchanged (Fig. 3D).

In order to study the influence of the weight-dependent cost term Ψ in
our optimality criterion L, we systematically changed the parameter λ in Eq.
(3). For λ = 0 the weight-dependent cost term has no influence and, because
the postsynaptic firing rate is close to the desired rate, synaptic plasticity in
our model is mainly controlled by information maximization. In this case,
synapses with a resonable EPSP amplitude of one or a few millivolt are always
strengthened, even for post-before-pre timing (Fig. 3D, dashed line). This can
be intuitively understood since an increase of synaptic weight is always ben-
eficial for information transmission except if spike arrival occurs immediately
after a postsynaptic spike. In this case, the postsynaptic neuron is insen-
sitive so that no information can be transmitted. Nevertheless, information
transmission is maximal in a situation where the presynaptic spike occurs just
before the postsynaptic one. The weight-dependent cost term derived from
postulate C is essential to shift the dashed line in Fig. 3D to negative values
so as to induce synaptic depression in our STDP paradigm. The optimal value
of λ = 0.026 that ensures that for large spike timing differences |tpre − tpost|
neither potentiation nor depression occurs, has been estimated from a simple
analytical argument (see appendix A).

Both unimodal and bimodal synapse distributions are stable

Under random spike arrival with a rate of 10Hz at all 100 synapses, synaptic
weights show little variability with a typical EPSP amplitude in the range of
0.4 mV. This unspecific pattern of synapses stays stable even if 20 out of
the 100 synapses are subject to a common rate modulation between 1 and
30Hz (Fig. 4A). However, if modulation of presynaptic firing rates becomes
strong, the synapses develop rapidly a specific pattern with large values of
weights at synapses with rate-modulated spike input and weak weights at
those synapses that received input at fixed rates (synaptic specialization, see
Fig. 4A and B), making the neuron highly selective to input at one group
of synapses (input selectivity). Thus, our synaptic update rule is capable of
selecting strong features in the input, but does also allow a stable unspecific
pattern of synapses in case of weak input. This is in contrast to most other
Hebbian learning rules, where unspecific patterns of synapses are unstable so
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that synaptic weights move spontaneously towards their upper or lower bounds
(Miller et al. 1989; Miller and MacKay 1994; Gerstner et al. 1996; Kempter
et al. 1999; Song et al. 2000).

After induction of synaptic specialization by strong modulation of presy-
naptic input, we reduced the rate modulation back to the value that previously
led to an unspecific pattern of synapses. We found that the strong synapses
remained strong and weak synapses remained weak, i.e., synaptic specializa-
tion was stable against a change in the input (Fig. 4B). This result shows that
synaptic dynamics exhibits hysteresis which is an indication of bistability: for
the same input, both an unspecific pattern of synapses and synaptic specializa-
tion are stable solutions of synaptic plasticity under our learning rule. Indeed
under rate-modulation between 1 and 30 Hz for 20 out of the 100 synapses,
the objective function L shows two local maxima (Fig. 4C), a sharp maxi-
mum corresponding to synaptic specialization (mean EPSP amplitude about
0.8mV for synapses receiving rate-modulated input and less than 0.1 mV for
synapses receiving constant input) and a broader, but slightly lower maximum
where both groups of synapses have a mean EPSP amplitude in the range of
0.3-0.5mV; see appendix B for details of method. In additional simulations we
confirmed that both the unspecific pattern of synapses and the selective pat-
tern representing synaptic specialization remained stable over several hours of
continued stimulation with rate modulated input (data not shown). Bistability
of selective and unspecific synapse patterns was consistently observed for rates
modulated between 1 and 10Hz or between 1 and 30Hz, but the unspecific
synapse pattern was unstable if the rate was modulated between 1 and 50Hz
consistent with the weight-dependence of our objective function L (Fig. 4D).

Retention of synaptic memories

In order to study synaptic memory retention with our learning rule, we
induced synaptic specialization by stimulating 20 out of the 100 synapses by
correlated spike input (spike-spike correlation index c = 0.2, see Section 2 for
details). The remaining 80 synapses received uncorrelated Poisson spike input.
The mean firing rate (10Hz) was identical at all synapses. After 60 minutes
of correlated input at the group of 20 synapses the stimulus was switched
to uncorrelated spike input at the same rate. We studied how well synaptic
specialization was maintained as a function of time after induction (Fig. 5A
and B).

Synaptic specialization was defined by a bimodality index that compared
the distribution of EPSP amplitudes at synapses that received correlated input
with those receiving uncorrelated input. For each of the two groups of synapses,
we calculated the mean w̄ = 〈w〉 and the variance σ2 = 〈[wj − w̄]2〉 i.e., w̄A

and σ2
A for the group of synapses receiving correlated input and , w̄B and σ2

B

for those receiving uncorrelated input. We then approximated the two distri-
butions by Gaussian functions. The bimodality index depends on the overlap

between the two Gaussians and is given by b = 0.5
[

erf
(

w̄A−ŝ√
2σA

)

+ erf
(

ŝ−w̄B√
2σB

)]

where erf(x) = 2√
π

∫ x

0
exp(−t2)dt is the error function and ŝ is one of the two
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Figure 4: Potentiation and depression depend upon the presynaptic firing rate. 20 synapses

of group 1 receive input with common rate modulation while the 80 synapses of group 2

(synapse index 21 - 100) receive Poisson input at a constant rate of 10Hz. The spike arrival

rate in group 1 switches stochastically every 200ms between a low rate νl = 1Hz and a high

rate νh taken as a parameter. (a) Evolution of synaptic weights as a function of time for

different amplitudes of rate modulation, that is νh changes from 10Hz during the first hour

to 30 Hz, then to 50 Hz, 30 Hz, and back to 10 Hz. During the first two hours of stimulation,

an unspecific distribution of synapses remains stable even though a slight decrease of weights

in group 2 can be observed when the stimulus switches to νh = 30Hz. A specialization of the

synaptic pattern with large weights for synapses in group 1 is induced during the third hour

of stimulation and remains stable thereafter. (b) Top: Mean synaptic weights (same data

as in A) of group 1 (w̄1, solid line) and group 2 (w̄2, dashed line). Bottom: The stimulation

paradigm, νh as a function of time. Note that at νh = 30Hz (2nd and 4th hour of stimulation)

both an unspecific pattern of synapses with little difference between w̄1 and w̄2 (2nd hour,

top) and a highly specialized pattern (4th hour, top, large difference between solid and dashed

lines) are possible. (c) The value of the objective function L (average value per second of

time) in gray code as a function of the mean synaptic weight in group 1 (y-axis, w̄1) and

group 2 (x-axis, w̄2) during stimulation with νh = 30Hz. Two maxima can be perceived, i.e.,

a broad maximum for the unspecific synapse pattern (w̄2 ≈ w̄1 ≈ 0.4mV) and a pronounced

elongated maximum for the specialized synapses pattern (w̄1 ≈ 0; w̄2 ≈ 0.8mV). The dashed

line indicates a 1-dimensional section (see d) through the two-dimensional surface. (d)

Objective function L as a function of the difference w̄2 − w̄1 between the mean synaptic

weights in groups 2 and 1 along the line indicated in c. For νh = 30Hz (dashed, same data

as in c) two maxima are visible, i.e., a broad maximum at w̄2 − w̄1 ≈ 0 and a narrow, but

higher maximum corresponding to the specialized synapse pattern to the very left of the

graph. For νh = 50Hz (dotted line), the broad maximum at w̄2 − w̄1 ≈ 0 disappears and

only the specialized synapse pattern remains whereas for νh = 10Hz (solid line) the broad

maximum of the unspecific synapse pattern dominates.
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Figure 5: Synaptic memory induced by input with spike-spike correlations. (a)
Evolution of 100 synaptic weights (vertical axis) as a function of time. During
the first 60 minutes, synapses of group A (j = 1, . . . , 20) receive a Poisson
stimulation of 10 Hz with correlated spike input (c = 0.2) and those of group
B (j = 21, . . . , 100) receive uncorrelated spike input at 10 Hz. (b) Distribution
of the EPSP amplitudes across the 100 synapses after t = 5 min. (dotted line),
t = 60 min. (solid line) and t = 120 min. (dot-dashed line). The thick lines
denote group A while the blue ones group B. (c) Mean EPSP amplitude of
group A (solid line) and B (dashed line) at t = 60 min. for different values of
correlation c of the input applied to group A. (d) Bimodality index b of the two
groups of weights as a function of time. The memory induction by correlated
spike input to group B stops at t = 60min. Memory retention is studied during
the following 60 minutes. A bimodality index close to one implies as for the
case with c = 0.2 implies that synaptic memory is well retained.
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crossing points of the two Gaussians such that w̄B < ŝ < w̄A.

The two distributions (i.e., strong and weak synapses) started to separate
within the first 5 minutes, and remained well separated even after the cor-
related memory-inducing stimulus was replaced by a random stimulus (Fig.
5B).

In order to study how synaptic memory retention depended on the induc-
tion paradigm, the experiment was then repeated with different values of the
correlation index c that characterizes the spike-spike correlations during the
induction period. For correlations c < 0.1 the two synaptic distributions are
not well separated at the end of the induction period (bimodality index < 0.9),
but well separated for c ≥ 0.15 (Fig. 5C). Good separation at the end of the
induction period alone is, however, not sufficient to guarantee retention of
synaptic memory, since for the synaptic distribution induced by stimulation
with c = 0.15, specialization breaks down at t = 80 min., i.e., after only 20
minutes of memory retention (Fig. 5D). On the other hand, for c = 0.2 and
larger, synaptic memory is retained over several hours (only the first hour is
plotted in Fig. 5D).

The long duration of synaptic memory in our model can be explained by
the reduced adaptation speed of synapses with weights close to zero (postulate
C2). If weak synapses change only slowly because of reduced adaptation speed,
strong synapses must stay strong because of homeostatic processes that keep
the mean activity of the postsynaptic neuron close to a target value. Moreover,
the terms in the online learning rule derived from information maximization
favor the bimodal distribution. Reduced adaptation speed of weak synapses
could be caused by a cascade of intra-cellular biochemical processing stages
with different time constants as suggested by Fusi et al. (2005). Thus our
synaptic update rule allows for retention of synaptic memories over time scales
that are significantly longer than the memory induction time, as necessary
for any memory system. Nevertheless, synaptic memory in our model will
eventually decay if random firing of pre- and postsynaptic neurons persists,
in agreement with experimental results (Abraham et al. 2002; Zhou et al.
2003). We note that in the absence of presynaptic activity, the weights remain
unchanged since the decay of synaptic weights is conditioned on presynaptic
spike arrival; see Eq. (20).

Receptive field development

Synaptic plasticity is thought to be involved not only in memory (Hebb
1949), but also in the development of cortical circuits (Hubel and Wiesel 1962;
Katz and Shatz 1996; von der Malsburg 1973; Bienenstock et al. 1982; Miller
et al. 1989) and, possibly, cortical re-organization (Merzenich et al. 1984;
Buonomano and Merzenich 1998). To study how our synaptic update rule
would behave during development, we used a standard paradigm of input se-
lectivity (Yeung et al. 2004), which is considered to be a simplified scenario of
receptive field development. Our model neuron was stimulated by a Gaussian
firing rate profile spanned across the 100 input synapses (Fig. 6A). The center
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of the Gaussian was shifted every 200 ms to an arbitrarily chosen presynaptic
neuron. In order to avoid border effects, neuron number 100 was considered a
neighbor of neuron number 1, i.e., we can visualize the presynaptic neurons as
being located on a ring.
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Figure 6: The synaptic update rule leads to input selectivity of the postsynap-
tic neuron. (a) Gaussian firing rate profile across the 100 presynaptic neurons.
The center of the Gaussian is shifted randomly every 200 ms. Presynaptic
neurons fire stochastically and send their spikes to nine postsynaptic neurons.
(b) Evolution of synaptic weights of the nine postsynaptic neurons. Some
neurons become specialized for a certain input pattern at the early phase of
learning, others become specialized later, and the last three neurons have not
yet become specialized. Since the input spike trains are identical for all the
nine neurons, the specialization is due to noise in the spike generator of the
postsynaptic neurons. (c) Final synaptic weight values of the nine output
neurons after 1 hour of stimulus presentation. (d) The distribution of EPSP
amplitudes after 1 hour of stimulation for (top) the specialized output neurons
1, 2, . . . , 6; (middle) for non-specialized neurons 7, 8, 9; (bottom) for all nine
output neurons.

Nine postsynaptic neurons with slightly different initial values of synaptic
weights received identical input from the same set of 100 presynaptic neurons.
During one hour of stimulus presentation, six out of the nine neurons developed
synaptic specialization leading to input selectivity. The optimal stimulus for
these six neurons varies (Fig. 6B and C), so that any Gaussian stimulus at
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an arbitrary location excites at least one of the postsynaptic neurons. In
other words, the six postsynaptic neurons have developed input selectivity
with different but partially overlapping receptive fields. The distribution of
synaptic weights for the selective neurons is bimodal with a first peak for
very weak synapses (EPSP amplitudes less than 0.1 mV) and a second peak
around EPSP amplitudes of 0.6 mV (Fig. 6D); the amplitude distribution of
the unselective neurons is broader with a single peak at around 0.4mV.

The number of postsynaptic neurons showing synaptic specialization de-
pends on the total stimulation time and the strength of the stimulus. If the
stimulation time is extended to 3 hours instead of 1 hour, all postsynaptic
neurons become selective using the same stimulation parameters as before.
However, if the maximal presynaptic firing rate at the center of the Gaussian
is reduced to 40 Hz instead of 50 Hz only six out of nine are selective after
three hours of stimulation; and with a further reduction of the maximal rate
to 30 Hz only a single neuron is selective after 3 hours of stimulation (data
not shown). We hypothesize that the coexistence of unselective and selective
neurons during development could explain the broad distribution of EPSP am-
plitudes seen in some experiments (e.g. (Sjöström et al. 2001) in rat visual
cortex). For example, if we sample the synaptic distribution across all 9 post-
synaptic cells we find the distribution shown at the bottom of Fig. 6D. If the
number of unspecific neurons were higher, the relative importance of synapses
with EPSP amplitudes of less than 0.1 mV would diminish. If the number of
specialized neurons increased, the distribution would turn into a clearcut bi-
modal one which would be akin to sampling an ensemble of two-state synapses
with all-or-none potentiation on a synapse-by-synapse basis ((Petersen et al.
1998) in rat hippocampus).

4 Discussion

What can we and what can we not expect from optimality models?

Optimality models can be used to clarify concepts, but they are unable to
make specific predictions about molecular implementations. In fact, the synap-
tic update rule derived in this paper shares functional features with STDP and
classical LTP, but it is blind with respect to interesting questions such as the
role of NMDA, Kainate, endocannabinoid, or CaMKII in the induction and
maintenance of potentiation and depression (Bliss and Collingridge 1993; Bor-
tolotto et al. 2003; Frey and Morris 1997; Lisman 2003; Malenka and Nicoll
1993; Sjöström et al. 2004). If molecular mechanisms are in the focus of in-
terest, detailed ‘mechanistic’ models of synaptic plasticity (Senn et al. 2001;
Yeung et al. 2004) should be preferred. On the other hand, the mere fact that
similar forms of LTP or LTD seem to be implemented across various neural
systems by different molecular mechanisms leads us to speculate that common
functional roles of synapses are potentially more important for understanding
synaptic dynamics than the specific way that these functions are implemented.
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Ideally, optimality approaches such as the one developed in this paper
should be helpful to put seemingly diverse experimental or theoretical results
into a coherent framework. We have listed in the introduction a couple of
points, partially linked to experimental results, partially linked to earlier the-
oretical investigations. Our aim has been to connect these points and trace
them back to a small number of basic principles. Let us return to our initial
list and discuss the points in light of the results of the preceding section.

Correlations.
Hebb postulated an increase in synaptic coupling in case of repeated co-

activation of pre- and postsynaptic neurons as a useful concept for memory
storage in recurrent networks (Hebb 1949). In our optimality framework de-
fined by Eq. (3) correlation dependent learning is not imposed explicitly but
arises from the maximization of information transmission between pre- and
postsynaptic neurons. Indeed, information transmission is only possible if
there are correlations between pre- and postsynaptic neurons. Information
transmission is maximized if these correlations are increased. Gradient ascent
of the information term hence leads to a synaptic update rule that is sensi-
tive to correlations between pre- and postsynaptic neurons; see Eq. (20). An
increase of synaptic weights enhances these correlations and maximizes infor-
mation transmission. We emphasize that, in contrast to Hebb (1949) we do not
invoke memory formation and recall as a reason for correlation dependence,
but information transmission. Similar to other learning rules (Linsker 1986;
Oja 1982), the sensitivity of our update rule to correlations between pre- and
postsynaptic neurons gives the synaptic dynamics a sensitivity to correlations
in the input as demonstrated in Figs. 4 – 6.

Input selectivity.
During cortical development, cortical neurons develop input selectivity typ-

ically quantified as the width of receptive fields (Hubel and Wiesel 1962). As
illustrated in the scenario of Fig. 6, our synaptic update rule shows input
selectivity and stands hence in the research tradition of many other studies
(von der Malsburg 1973; Bienenstock et al. 1982; Miller et al. 1989). Input
selectivity in our model arises through the combination of the correlation sen-
sitivity of synapses discussed above with the homeostatic term D in Eq. (3)
(Toyoizumi et al. 2005). Since the homeostatic term keeps the mean rate of
the postsynaptic neuron close to a target rate, it leads effectively to a normal-
ization of the total synaptic input similar to the sliding threshold mechanism
in the Bienenstock-Cooper-Munro rule (Bienenstock et al. 1982). Normal-
ization of the total synaptic input through firing rate stabilization has also
been seen in previous STDP models (Song et al. 2000; Kempter et al. 1999;
Kempter et al. 2001). Its effect is similar to explicit normalization of synaptic
weights which is a well-known mechanism to induce input selectivity (von der
Malsburg 1973; Miller and MacKay 1994), but our model does not need an
explicit normalization step. So far we studied only a single or a small number
of independent postsynaptic neurons, but we expect that, as in many other
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studies, e.g., (Erwin et al. 1995; Song and Abbott 2001; Cooper et al. 2004),
our synaptic update rule would yield feature maps if applied to a network of
many weakly interacting cortical neurons.

Unimodal versus bimodal synapse distributions.
In several previous models of rate-based or spike-timing based synaptic dy-

namics, synaptic weights evolved always towards a bimodal distribution with
some synapses close to zero and others close to maximal weight (Miller et al.
1989; Miller and MacKay 1994; Kempter et al. 1999; Song and Abbott 2001;
Toyoizumi et al. 2005). Thus synapses specialize on certain features of the
input, even if the input has weak or no correlation at all which seems question-
able from a functional point of view and which disagrees with experimentally
found distributions of EPSP amplitudes in rat visual cortex (Sjöström et al.
2001). As shown in Figs. 4 — 6, an unspecific pattern of synapses with
a broad distribution of EPSP amplitudes is stable with our synaptic update
rule if correlations in the input are weak. Synaptic specialization (bimodal
distribution) develops only if synaptic inputs show a high degree of correla-
tions, either on the level of spikes or firing rates. Thus neurons only specialize
on highly significant input features, and not in response to noise. A similar
behavior was noted in two recent models on spike-timing dependent plastic-
ity (Gütig et al. 2003; Yeung et al. 2004). Going beyond those studies, we
also demonstrated stability of the specialized synapse distribution over some
time, even if the amount of correlation through rate-modulation is reduced
after induction of synaptic specialization stimulation (Fig. 4). Thus, for the
same input characteristics our model can show unimodal or bimodal distri-
bution of synaptic weight, depending on the stimulation history. Moreover,
we note that in the state of bimodal distribution, the EPSP amplitude at the
depressed synapses are so small, that in an experimental setting they could
easily remain undetected or classified as ‘silent’ synapse (Kullmann 2003). A
large proportion of silent synapses has been previously shown to be consistent
with optimal memory storage (Brunel et al. 2004). Furthermore, our results
show that in a given population of cells, neurons with specialized synapses can
coexist with others that have a broad and unspecific synapse distribution. We
speculate that these non-specialized neurons could then be recruited later for
new stimuli, as hypothesized in earlier models of neural networks (Grossberg
1987).

Synaptic memory.
In the absence of presynaptic input, synapses in our model do not change

significantly. Furthermore, our results show that even in the presence of ran-
dom pre- and postsynaptic firing activity, synaptic memories can be retained
over several hours, even though a slow decay occurs. Essential for long-term
memory maintenance under random spike arrival is the reduced adaptation
speed for small values of synaptic weights as formulated in postulate C2. This
postulate is similar in spirit to a recent theory of Fusi et al. (2005), with two
important differences. Firstly, we work with a continuum of synaptic states
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(characterized by the value of w) whereas Fusi et al. assume a cascade of a
finite number of discrete internal synaptic states where transitions are uni-
directional and characterized by different time constants (Fusi et al. 2005).
The scheme of Fusi et al. guarantees slow (i.e., not exponential) decay of
memories, whereas in our case decay is always exponential even if the time
constant is weight-dependent. Secondly, Fusi et al. use a range of different
time constants for both the potentiated and the unpotentiated state, whereas
in our model it is sufficient to have a slower time constant for the unpoten-
tiated state only. If the change of unpotentiated synapses is slow compared
to homeostatic regulation of mean firing rate, then the maintenance of the
strong synapses is given by homeostasis (and also supported by information
maximization).

The fact that our model has been formulated in terms of a continuum of
synaptic weights was for convenience only. Alternatively it is conceivable to
define a number of internal synaptic states that give rise to binary, or a small
number of, synaptic weight values (Fusi 2002; Fusi et al. 2005; Abarbanel
et al. 2005). The actual number of synaptic states is unknown with conflicting
evidence (Petersen et al. 1998; Lisman 2003).

Rate dependence.
Our results show that common rate modulation in one group of synapses

strengthens these synapses if the modulation amplitude is strong enough. In
contrast, an increase of rates to a fixed value of 40 Hz (without modulation)
in one group of synapses while another group of synapses receives background
firing at 10 Hz does not lead to a synaptic specialization, but only to a minor
readjustment of weights (data not shown). For a comparison with experi-
mental results it is important to note that rate dependence is typically mea-
sured with extracellular stimulation of presynaptic pathways. We assimilate
repeated extracelluar stimulation with a strong and common modulation of
spike arrival probability at one group of synapses (as opposed to an increased
rate of a homogeneous Poisson process). Under this interpretation, our results
are qualitatively consistent with experiments.

STDP.

Our results show that our synaptic update rule shares several features with
STDP as found in experiments (Markram et al. 1997; Bi and Poo 1998; Bi
and Poo 2001; Sjöström et al. 2001). The time scale of the potentiation
part of the STDP function depends in our model on the duration of EPSPs.
The time scale of the depression part is determined by the duration of EPSP
suppression in agreement with experiments (Froemke et al. 2005). Our model
shows that the relative importance of LTP and LTD depend on the initial
value of the synaptic weight in a way similar to that found in experiments (Bi
and Poo 1998). However, for EPSP amplitudes between 0.5 and 2 mV the
LTP part clearly dominates over LTD in our model which seems to have less
experimental support. Also, the frequency dependence of STDP in our model
is less pronounced than in experiments.
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Models of STDP have previously been formulated on a phenomenological
level (Gerstner et al. 1996; Song et al. 2000; Gerstner and Kistler 2002) or on
a molecular level (Lisman 2003; Senn et al. 2001; Yeung et al. 2004). Only
recently models derived from optimality concepts have moved into the center
of interest (Toyoizumi et al. 2005; Toyoizumi et al. 2005a; Bohte and Mozer
2005; Chechik 2003). There are important differences of the present model to
the existing ‘optimal’ models. Chechik (2003) used information maximization,
but limited his approach to static input patterns, while we consider arbitrary
inputs. Bell and Parra (2005) minimize output entropy and Bohte and Mozer
(2005) maximize spike reliability whereas we maximize the information be-
tween full input and output spike trains. None of these studies considered
optimization under homeostatic and maintenance cost constraints.

After we had introduced the homeostatic constraint in a previous study
which gave rise to a learning rule with several interesting properties (Toyoizumi
et al. 2005), we realized that this model did not exhibit properties of STDP in
an in vitro situation without some additional assumptions. Indeed, as shown
in Fig. 3D, the STDP function derived from information maximization alone
exhibits no depression in the absence of an additional weight-dependent cost
term in the optimality function. The weight-dependent cost term introduced
in this paper plays hence a crucial role in STDP since it shifts the STDP
function to more negative values.

How realistic is a weight-dependent cost term?

The weight-dependent cost term Ψ in the optimality criterion L depends
quadratically on the value of the weights of all synapses converging onto the
same postsynaptic neuron. This turns out to be equivalent to a ‘decay’ term
in the synaptic update; see last term on the right-hand side of Eq. (20). Such
decay terms are common in the theoretical literature (Bienenstock et al. 1982;
Oja 1982), but the question is whether such a decay term (leading to a slow
depression of synapses) is realistic from a biological point of view.

We emphasize that the decay term in our synaptic update rule is propor-
tional to presynaptic activity. Thus, in contrast to existing models in the
theoretical literature (Bienenstock et al. 1982; Oja 1982), a synapse which re-
ceives no input is protected against slow decay. The specific form of the ‘decay’
term considered in this paper was such that synaptic weights decreased with
each spike arrival, but presynaptic activity could also be represented in the de-
cay term by the mean firing rate rather than spike arrival, with no qualitative
changes to the results.

An important aspect of our cost term is that only synapses that have re-
cently been activiated are at risk regarding weight decay. We speculate that the
weight-dependent cost term could, in a loose sense, be related to the amount of
plasticity factors that synapses require and compete for during the first hours
of synaptic maintenance (Fonseca et al. 2004). According to the synaptic tag-
ging hypothesis (Frey and Morris 1997), only those synapses that have been
activated in the recent past compete for plasticity factors, while unpotentiated
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synapses do not suffer from decay (Fonseca et al. 2004). We emphasize that
such a link of our cost term to the competetion for plasticity factors is purely
hypothetical. Many relevant details of tagging and competition for synaptic
maintenance are omitted in our approach.

Predictions and experimental tests.
In order to achieve synaptic memory that is stable over several hours,

the reduced adaptation speed for weak synapses formulated in postulate C2

turns out to be essential. Thus an essential assumption of our model is
testable: for synapses with extremely small EPSP amplitudes, in particular
‘silent synapses’, the induction of both LTP and LTD should require stronger
stimulation or stimulation sustained over longer times, compared to synapses
that are of average strength. This aspect is distinct from other models (Gütig
et al. 2003) which postulate for weak synapses a reduced adaptation speed for
depression only, but maximal effect of potentiation. Thus, comparison of LTP
induction for silent synapses (Kullmann 2003) with that for average synapses
should allow to differentiate between the two models. In an alternative for-
mulation, synaptic memory could also be achieved by making strong synapses
resist to further changes. As an aside we note that the model of Fusi et al.
(2005) assumes a reduced speed of transition between several internal synap-
tic states so that transition would not necessarily be visible as a change in
synaptic weight.

A second test of our model concerns the pattern of synaptic weights con-
verging on the same postsynaptic neuron. Our results suggest that early in
development most neurons would show an unspecific synapse pattern, i.e., a
distribution of EPSP amplitudes with a single, but broad peak whereas later
a sizeable fraction of neurons would show a pattern of synaptic specialization
with some strong synapses and many silent ones, i.e., a bimodal distribution of
EPSP amplitudes. Ideally the effect would be seen by scanning all the synapses
of individual postsynaptic neurons; it remains to be seen if modern imaging
and staining methods will allow to do this. Alternatively, by electrophysiologi-
cal methods, distributions of synaptic strengths could be built up by averaging
over many synapses on different neurons (Sjöström et al. 2001). In this case,
our model would predict that during development the histogram of EPSP am-
plitudes would change in two ways (Fig. 6D): (i) the number of silent synapses
increases so that the amplitude of the sharp peak at small EPSP amplitude
grows; and (ii) the location of the second, broader, peak shifts to larger values
of the EPSP amplitudes. Furthermore, and in contrast to other models where
the unimodal distribution is unstable, the transition to a bimodal distribution
depends in our model on the stimulation paradigm.

Limitations and extensions

We would like to emphasize that properties of our synaptic update rules
have so far only been tested for single neurons in an unsupervised learning
paradigm. Extensions are possible in several directions. Firstly, instead of
single neurons, a large recurrent network could be considered. This could on
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one side further our understanding of the model properties in the context of
cortical map development (Erwin et al. 1995), on the other side scrutinize
the properties of the synaptic update rule as a functional memory in recurrent
networks (Amit and Fusi 1994). Secondly, instead of unsupervised learning
where the synaptic update rule treats all stimuli alike whether they are be-
haviorally relevant or not, a reward-based learning scheme could be considered
(Dayan and Abbott 2001; Seung 2003). Behaviorally relevant situations can be
taken into account by optimizing reward instead of information transmission
(Schultz et al. 1997).
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A Determination of the Parameter λ

The parameter λ is set to give ∆wj = 0 for large enough |tpre − tpost| in an
simulated STDP in vitro paradigm. In order to find the appropriate value of
λ, we separately consider the effects of a presynaptic spike and a postsynaptic
one - which is possible since they are assumed to occur at a large temporal
distance. Since a postsynaptic spike alone does not change synaptic strength
(Cj(t) = 0, always), we choose a λ that gives no synaptic change when a

presynaptic spike alone is induced. For a given presynaptic spike at tf
j , we

have

Cj(t) = −g

∫ t

0

ε(t′ − tfj )e
−(t−t′)/τmdt′

= −g
τCτm

τC − τm

[

e−(t−tfj )/τC − e−(t−tfj )/τm

]

. (22)

Since ρ̃ ≈ ρr, and ρ̄ ≈ ρr in this in vitro setting, the factor Bpost in Eq. (14)
is approximated as

Bpost(t) ≈ −wjge−(t−tfj )/τm . (23)

Hence, we find the effect of a presynaptic spike as

∆w =

∫ T

0

dwj

dt
dt = wjg

2 τCτm

τC − τm

[

τCτm

τC + τm
−

τm

2

]

− λwj. (24)

The condition of no synaptic change gives λ = g2 τmτC

τC−τm

(

τmτC

τm+τC
− τm

2

)

. We

used this λ in the numerical code.
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B Weight Dependent Evaluation of the Opti-

mality Criterion

In Fig. 4 C and D the optimality criterion has been evaluated as a function
of some artifical weight distribution. Specifically, values of synaptic weights
have been chosen stochastically from two Gaussian distributions with mean
w̄1 and standard deviation σ1 for group 1 and w̄2 and σ2 for group 2. In order
to account for differences in standard deviations due to the weight-dependent
update rate α(w), we chose σ(w̄) = 0.1mV·w̄4/(w4

s+w̄4) which gives a variance
of synaptic weights in both groups which is consistent with the variance seen
in Fig. 4A.

For a fixed set of synaptic weight values, the network is simulated during
a trial time of 30 minutes while the synaptic updated rule has been turned off
and the objective function L defined in Eq. (3) is evaluated using ρ̄est from
Eq. (21). The result is divided by the trial time t and plotted in Fig. 4 C and D
in units of s−1. The mesh size of mean synaptic strength is 0.04 mV. The one
dimensional plot in Fig. 4 D is taken along the direction w̄2 = 0.8 mV − w̄1.
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