next up previous contents index
Next: Index Up: Spiking Neuron Models Single Previous: Summary

Bibliography

Abbott, L. F. (1991).
Realistic synaptic inputs for model neural networks.
Network, 2:245-258.

Abbott, L. F. (1994).
Decoding neuronal firing and modeling neural networks.
Quart. Rev. Biophys., 27:291-331.

Abbott, L. F. (2000).
Synaptic plastictiy - taming the beast.
Nature Neurosci., 3:1178-1183.

Abbott, L. F. and Blum, K. I. (1996).
Functional significance of long-term potentiation for sequence learning and prediction.
Cereb. Cortex, 6:406-416.

Abbott, L. F., Fahri, E., and Gutmann, S. (1991).
The path integral for dendritic trees.
Biol. Cybern., 66:49-60.

Abbott, L. F. and Kepler, T. B. (1990).
Model neurons: from Hodgkin-Huxley to Hopfield.
In Garrido, L., editor, Statistical Mechanics of Neural Networks. Springer, Berlin.

Abbott, L. F. and van Vreeswijk, C. (1993).
Asynchronous states in a network of pulse-coupled oscillators.
Phys. Rev. E, 48:1483-1490.

Abeles, M. (1982).
Local cortical circuits.
Springer-Verlag, Berlin Heidelberg New York.

Abeles, M. (1991).
Corticonics.
Cambridge Univ. Press, Cambridge.

Abeles, M. (1994).
Firing rates and well-timed events.
In Domany, E., Schulten, K., and van Hemmen, J. L., editors, Models of Neural Networks II, chapter 3. Springer, New York.

Abeles, M., Bergman, H., Margalit, E., and Vaadia, E. (1993).
Spatiotemporal firing patterns in the frontal cortex of behaving monkeys.
J. Neurophysiol., 70:1629-1638.

Adrian, E. D. (1926).
The impulses produced by sensory nerve endings.
J. Physiol. (Lond.), 61:49-72.

Adrian, E. D. (1928).
The basis of sensation.
W. W. Norton, New York.

Aertsen, A. and Arndt, M. (1993).
Response synchronization in the visual cortex.
Curr. Opin. Neurobiol., 3:586-594.

Aizenman, C. D. and Linden, D. J. (1999).
Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum.
J. Neurophysiol., 82:1697-1709.

Amari, S. (1972).
Characteristics of random nets of analog neuron-like elements.
IEEE trans. syst. man cybern., 2:643-657.

Amari, S. (1974).
A method of statistical neurodynamics.
Kybernetik, 14:201-215.

Amari, S. (1977a).
Dynamics of pattern formation in lateral-inhibition type neural fields.
Biol. Cybern., 27:77-87.

Amari, S. I. (1977b).
Dynamics of pattern formation in lateral-inhibition type neural fields.
Biol. Cybern., 27:77-87.

Amit, D. J. and Brunel, N. (1997a).
Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex.
Cereb. Cortex, 7:237-252.

Amit, D. J. and Brunel, N. (1997b).
A model of spontaneous activity and local delay activity during delay periods in the cerebral cortex.
Cerebral Cortex, 7:237-252.

Anderson, J. A. and Rosenfeld, E., editors (1988).
Neurocomputing: Foundations of research.
MIT-Press, Cambridge Mass.

Artola, A., Bröcher, S., and Singer, W. (1990).
Different voltage dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex.
Nature, 347:69-72.

Artola, A. and Singer, W. (1993).
Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation.
Trends Neurosci., 16(11):480-487.

Ash, R. (1990).
Information Theory.
Dover, New York.

Bair, W. and Koch, C. (1996).
Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey.
Neural Comput., 8:1185-1202.

Bair, W., Koch, C., Newsome, W., and Britten, K. (1994).
Power spectrum analysis of MT neurons in the behaving monkey.
J. Neurosci., 14:2870-2892.

Bartlett, M. S. (1963).
The spectral analysis of point processes.
J. R. Statist. Soc. B, 25:264-296.

Bauer, H. U. and Pawelzik, K. (1993).
Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly.
Physica D, 69:380-393.

Bell, C., Bodznick, D., Montgomery, J., and Bastian, J. (1997a).
The generation and subtraction of sensory expectations within cerebellar-like structures.
Brain. Beh. Evol., 50:17-31.
suppl. I.

Bell, C., Han, V., Sugawara, Y., and Grant, K. (1997b).
Synaptic plasticity in a cerebellum-like structure depends on temporal order.
Nature, 387:278-281.

Bell, C. C. and Kawasaki, T. (1972).
Relations among climbing fiber responses of nearby Purkinje cells.
J. Neurophysiol., 35:155-169.

Ben Arous, G. and Guionnet, A. (1995).
Large deviations for langevin spin glass dynamics.
Probability Theory and Related Fields, 102:455-509.

Ben-Yishai, R., Lev Bar-Or, R., and Sompolinsky, H. (1995).
Theory of orientation tuning in visual cortex.
Proc. Natl. Acad. Sci. USA, 92:3844-3848.

Berry, M. J. and Meister, M. (1998).
Refractoriness and neural precision.
J. Neurosci., 18:2200-2211.

Berry, M. J., Warland, D. K., and Meister, M. (1997).
The structure and precision of retinal spike trains.
Proc. Natl. Acad. Sci. USA, 94:5411-5416.

Bethge, M., Pawelzik, K., Rothenstein, R., and Tsodyks, M. (2001).
Noise as a signal for neuronal populations.
Phys. Rev. Lett., xx:xx.

Bi, G. and Poo, M. (1998).
Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
J. Neurosci., 18:10464-10472.

Bi, G. and Poo, M. (2001).
Synaptic modification of correlated activity: Hebb's postulate revisited.
Ann. Rev. Neurosci., 24:139-166.

Bi, G. Q. and Poo, M. M. (1999).
Distributed synaptic modification in neural networks induced by patterned stimulation.
Nature, 401:792-796.

Bialek, W. and Rieke, F. (1992).
Reliability and information transmission in spiking neurons.
Trends Neurosci., 15(11):428-433.

Bialek, W., Rieke, F., de Ruyter van Stevenick, R. R., and Warland, D. (1991).
Reading a neural code.
Science, 252:1854-1857.

Bienenstock, E. L., Cooper, L. N., and Munroe, P. W. (1982).
Theory of the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex.
J. Neurosci., 2:32-48.
reprinted in Anderson and Rosenfeld, 1990.

Billock, V. A. (1997).
Very short-term visual memory via reverberation: a role for the cortico-thalamic excitatory circuit in temporal filling-in during blinks and saccades?
Vision Res., 37:949-953.

Bindman, L., Christofi, G., Murphy, K., and Nowicky, A. (1991).
Long-term potentiation (ltp) and depression (ltd) in the neocortex and hippocampus: an overview.
In TW, S., editor, Aspects of synaptic transmission., volume 1, pages 3-25, London. Taylor Francis.

Bliss, T. V. P. and Collingridge, G. L. (1993).
A synaptic model of memory: long-term potentiation in the hippocampus.
Nature, 361:31-39.

Bliss, T. V. P. and Gardner-Medwin, A. R. (1973).
Long-lasting potentation of synaptic transmission in the dendate area of unanaesthetized rabbit following stimulation of the perforant path.
J. Physiol., 232:357-374.

Bliss, T. V. P. and Lomo, T. (1973).
Long-lasting potentation of synaptic transmission in the dendate area of anaesthetized rabbit following stimulation of the perforant path.
J. Physiol., 232:551-356.

Bose, A., Kopell, N., and Terman, D. (2000).
Almost-synchronous solutions for mutually coupled excitatory neurons.
Physica D, 140:69-94.

Bower, J. M. and Beeman, D. (1995).
The Book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System.
Springer, New York.

Bressloff, P. C. (1999).
Synaptically generated wave propagation in excitable neural media.
Phys. Rev. Lett., 82:2979-2982.

Bressloff, P. C. and Taylor, J. G. (1994).
Dynamics of compartmental model neurons.
Neural Networks, 7:1153-1165.

Brillinger, D. R. (1988).
Maximum likelihood analysis of spike trains of interacting nerve cells.
Biol. Cybern., 59:189-200.

Brillinger, D. R. (1992).
Nerve cell spike train data analysis: a progressiion of thechniques.
J. Am. Statist. Assoc., 87:260-271.

Brillinger, D. R. and Segundo, J. P. (1979).
Empirical examination of the threshold model of neuronal firing.
Biol. Cybern., 35:213-220.

Brown, J., Bullock, D., and Grossberg, S. (1999).
How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues.
J. Neurosci., 19:10502-11.

Brown, T. H., Ganong, A. H., Kairiss, E. W., Keenan, C. L., and Kelso, S. R. (1989).
Long-term potentiation in two synaptic systems of the hippocampal brain slice.
In JH, B. and WO, B., editors, Neural models of plasticity., pages 266-306. Academic Press, San Diego.

Brown, T. H., Zador, A. M., Mainen, Z. F., and Claiborne, B. J. (1991).
Hebbian modifications in hippocampal neurons.
In Baudry, M. and Davis, J. L., editors, Long-term potentiation., pages 357-389. MIT Press, Cambridge, London.

Brunel, N. (2000).
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
J. Comput. Neurosci., 8:183-208.

Brunel, N., Chance, F., Fourcaud, N., and Abbott, L. F. (2001).
Effects of synaptic noise and filtering on the frequency response of spiking neurons.
Phys. Rev. Lett., 86:2186-2189.

Brunel, N. and Hakim, V. (1999).
Fast global oscillations in networks of integrate-and-fire neurons with low firing rates.
Neural Comput., 11:1621-1671.

Bryant, H. L. and Segundo, J. P. (1976).
Spike initiation by transmembrane current: a white-noise analysis.
J. Physiol. (Lond.), 260:279-314.

Buck, J. and Buck, E. (1976).
Synchronous fireflies.
Sci. Am., 234:74-85.

Bugmann, G., Christodoulou, C., and Taylor, J. G. (1997).
Role of temporal integration and fluctuation detection in the highly irregular firing of leaky integrator neuron model with partial reset.
Neural Comput., 9:985-1000.

Burkitt, A. N. and Clark, G. M. (1999).
Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output.
Neural Comput., 11:871-901.

Byrne, J. H. and Berry, W. O. (1989).
Neural Models of Plasticity.
Academic Press, San Diego.

Calvin, W. and Stevens, C. F. (1968).
Synaptic noise and other sources of randomness in motoneuron interspike intervals.
J. Neurophysiol., 31:574-587.

Capocelli, R. M. and Ricciardi, L. M. (1971).
Diffusion approximation and first passage time problem for a neuron model.
Kybernetik, 8:214-223.

Carpenter, G. and Grossberg, S. (1987).
Art 2: Self-organization of stable category recognition codes for analog input patterns.
Appl. Optics, 26:4919-4930.

Carr, C. E. (1993).
Processing of temporal information in the brain.
Annu. Rev. Neurosci., 16:223-243.

Carr, C. E. (1995).
The development of nucleus laminaris in the barn owl.
In Manley, G. A., Klump, G. M., Köppl, C., Fastl, H., and Oeckinghaus, H., editors, Advances in Hearing Research, pages 24-30, Singapure. World Scientific.

Carr, C. E. and Konishi, M. (1988).
Axonal delay lines for measurement in the owl's brainstem.
Proc. Natl. Acad. Sci. USA, 85:8311-8315.

Carr, C. E. and Konishi, M. (1990).
A circuit for detection of interaural time differences in the brain stem of the barn owl.
J. Neurosci., 10:3227-3246.

Cessac, B., Doyon, B., Quoy, M., and Samuelides, M. (1994).
Mean-field equations, bifurcation map and route to chaos in discrete time neural networks.
Physica D, 74:24-44.

Chow, C. C. (1998).
Phase-locking in weakly heterogeneous neuronal networks.
Physica D, 118:343-370.

Chow, C. C. and Kopell, N. (2000).
Dynamics of spiking neurons with electrical coupling.
Neural Comput., 12:1643-1678.

Chow, C. C. and White, J. (1996).
Spontaneous action potential fluctuations due to channel fluctuations.
Bioph. J., 71:3013-3021.

Collingridge, G. L., Kehl, S. J., and McLennan, H. (1983).
Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus.
J. Physiol., 334:33-46.

Collins, J. J., Chow, C. C., Capela, A. C., and Imhoff, T. T. (1996).
Aperiodic stochastic resonance.
Phys. Rev. E, 54:5575-5584.

Connor, J. A., Walter, D., and McKown, R. (1977).
Neural repetitive firing - modifications of the hodgkin-huxley axon suggested by experimental results from crustacean axons.
Biophys. J., 18:81-102.

Connors, B. W. and Gutnick, M. J. (1990).
Intrinsic firing patterns of diverse cortical neurons.
Trends Neurosci., 13:99-104.

Cordo, P., Inglis, J. T., Verschueren, S., andD. M. Merfeld, J. J. C., and Rosenblum, S. (1996).
Noise in human muscle spindels.
Nature, 383:769-770.

Cover, T. M. and Thomas, J. A. (1991).
Elements of Information Theory.
Wiley, New York.

Cox, D. R. (1955).
Some statistical methods connected with series of events.
J. R. statist. Soc. B, 17:129-164.

Cox, D. R. (1962).
Renewal theory.
Mathuen, London.

Cox, D. R. and Lewis, P. A. W. (1966).
The statistical analysis of series of events.
Methuen, London.

Crepel, F. (1982).
Regression of functional synapses in the immature mammalian cerebellum.
Trends Neurosci., 5:266-269.

Crisanti, A. and Sompolinsky, H. (1988).
Dynamics of spin systems with randomly asymmetric bonds: Ising spins and Glauber dynamics.
Phys. Rev. A, 37:4865-4874.

Cronin, J. (1987).
Mathematical aspects of Hodgkin-Huxley theory.
Cambridge University Press, Cambridge.

Daniel, H., Blond, O., Jaillard, D., and Crepel, F. (1996).
Synaptic plasticity in the cerebellum.
In Fazeli, M. S. and Collingridge, G. L., editors, Cortical Plasticity, LTP and LTD, chapter 10. BIOS Scientific Publishers Ltd., Oxford.

Daniel, H., Levenes, C., and Crépel, F. (1998).
Cellular mechanisms of cerebellar LTD.
Trends Neurosci., 21:401-407.

de Boer, E. and Kuyper, P. (1968).
Triggered correlation.
IEEE Trans. Biomed. Eng., 15:169-179.

de Ruyter van Stevenick, R. R. and Bialek, W. (1988).
Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences.
Proc. R. Soc. B, 234:379-414.

de Ruyter van Steveninck, R. R., Lowen, G. D., Strong, S. P., Koberle, R., and Bialek, W. (1997).
Reproducibility and variability in neural spike trains.
Science, 275:1805.

De Zeeuw, C. I., Simpson, J. I., Hoogenraad, C. C., Galjart, N., Koekkoek, S. K. E., and Ruigrok, T. J. H. (1998).
Microcircuitry and function of the inferior olive.
Trends Neurosci., 21:391-400.

DeAngelis, G. C., Ohzwaw, I., and Freeman, R. D. (1995).
Receptive-field dynamics in the central visual pathways.
Trends Neurosci., 18:451-458.

Debanne, D., Gähwiler, B. H., and Thompson, S. M. (1994).
Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat Hippocampus in vitro.
Proc. Natl. Acad. Sci. USA, 91:1148-1152.

Debanne, D., Gähwiler, B. H., and Thompson, S. M. (1998).
Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures.
J. Physiol., 507:237-247.

deCharms, R. C. and Merzenich, M. M. (1996).
Primary cortical representation of sounds by the coordination of action-potential timing.
Nature, 381:610-613.

Derrida, B., Gardner, E., and Zippelius, A. (1987).
An exactly solvable asymmetric neural network model.
Europhys. Lett., 2:167-173.

Desmaison, D., Vincent, J.-D., and Lledo, P.-M. (1999).
Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons.
J. Neurosci., 19:10727-10737.

Destexhe, A. and Pare, D. (1999).
Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.
J. Neurophysiol., 81:1531-1547.

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1999).
Stable propagation of synchronous spiking in cortical neural networks.
Nature, 402:529-533.

Douglass, J. K., Wilkens, L., Pantazelou, E., and Moss, F. (1993).
Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance.
Nature, 365:337-340.

Dudek, S. M. and Bear, M. F. (1992).
Homosynaptic long-term depression in area ca1 of hippocampus and effects of n-methyl-d-aspartate receptor blockade.
Proc. Natl. Acad. Sci. USA, 89:4363-4367.

Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and Reitboeck, H. J. (1988).
Coherent oscillations: A mechanism of feature linking in the visual cortex?
Biol. Cybern., 60:121-130.

Eckhorn, R. and Brosch, M. (1993).
Synchronous oscillatory activities between areas 17 and 18 in the cat's visual cortex.
J. Neurophysiol.
in press.

Eckhorn, R., Krause, F., and Nelson, J. L. (1993).
The rf-cinematogram: a cross-correlation technique for mapping several visual fields at once.
Biol. Cybern., 69:37-55.

Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P. (1990).
Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex.
Neural Comput., 2:293-307.

Edwards, B. E. and Wakefield, G. H. (1993).
The spectral shaping of neural discharges by refractory effects.
J. Acoust. Soc. Am., 93:3553-3564.

Egger, V., Feldmeyer, D., and Sakmann, B. (1999).
Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in barrel cortex.
Nature Neurosci., 2:1098-1105.

Eggert, J. and van Hemmen, J. L. (2001).
Modeling neuronal assemblies: theory and implementation.
Neural Computation, 13:1923-1974.

Ekeberg, O., Wallen, P., Lansner, A., Traven, H., Brodin, L., and Grillner, S. (1991).
A computer based model for realistic simulations of neural networks.
Biol. Cybern., 65:81-90.

Ellias, S. A. and Grossberg, S. (1975).
Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks.
Biol. Cybern., 20:69-98.

Engel, A. K., König, P., Kreiter, A. K., and Singer, W. (1991a).
Interhemispheric synchronization of oscillatory neural responses in cat visual cortex.
Science, 252:1177-1179.

Engel, A. K., König, P., and Singer, W. (1991b).
Direct physiological evidence for scene segmentation by temporal coding.
Proc. Natl. Acad. Sci. USA, 88:9136-9140.

Erisir, A., Lau, D., Rudy, B., and Leonard, C. S. (1999).
Specific k+ channels are required to sustain high frequency firing in fast-spiking neocortical interneurons.
J. Neurophysiol., 82:2476-2489.

Ermentrout, G. B. (1996).
Type i membranes, phase resetting curves, and synchrony.
Neural Comput., 8:979-1001.

Ermentrout, G. B. and Cowan, J. D. (1979).
A mathematical theory of visual hallucination patterns.
Biol. Cybern., 34:137-150.

Ermentrout, G. B. and Kopell, N. (1984).
Frequency plateaus in a chain of weakly coupled oscillators.
SIAM J. Math. Anal., 15:215-237.

Ermentrout, G. B. and Kopell, N. (1986).
Parabolic bursting in an excitable system coupled with a slow oscillation.
SIAM J. Appl. Math., 46:233-253.

Ermentrout, G. B., Pascal, M., and Gutkin, B. (2001).
The effects of spike frequency adaptation and negative feedback on the synchronization of neuronal oscillators.
Neural Comput., 13:1285-1310.

Ernst, U., Pawelzik, K., and Geisel, T. (1995).
Synchronization induced by temporal delays in pulse-coupled oscillators.
Phys. Rev. Lett., 74:1570-1573.

Erwin, E., Obermayer, K., and Schulten, K. (1995).
Models of orientation and ocular dominance columns in the visual cortex: a critcal comparison.
Neural Comput., 7:425-468.

Eurich, C. W., Pawelzik, K., Ernst, U., Cowan, J. D., and Milton, J. G. (1999).
Dynamics of self-organized delay adaption.
Phys. Rev. Lett., 82:1594-1597.

Feldman, J. L. and Cowan, J. D. (1975).
Large-scale activity in neural nets i: Theory with application to motoneuron pool responses.
Biol. Cybern., 17:29-38.

Feng, J. (2001).
Is the integrate-and-fire model good enough - a review.
Neural Comput., 13:xx.

Fetz, E. E. and Gustafsson, B. (1983).
Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones.
J. Physiol., 341:387-410.

Fiala, J., Grossberg, S., and Bullock, D. (1996).
Metabotropic glutamate receptor activation in cerebellar purkinje cells as a substrate for adaptive timing of the classically conditioned eye-blink reflex.
J. Neurosci., 16:3760-3774.

FitzHugh, R. (1961).
Impulses and physiological states in models of nerve membrane.
Biophys. J., 1:445-466.

French, A. S. and Stein, R. B. (1970).
A flexible neural analog using integrated circuits.
IEEE trans. biomed. eng., 17(3):248-253.

Fuortes, M. G. F. and Mantegazzini, F. (1962).
Interpretation of the repetitive firing of nerve cells.
J. Gen. Physiol., 45:1163-1179.

Fusi, S., Del Giudice, P., and Amit, D. J. (2000).
Neurophysiology of a vlsi spiking neural network: Lann21.
In Proceedings of IJCNN2000.

Fusi, S. and Mattia, M. (1999).
Collective behavior of networks with linear (vlsi) integrate and fire neurons.
Neural Comput., 11:633-652.

Gabbiani, F. and Koch, C. (1998).
Principles of spike train analysis.
In Koch, C. and Segev, I., editors, Methods in Neuronal Modeling, chapter 9, pages 312-360. MIT press, 2nd edition.

Gabbiani, F., Midtgaard, J., and Knoepfl, T. (1994).
Synaptic integration in a model of cerebellar granule cells.
J. Neurophysiol., 72:999-1009.
Corrigenda have been published in J. Neurophysiol. (1996) 75(6), without covering, however, all typing errors.

Gamble, E. and Koch, C. (1987).
The dynamics of free calcium in dendritic spines in response to repetitive synaptic input.
Science, 236:1311-1315.

Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F. (1998).
Stochastic resonance.
Rev. Mod. Phys., 70:223-287.

Geisler, C. D. and Goldberg, J. M. (1966).
A stochastic model of repetitive activity of neurons.
Biophys. J., 6:53-69.

Georgopoulos, A. P., Schwartz, A., and Kettner, R. E. (1986).
Neuronal populations coding of movement direction.
Science, 233:1416-1419.

Gerstein, G. L. and Perkel, D. H. (1972).
Mutual temporal relations among neuronal spike trains.
Biophys. J., 12:453-473.

Gerstner, W. (1995).
Time structure of the activity in neural network models.
Phys. Rev. E, 51:738-758.

Gerstner, W. (1998).
Spiking neurons.
In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 1, pages 3-53. MIT-Press.

Gerstner, W. (2000a).
Population dynamics of spiking neurons: fast transients, asynchronous states and locking.
Neural Comput., 12:43-89.

Gerstner, W. (2000b).
Population dynamics of spiking neurons: fast transients, asynchronous states, and locking.
Neural Comput., 12:43-89.

Gerstner, W. and Abbott, L. F. (1997).
Learning navigational maps through potentiation and modulation of hippocampal place cells.
J. Comput. Neurosci., 4:79-94.

Gerstner, W., Kempter, R., and van Hemmen, J. L. (1998).
Hebbian learning of pulse timing in the barn owl auditory system.
In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 14, pages 353-377. MIT-Press.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996a).
A neuronal learning rule for sub-millisecond temporal coding.
Nature, 386:76-78.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1997).
A developmental learning rule for coincidence tuning in the barn owl auditory system.
In Bower, J., editor, Computational Neuroscience: trends in research 1997, pages 665-669. Plenum Press, New York.

Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993a).
A biologically motivated and analytically soluble model of collective oscillations in the cortex: I. theory of weak locking.
Biol. Cybern., 68:363-374.

Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993b).
Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns.
Biol. Cybern., 69:503-515.

Gerstner, W. and van Hemmen, J. L. (1992).
Associative memory in a network of `spiking' neurons.
Network, 3:139-164.

Gerstner, W. and van Hemmen, J. L. (1993).
Coherence and incoherence in a globally coupled ensemble of pulse emitting units.
Phys. Rev. Lett., 71:312-315.

Gerstner, W. and van Hemmen, J. L. (1994).
Coding and information processing in neural networks.
In Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of Neural Networks II. Springer, New York.

Gerstner, W., van Hemmen, J. L., and Cowan, J. D. (1996b).
What matters in neuronal locking.
Neural Comput., 8:1653-1676.

Gestri, G. (1978).
Dynamics of a model for the variability of the interspike intervals in a retinal neuron.
Biol. Cybern., 31:97-98.

Gewaltig, M.-O. (2000).
Evolution of synchronous spike volleys in cortical networks - Network simulations and continuous probabilistic models.
Shaker Verlag, Aachen, Germany.
PhD thesis.

Giorno, V., Nobile, A. G., and M.Ricciardi, L. (1992).
Instantaneous return processes and neuronal firings.
In Trappl, R., editor, Cybernetics and Systems Research, Vol 1., pages 829-236. World Scientific Press.

Gluss, B. (1967).
A model of neuron firing with exponential decay of potential resulting in diffusion equations for the probability density.
Bull. Math. Biophys., 29:233-243.

Gold, J. I. and Bear, M. F. (1994).
A model of dendritic spike Ca2+ concentration exploring possible basis for sliding synaptic modification threshold.
Proc. Natl. Acad. Sci. USA, 91:3941-3945.

Goldberg, J. M., Adrian, H. O., and Smith, F. D. (1964).
Response of neurons of the superior olivary complex of the cat to acoustic stimuli of long duration.
J. Neurophysiol., pages 706-749.

Golomb, D. and Ermentrout, G. B. (2001).
Bistability in pulse propagation in networks of excitatory and inhibitory populations.
Physical Review Letters, 86:4179-4182.

Golomb, D., Hansel, D., Shraiman, B., and Sompolinsky, H. (1992).
Clustering in globally coupled phase oscillators.
Phys. Rev. A, 45:3516-3530.

Golomb, D. and Rinzel, J. (1994).
Clustering in globally coupled inhibitory neurons.
Physica D, 72:259-282.

Gray, C. M., König, P., Engel, A. K., and Singer, W. (1989).
Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.
Nature, 338:334-337.

Gray, C. M. and Singer, W. (1989).
Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.
Proc. Natl. Acad. Sci. USA, 86:1698-1702.

Grossberg, S. (1976).
Adaptive pattern classification and universal recoding i: Parallel development and coding of neuronal feature detectors.
Biol. Cybern., 23:121-134.
reprinted in Anderson and Rosenfeld, 1990.

Grossberg, S. (1987).
The adaptive brain I.
Elsevier.

Gustafsson, B., Wigstrom, H., Abraham, W. C., and Huang, Y.-Y. (1987).
Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus.
J. Neurosci., 7:774-780.

Häfliger, P., Mahowald, M., and Watts, L. (1997).
A spike based learning neuron in analog vlsi.
In Mozer, M. C., Jordan, M. I., and Petsche, T., editors, Advances in Neural Information Processing Systems, volume 9, pages 692-698. The MIT Press.

Hale, J. and Koçak, H. (1991).
Dynamics and Bifurcations.
Springer, New York.

Hansel, D. and Mato, G. (2001).
Existence and stability of persistent states in large neuronal networks.
Phys. Rev. Lett., 86:4175-4178.

Hansel, D., Mato, G., and Meunier, C. (1995).
Synchrony in excitatory neural networks.
Neural Comput., 7:307-337.

Hansel, D. and Sompolinsky, H. (1998).
Modeling feature selectivity in local cortical circuits.
In Koch, C. and Segev, I., editors, Methods in Neuronal Modeling. MIT Press, Cambridge MA.

Haykin, S. (1994).
Neural Networks.
Prentice Hall, Upper Saddle River, NJ.

Hebb, D. O. (1949).
The organization of behavior.
Wiley, New York.

Heiligenberg, W. (1991).
Neural Nets in Electric Fish.
MIT Press, Cambridge.

Herrmann, A. and Gerstner, W. (2001a).
Noise and the psth response to current transients: I. General theory and application to the integrate-and-fire neuron.
J. Comput. Neurosci., 11:to appear.

Herrmann, A. and Gerstner, W. (2001b).
Noise and the psth response to current transients II. Iintegrate-and-fire model with slow recovery and application to motoneuron data.
J. Comput. Neurosci., 11:to appear.

Hertz, J., Krogh, A., and Palmer, R. G. (1991).
Introduction to the theory of neural computation.
Addison-Wesley, Redwood City CA.

Hertz, J. and Prugel-Bennet, A. (1996).
Learning short synfire chains by self-organization.
Network, 7:357-363.

Herz, A. V. M., Sulzer, B., Kühn, R., and van Hemmen, J. L. (1988).
The Hebb rule: Representation of static and dynamic objects in neural nets.
Europhys. Lett., 7:663-669.

Herz, A. V. M., Sulzer, B., Kühn, R., and van Hemmen, J. L. (1989).
Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets.
Biol. Cybern., 60:457-467.

Hessler, N. A., Shirke, A. M., and Malinow, R. (1993).
The probability of transmitter release at a mammalian central synapse.
Nature, 366:569-572.

Hill, A. V. (1936).
Excitation and accomodation in nerve.
Proc. R. Soc. B, 119:305-355.

Hille, B. (1992).
Ionic channels of excitable membranes.
Sinauer Associates, Sunderland, Mass., 2nd edition.

Ho, N. and Destexhe, A. (2000).
Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons.
J. Neurophysiol., 84:1488-1496.

Hodgkin, A. L. and Huxley, A. F. (1952).
A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes.
J. Physiol. (Lond.), 117:500-544.

Holden, A. V. (1976).
Models of the stochastic activity of neurons, volume 12 of Lecture notes in Biomathematics.
Springer, Berlin Heidelberg New York.

Holmes, W. R. and Levy, W. B. (1990).
Insights into associative long-term potentiation from computational models of nmda receptor-mediated calcium influx and intracellular calcium concentration changes.
J. Neurophysiol., 63:1148-1168.

Hopfield, J. J. (1995).
Pattern recognition computation using action potential timing for stimulus representation.
Nature, 376:33-36.

Hopfield, J. J. and Herz, A. V. M. (1995).
Rapid local synchronization of action potentials: towards computation with coupled integrate-and-fire networks.
Proc. Natl. Acad. Sci. USA, 92:6655-6662.

Hoppensteadt, F. C. and Izhikevich, E. M. (1997).
Weakly connected neural networks.
Springer.

Horn, D. and Usher, M. (1989).
Neural networks with dynamical thresholds.
Phys. Rev. A, 40:1036-1040.

Horn, R. A. and Johnson, C. R. (1985).
Matrix analysis.
Cambridge University Press, Cambridge, UK.

Hubel, D. H. (1988).
Eye, brain, and vision.
W. H. Freeman, New York.

Hubel, D. H. (1995).
Eye, Brain, and Vision.
Scientific American Library. W. H. Freeman, ???

Hubel, D. H. and Wiesel, T. N. (1959).
Receptive fields of single neurons in the cat's striate cortex.
J. Physiol. (Lond.), 148:574-591.

Hubel, D. H. and Wiesel, T. N. (1962).
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J. Physiol. (Lond.), 160:106-154.

Hubel, D. H. and Wiesel, T. N. (1977).
Functional architecture of macaque monkey visual cortex.
Proc. R. Soc. B, 198:1-59.

Huguenard, J. R. and McCormick, D. A. (1992).
Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons.
J. Neurophysiol., 68:1373-1383.

Hüning, Glünder, and Palm, G. (1998).
Synaptic delay learning in pulse-coupled neurons.
Neural Comput., 10:555-565.

Ito, M. (1984).
The Cerebellum and Neural Control.
Raven Press, New York.

Izhikevich, E. (1999).
Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models.
IEEE Trans. Neural Netw., 10:499-507.

Izhikevich, E. (2000).
Neural excitability, spiking, and bursting.
Int. J. Bifurcat. Chaos, 10:1171-1266.

Izhikevich, E. (2001).
Resonate-and-fire neurons.
Neural Networks, 14:883-894.

Jackson, J. D. (1962).
Classical Electrodynamics.
Wiley.

Jahnsen, H. (1986).
Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro.
J. Physiol. (Lond.), 372:129-147.

James, W. (1890).
Psychology (Briefer Course), ch. 16.
Holt, New York.

Jeffress, L. A. (1948).
A place theory of sound localisation.
J. Comp. Physiol. Psychol., 41:35-39.

Jensen, O. and Lisman, J. E. (1996).
Hippocampal ca3 region predicts memory sequences: accounting for the phase precession of place cells.
Learn. Mem., 3:279-287.

Johannesma, P. I. M. (1968).
Diffusion models of the stochastic acticity of neurons.
In Neural Networks, pages 116-144, Berlin. Springer.

Kandel, E. C. and Schwartz, J. H. (1991).
Principles of Neural Science.
Elsevier, New York, 3rd edition.

Kass, R. E. and Ventura, V. (2001).
A spike-train probability model.
Neural Comput., 13:1713-1720.

Keener, J. and Sneyd, J. (1998).
Mathematical Physiology, volume 8 of Interdisciplinary Applied Mathematics.
Springer, New York.

Kelso, S. R., Ganong, A. H., and Brown, T. H. (1986).
Hebbian synapses in hippocampus.
Proc. Natl. Acad. Sci. USA, 83:5326-5330.

Kempter, R. (1997).
Hebbsches Lernen zeitlicher Codierung: Theorie der Schallortung im Hörsystem der Schleiereule, volume 17.
Naturwissenschaftliche Reihe, Darmstadt.

Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999).
Hebbian learning and spiking neurons.
Phys. Rev. E, 59:4498-4514.

Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001).
Intrinsic stabilization of output rates by spike-based hebbian learning.
Neural Comput., submitted.

Kepler, T. B., Abbott, L. F., and Marder, E. (1992).
Reduction of conductance-based neuron models.
Biol. Cybern., 66:381-387.

Keysers, C., Xiao, D. K., Foldiak, P., and Perrett, D. I. (2001).
The speed of sight.
J. Cognitive Neuroscience, 13:90-101.

Kirkpatrick, S. and Sherrington, D. (1978).
Infinite-ranged models of spin-glasses.
Phys. Rev. B, 17:4384-4403.

Kirkwood, P. A. and Sears, P. A. (1978).
The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential.
J. Physiology, 275:103-134.

Kishimoto, K. and Amari, S. (1979).
Existence and stability of local excitations in homogeneous neural fields.
J. Math. Biology, 7:303-318.

Kistler, W. M. (2000).
Stability properties of solitary waves and periodic wave trains in a two-dimensional network of spiking neurons.
Phys. Rev. E, 62(6):8834-8837.

Kistler, W. M. and De Zeeuw, C. I. (2002).
Dynamical working memory and timed responses: The role of reverberating loops in the olivo-cerebellar system.
Neural Comput. (submitted).

Kistler, W. M. and Gerstner, W. (2001).
Stable propagation of activity pulses in populations of spiking neurons.
Neural Comput., in press.

Kistler, W. M., Gerstner, W., and van Hemmen, J. L. (1997).
Reduction of Hodgkin-Huxley equations to a single-variable threshold model.
Neural Comput., 9:1015-1045.

Kistler, W. M., Seitz, R., and van Hemmen, J. L. (1998).
Modeling collective excitations in cortical tissue.
Physica D, 114:273-295.

Kistler, W. M. and van Hemmen, J. L. (1999).
Short-term synaptic plasticity and network behavior.
Neural Comput., 11:1579-1594.

Kistler, W. M. and van Hemmen, J. L. (2000a).
Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials.
Neural Comput., 12:385-405.

Kistler, W. M. and van Hemmen, J. L. (2000b).
Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic potentials.
Neural Comput., 12:385-405.

Kistler, W. M., van Hemmen, J. L., and De Zeeuw, C. I. (2000).
Time window control: A model for cerebellar function based on synchronization, reverberation, and time slicing.
In Gerrits, N. M., Ruigrok, T. J. H., and De Zeeuw, C. I., editors, Cerebellar Modules: Molecules, Morphology, and Function, Progress in Brain Research, pages 275-297. Elsevier, Amsterdam.

Kjaer, T. W., Hertz, J. A., and Richmond, B. J. (1994).
Decoding cortical neuronal signals: network models, information estimation and spatial tuning.
J. Comput. Neurosci., 1:109-139.

Knight, B. W. (1972a).
Dynamics of encoding in a population of neurons.
J. Gen. Physiol., 59:734-766.

Knight, B. W. (1972b).
The relationship between the firing rate of a single neuron and the level of activity in a population of neurons.
J. Gen. Physiol., 59:767-778.

Knight, B. W. (2000).
Dynamics of encoding in neuron populations: some general mathematical features.
Neural Comput., 12:473-518.

Knox, C. K. (1974).
Cross-corrlation functions for a neuronal model.
Biophys. J., 14:567-582.

Knudsen, E. I., Blasdel, G. G., and Konishi, M. (1979).
Sound localization by the barn owl (tyto alba) measured with the search coil technique.
J. Comp. Physiol., 133:1-11.

Koch, C. (1999).
Biophysics of Computation.
Oxford University Press, New York.

Koch, C., Ö. Bernander, and Douglas, R. J. (1995).
Do neurons have a voltage or a current threshold for action potential initiation?
J. Comput. Neurosci., 2:63-82.

Koch, C. and Segev, I. (2000).
The role of single neurons in information processing.
Nat. Neurosci., 3(Supp):1160-1211.

Kohonen, T. (1984).
Self-organization and associative memory.
Springer, Berlin Heidelberg New York.

Konishi, M. (1986).
Centrally synthesized maps of sensory space.
Trends Neurosci., 9:163-168.

Konishi, M. (1993).
Listening with two ears.
Sci. Am., pages 34-41.

Konnerth, A. and Eilers, J. (1994).
Synaptic plasticity and calcium dynamics in cerebellar Purkinje neurons.
Biomed. Res., 15:73-77.
Supplement 1.

Kopell, N. (1986).
Symmetry and phase locking in chains of weakly coupled oscillators.
Commun. Pure Appl. Math., 39:623-660.

König, P., Engel, A. K., and Singer, W. (1996).
Integrator or coincidence detector? The role of the cortical neuron revisited.
Trends Neurosci., 19(4):130-137.

König, P. and Schillen, T. B. (1991).
Stimulus-dependent assembly formation of oscillatory responses: I. synchronization.
Neural Comput., 3:155-166.

Kree, R. and Zippelius, A. (1991).
Asymmetrically diluted neural networks.
In Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of Neural Networks. Springer, Berlin.

Kreiter, A. K. and Singer, W. (1992).
Oscillatory neuronal responses in the visual cortex of the awake macaque monkey.
Eur. J. Neurosci., 4:369-375.

Krüger, J. and Aiple, F. (1988).
Multimicroelectrode investigation of monkey striate cortex: spike train correlations in the infragranular layers.
J. Neurophysiol., 60:798-828.

Kuffler, S. W., Nicholls, J. G., and Martin, A. R. (1984).
From neuron to brain.
Sinauer, Sunderland Mass., 2nd edition.

Kuramoto, Y. (1975).
Self-entrainment of a population of coupled nonlinear oscillators.
In Araki, H., editor, International symposium on mathematical problems in theoretical physics, pages 420-422, Berlin Heidelberg New York. Springer.

Laing, C. R. and Chow, C. C. (2001).
Stationary bumps in networks of spiking neurons.
Neural Comput., 13:1473-1494.

Lansky, P. (1984).
On approximations of Stein's neuronal model.
J. Theor. Biol., 107:631-647.

Lansky, P. (1997).
Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics.
Phys. Rev. E, 55:2040-2043.

Lansky, P. and Smith, C. (1989).
The effect of random initial value in neural first-passage-time models.
Mathematical Biosciences, 93:191-215.

Lapicque, L. (1907).
Recherches quantitatives sur l'excitation electrique des nerfs traitée comme une polarisation.
J. Physiol. Pathol. Gen., 9:620-635.

Latham, P. E., Richmond, B. J., Nelson, P. G., and Nirenberg, S. (2000).
Intrinsic dynamics in neuronal networks. I. Theory.
J. Neurophysiol., 83:808-827.

Laurent, G. (1996).
Dynamical representation of odors by oscillating and evolving neural assemblies.
Trends Neurosci., 19:489-496.

Lestienne, R. (1996).
Determination of the precision of spike timing in the visual cortex of anaesthetised cats.
Biol. Cybern., 74:55-61.

Lev-Ram, V., Jiang, T., Wood, J., Lawrence, D. S., and Tsien, R. Y. (1997).
Synergies and coincidence requirements between NO, cGMP, and Ca++ in the induction of cerebellar long-term depression.
Neuron, 18:1025-1038.

Levin, J. E. and Miller, J. P. (1996).
Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance.
Nature, 380:165-168.

Levy, W. B. and Stewart, D. (1983).
Temporal contiguity requirements for long-term associative potentiation/depression in hippocampus.
Neurosci,, 8:791-797.

Lewis, T. J. and Gerstner, W. (2001).
Comparison of integrate-and-fire neurons: a case study.
Internal report, xx:xx.

Linden, D. J. (1999).
The return of the spike: postsynaptic action potentials and the induction of LTP and LTD.
Neuron, 22:661-666.

Linden, D. J. and Connor, J. A. (1995).
Long-term synaptic depression.
Annu. Rev. Neurosci., 18:319-357.

Lindner, B. and Schimansky-Geier, L. (2001).
Transmission of noise coded versus additive signals through a neuronal ensemble.
Phys. Rev. Lett., 86:2934-2937.

Linsker, R. (1986a).
From basic network principles to neural architecture: emergence of orientation columns.
Proc. Natl. Acad. Sci. USA, 83:8779-8783.

Linsker, R. (1986b).
From basic network principles to neural architecture: emergence of orientation selective cells.
Proc. Natl. Acad. Sci. USA, 83:8390-8394.

Linsker, R. (1986c).
From basic network principles to neural architecture: emergence of spatial-opponent cells.
Proc. Natl. Acad. Sci. USA, 83:7508-7512.

Lisman, J. (1989).
A mechanism for Hebb and anti-Hebb processes underlying learning and memory.
Proc. Natl. Acad. Sci. USA, 86:9574-9578.

Llinás, R. (1988).
The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function.
Science, 242:1654-1664.

Llinás, R. (1991).
The noncontinuous nature of movement execution.
In Humphrey, D. R. and Freund, H.-J., editors, Motor Control: Concepts and Issues, pages 223-242. Wiley, New York.

Llinás, R. and Mühlethaler, M. (1988).
Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation.
J. Physiol. (Lond.), 404:241-258.

Llinás, R. and Yarom, Y. (1986).
Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study.
J. Physiol. (Lond.), 376:163-182.

Longtin, A. (1993).
Stochastic resonance in neuron models.
J. Stat. Phys., 70:309-327.

Maass, W. (1996).
Lower bounds for the computational power of spiking neurons.
Neural Comput., 8:1-40.

Maass, W. (1998).
Computing with spiking neurons.
In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 2, pages 55-85. MIT-Press.

Maass, W. and Bishop, C. (1998).
Pulsed Neural Networks.
MIT-Press.

Maass, W., Natschläger, T., and Markram, H. (2002).
Real-time computing without stable states: a new framework for neural computation based on perturbations.
preprint.

MacGregor, R. J. and Oliver, R. M. (1974).
A model for repetitive firing in neurons.
Kybernetik, 16:53-64.

MacKay, D. J. C. and Miller, K. D. (1990).
Analysis of linsker's application of Hebbian rules to linear networks.
Network, 1:257-297.

Magee, J. C. and Johnston, D. (1997).
A synaptically controlled associative signal for hebbian plastiticy in hippocampal neurons.
Science, 275:209-213.

Mainen, Z. F. and Sejnowski, T. J. (1995).
Reliability of spike timing in neocortical neurons.
Science, 268:1503-1506.

Malenka, R. C., Kauer, J. A., Zucker, R. S., and Nicoll, R. A. (1988).
Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission.
Science, 242:81-84.

Malinow, R., Schulman, H., and Tsien, R. W. (1989).
Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of ltp.
Science, 245:862-866.

Manis, P. B. and Marx, S. O. (1991).
Outward currents in isolated ventral cochlear nucleus neurons.
J. Neurosci., 11:2865-2800.

Manwani, A. and Koch, C. (1999).
Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources.
Neural Comput., 11:1797-1829.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997).
Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.
Science, 275:213-215.

Markram, H. and Tsodyks, M. (1996).
Redistribution of synaptic efficacy between neocortical pyramidal neurons.
Nature, 382:807-810.

Maršálek, P., Koch, C., and Maunsell, J. (1997).
On the relationship between synaptic input and spike output jitter in individual neurons.
Proc. Natl. Acad. Sci. USA, 94:735-740.

Mascaro, M. and Amit, D. J. (1999).
Effective neural response function for collective population states.
Network, 10:351-373.

Mattia, M. and Del Giudice, P. (2001).
On the population dynamics of interacting spiking neurons.
Preprint, xx:xx.

Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. (1984).
Voltage-dependent block by Mg2+ of nmda responses in spinal cord neurones.
Nature, 309:261-263.

McCulloch, W. S. and Pitts, W. (1943).
A logical calculus of ideas immanent in nervous activity.
Bull. Math. Biophys., 5:115-133.

McNamara, B. and Wiesenfeld, K. (1989).
Theory of stochastic resonance.
Phys. Rev. A, 39:4854-4869.

Mehta, M. R., Quirk, M., and Wilson, M. (2000).
Experience-dependent asymmetric shap of hippocampal receptive fields.
Neuron, 25:707-715.

Meinhardt, H. (1995).
Algorithmic Beauty of Sea Shells.
Springer, New York.

Mel, B. W. (1994).
Information processing in dendritic trees.
Neural Comput., 6(1031-1085).

Meyer, C. and van Vreeswijk, C. (2001).
Temporal correlations in stochastic networks of spiking neurons.
Neural Comput., xx:xx.

Miller, K. D. (1994).
A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between ON- and OFF-center inputs.
J. Neurosci., 14:409-441.

Miller, K. D. (1995).
Receptive fields and maps in the visual cortex: Models of ocular dominance and orientation columns.
In Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of neural networks III, pages 55-78. Springer, New York.

Miller, K. D., Keller, J. B., and Stryker, M. P. (1989).
Ocular dominance column development: analysis and simulation.
Science, 245:605-615.

Miller, K. D. and MacKay, D. J. C. (1994).
The role of constraints in hebbian learning.
Neural Comput., 6:100-126.

Miller, M. I. and Mark, K. E. (1992).
A statistical study of cochlear nerve discharge patterns in reponse to complex speech stimuli.
J. Acoust. Soc. Am., 92:202-209.

Milner, P. M. (1974).
A model for visual shape recognition.
Psychol. Rev., 81:521-535.

Minai, A. A. and Levy, W. B. (1993).
Sequence learning in a single trial.
In INNS World Congress on Neural Networks II, pages 505-508. Intern. Neural Network Soc.

Mirollo, R. E. and Strogatz, S. H. (1990).
Synchronization of pulse coupled biological oscillators.
SIAM J. Appl. Math., 50:1645-1662.

Moiseff, A. and Konishi, M. (1981).
xxx.
J. Comp. Physiol., 144:299-304.

Montague, P. R., Dayan, P., Person, C., and Sejnowski, T. J. (1995).
Bee foraging in uncertain environments using predictive hebbian learning.
Nature, 377:725-728.

Moore, G. P., Segundo, J. P., Perkel, D. H., and Levitan, H. (1970).
Statistical signs of synaptic interaction in neurons.
Biophys. J., 10:876-900.

Morris, C. and Lecar, H. (1981).
Voltage oscillations in the barnacle giant muscle fiber.
Biophys. J., pages 193-213.

Mountcastle, V. B. (1957).
Modality and topographic properties of single neurons of cat's somatosensory cortex.
J. Neurophysiol., 20:408-434.

Murray, J. D. (1993).
Mathematical Biology.
Springer, Berlin.

Nagumo, J. S., Arimoto, S., and Yoshizawa, S. (1962).
An active pulse transmission line simulating nerve axon.
Proc. IRE, 50:2061-2070.

Nelson, M. and Rinzel, J. (1995).
The Hodgkin-Huxley model.
In Bower, J. M. and Beeman, editors, The book of Genesis, chapter 4, pages 27-51. Springer, New York.

Neltner, L., Hansel, D., Mato, G., and Meunier, C. (2000).
Synchrony in heterogeneous networks of spiking neurons.
Neural Comput., 12:1607-1641.

Ngezahayo, A., Schachner, M., and Artola, A. (2000).
Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus.
J. Neurosci., 20:2451-2458.

Nowak, L., Bregestovski, P., Asher, P., Herbet, A., and Prochiantz, A. (1984).
Magnesium gates glutamate-activiated channels in mouse central neurons.
Nature, 307:462-465.

Nützel, K. (1991).
The length of attractors in asymmetric random neural networks with deterministic dynamics.
J. Phys. A: Math. Gen., 24:L151-L157.

Nützel, K., Kien, J., Bauer, K., Altman, J. S., and Krey, U. (1994).
Dynamics of diluted attractor neural networks with delays.
Biol. Cybern., 70:553-561.

Nykamp, D. and Tranchina, D. (2000).
A population density approach that facilitates large-scale modeling of neural networks: Analysis and application to orientation tuning.
J. Comput. Neurosci., 8:19-50.

Obermayer, K., Blasder, G. G., and Schulten, K. (1992).
Statistical-mechanics analysis of self-organization and pattern formation during the development of visual maps.
Phys. Rev. E, 45:7568-7589.

Oertel, D. (1983).
Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus.
J. Neurosci., 3(10):2043-2053.

Oja, E. (1982).
A simplified neuron model as a principal component analyzer.
J. Math. Biol., 15:267-273.

O'Keefe, J. (1993).
Hippocampus, theta, and spatial memory.
Curr. Opin. Neurobiol., 3:917-924.

O'Keefe, J. (1993).
Hippocampus, theta, and spatial memory.
Curr. Opin. Neurobiol., 3:917-924.

Omurtag, A., Knight, B. W., and Sirovich, L. (2000).
On the simulation of a large population of neurons.
J. Comput. Neurosci., 8:51-63.

Optican, L. M. and Richmond, B. J. (1987).
Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. 3. Information theoretic analysis.
J. Neurophysiol., 57:162-178.

Oram, M. W., Wiener, M. C., Lestienne, R., and Richmond, B. J. (1999).
Stochastic nature of precisely timed spike patterns in visual system neuronal responses.
J. Neurophysiol., 81:3021-3033.

Palm, G. and Poggio, T. (1977).
The Volterra representation and the Wiener expansion: Validity and pitfalls.
SIAM J. Appl. Math., 33:195-216.

Papoulis, A. (1991).
Probability, random variables, and stochastic processes.
McGraw-Hill, New York.

Pavlov, I. P. (1927).
Conditioned reflexes.
Oxford Univ. Press.

Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967a).
Neuronal spike trains and stochastic point processes I. the single spike train.
Biophys. J., 7:391-418.

Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967b).
Neuronal spike trains and stochastic point processes II. simultaneous spike trains.
Biophys. J., 7:419-440.

Pham, J., Pakdaman, K., Champagnat, J., and Vibert, J.-F. (1998).
Activity in sparsely connected excitatory neural networks: effect of connectivity.
Neural Networks, 11:415-434.

Pinto, D. J., Brumberg, J. C., Simons, D. J., and Ermentrout, G. B. (1996).
A quantitative population model of whiskers barrels: re-esamining the Wilson-Cowan equations.
J. Comput. Neurosci., 3:247-264.

Plesser, H. E. (1999).
Aspects of Signal Processing in Noisy Neurons.
PhD thesis, Georg-August-Universität, Göttingen.

Plesser, H. E. (2000).
The ModUhl software collection.
Technical report, MPI für Strömungsforschung, Göttingen.
http://www.chaos.gwgd.de/ plesser/ModUhl.htm.

Plesser, H. E. and Gerstner, W. (2000).
Noise in integrate-and-fire neurons: from stochastic input to escape rates.
Neural Comput., 12:367-384.

Plesser, H. E. and Tanaka, S. (1997).
Stochastic resonance in a model neuron with reset.
Phys. Lett. A, 225:228-234.

Poliakov, A. V., Powers, R. K., and Binder, M. C. (1997).
Functional identification of input-output transforms of motoneurons in cat.
J. Physiol., 504:401-424.

Poliakov, A. V., Powers, R. K., Sawczuk, A., and Binder, M. C. (1996).
Effects of background noise on the response of rat and cat motoneurones to excitatory current transients.
J. Physiol., 495:143-157.

Powers, R. K. D. B. and Binder, M. D. (1996).
Experimental evaluation of input-output models of motoneuron discharges.
J. Neurophysiol., 75:367-379.

Rall, W. (1989).
Cable theory for dendritic neurons.
In Koch, C. and Segev, I., editors, Methods in Neuronal Modeling, pages 9-62, Cambridge. MIT Press.

Ramòn y Cajal, S. (1909).
Histologie du système nerveux de l'homme et des vertébré.
A. Maloine, Paris.

Rao, R. P. N. and Sejnowski, T. J. (2001).
Spike-timing dependent Hebbian plasticity as temporal difference learning.
Neural Comput., 13:2221-2237.

Reich, D. S., Victor, J. D., and Knight, B. W. (1998).
The power ratio and the interval map: spiking models and extracellular recordings.
J. Neurosci., 18(23):10090-10104.

Rescorla, R. A. and Wagner, A. R. (1972).
A theory of pavlovian conditioning: variations in the effectiveness of reinforecement and nonreinforcement.
In Black, A. H. and Prokasy, W. F., editors, Classical Conditioning II: current research and theory, pages 64-99. Appleton Century Crofts, New York.

Reyes, A. D., Rubel, E. W., and Spain, W. J. (1994).
Membrane properties underlying the firing of neurons in the avian cochlear nucleus.
J. Neurosci., 14(9):5352-5364.

Reyes, A. D., Rubel, E. W., and Spain, W. J. (1996).
submitted.
preprint, xx:xx.

Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996).
Spikes - Exploring the neural code.
MIT Press, Cambridge, MA.

Rinzel, J. (1985).
Excitation dynamics: insights from simplified membrane models.
Federation Proc., 44:2944-2946.

Rinzel, J. and Ermentrout, G. B. (1989).
Analysis of neuronal excitability and oscillations.
In Koch, C. and Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA.

Rinzel, J., Terman, D., Wang, X., and Ermentrout, B. (1998).
Propagating activity patterns in large-scale inhibitory neuronal networks.
Science, 279:1351-1355.

Risken, H. (1984).
The Fokker Planck equation: methods of solution and applications.
Springer-Verlag, Berlin.

Ritz, R., Gerstner, W., and van Hemmen, J. L. (1994).
A biologically motivated and analytically soluble model of collective oscillations in the cortex: II. Application to binding and pattern segmentation.
Biol. Cybern., 71:349-358.

Ritz, R. and Sejnowski, T. J. (1997).
Synchronous oscillatory activity in sensory systems: new vistas on mechanisms.
Curr. Opin. Neurobiol., 7:536-546.

Roberts, P. D. (1999).
Computational consequences of temporally asymmetric learning rules: I. Differential Hebbian learning.
J. Comput. Neurosci., 7:235-246.

Roberts, P. D. (2000).
Dynamics of temporal learning rules.
Phys. Rev. E, 62:4077.

Roberts, P. D. and Bell, C. C. (2000).
Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation.
J. Comput. Neurosci., 9:67-83.

Rospars, J. P. and Lansky, P. (1993).
Stochastic model neuron without resetting of dendritic potential: application to the olfactory system.
Biol. Cybern., 69:283-294.

Rubin, J., Lee, D. D., and Sompolinsky, H. (2001).
Equilibrium properties of temporally asymmetric Hebbian plasticity.
Phys. Rev. Lett., 86:364-367.

Ruf, B. and Schmitt, M. (1997).
Unsupervised learning in networks of spiking neurons using temporal coding.
In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-D., editors, Artificial neural networks - ICANN'97. Springer-Verlag, Heidelberg.

Sanders, J. A. and Verhulst, F. (1985).
Averaging methods in nonlinear dynamics systems.
Springer-Verlag, New York.

Schiegg, A., Gerstner, W., and van Hemmen, J. L. (1995).
Intracellular Ca2+ stores can account for the time course of LTP induction: A model of Ca2+ dynamics in dendritic spines.
J. Neurophysiol., 74:1046-1055.

Schillen, T. B. and König, P. (1991).
Stimulus-dependent assembly formation of oscillatory responses: Ii. desynchronization.
Neural Comput., 3:167-178.

Schneidman, E., Freedman, B., and Segev, I. (1998).
Ion channel stochasticity may be critical in determining the reliability and precision of spike timing.
Neural Comput., 10:1679-1703.

Schrödinger, E. (1915).
Zur Theorie der Fall- und Steigversuche and Teilchen mit Brownscher Bewegung.
Physikal. Zeitschrift, 16:289-295.

Schultz, W., Dayan, P., and Montague, R. R. (1997).
A neural substrate for prediction and reward.
Science, 275:1593-1599.

Segundo, J. P., Moore, G. P., Stensaas, L. J., and Bullock, T. H. (1963).
Sensitivity of neurons in Aplysia to temporal patterns of arriving impulses.
J. Exp. Biol., 40:643-667.

Sejnowski, T. (1977).
Storing covariance with nonlinearly interacting neurons.
J. Math. Biol., 4:303-321.

Sejnowski, T. J. (1999).
The book of hebb.
Neuron, 24:773-776.

Sejnowski, T. J. and Tesauro, G. (1989).
The hebb rule for synaptic plasticity: algorithms and implementations.
In Byrne, J. H. and Berry, W. O., editors, Neural Models of Plasticity, chapter 6, pages 94-103. Academic Press.

Senn, W., Schneider, M., and Ruf, B. (2001a).
Activity-dependent development of axonal and dendritic delays or, why synaptic transmission should be unreliable.
Neural Comput., xx:xx.

Senn, W., Tsodyks, M., and Markram, H. (1997).
An algorithm for synaptic modification based on exact timing of pre- and post-synaptic action potentials.
In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-D., editors, Artificial Neural Networks - ICANN '97, pages 121-126. Springer.

Senn, W., Tsodyks, M., and Markram, H. (2001b).
An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing.
Neural Comput., 13:35-67.

Senn, W., Wyler, K., Streit, J., Larkum, M., Lüscher, H.-R., Merz, F., Mey, H., Müller, L., Steinhauser, D., Vogt, K., and Wannier, T. (1996).
Dynamics of a random neural network with synaptic depression.
Neural Networks, 9:575-588.

Shadlen, M. N. and Newsome, W. T. (1994).
Noise, neural codes and cortical organization.
Curr. Opin. Neurobiol., 4:569-579.

Shadlen, M. N. and Newsome, W. T. (1998).
The variable discharge of cortical neurons: implications for connectivity, computation, and information coding.
J. Neurosci., 18:3870-3896.

Shannon, C. E. (1948).
A mathematical theory of communication.
Bell Sys. Tech. J., 27:379-423.
reprinted in Shannon and Weaver 1949.

Shouval, H. Z., Bear, M. F., and Cooper, L. N. (2001).
A unified model of calcium dependent synaptic plasticity.
submitted, xx:xx.

Shouval, H. Z. and Perrone, M. P. (1995).
Post-Hebbian learning rules.
In Arbib, M. A., editor, The handbook of brain theory and neural networks, pages 645-748. MIT-Press.

Siebert, W. M. and Gray, P. R. (1963).
Random process model for the firing pattern of single auditory nerve fibers.
Q. Prog. Rep. Lab. Elec. MIT, 71:241.

Singer, W. (1994).
The role of synchrony in neocortical processing and synaptic plasticity.
In Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of Neural Networks II, chapter 4. Springer.

Singer, W. and Gray, C. M. (1995).
Visual feature integration and the temporal correlation hypothesis.
Annu. Rev. Neurosci., 18:555-586.

Softky, W. and Koch, C. (1993).
The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random epsps.
J . Neurosci., 13:334-350.

Softky, W. R. (1995).
Simple codes versus efficient codes.
Curr. Opin. Neurobiol., 5:239-247.

Sompolinsky, H., Crisanti, A., and Sommers, H. J. (1988).
Chaos in random neural networks.
Phys. Rev. Lett., 61:259-262.

Sompolinsky, H. and Kanter, I. (1986).
Temporal association in asymmetric neural networks.
Phys. Rev. Lett., 57:2861-2864.

Song, S., Miller, K. D., and Abbott, L. F. (2000).
Competitive hebbian learning through spike-time-dependent synaptic plasticity.
Nature Neurosci., 3:919-926.

Sotelo, C., Llinás, R., and Baker, R. (1974).
Structural study of inferior olivary nucleus of the cat: Morphological correlations of electrotonic coupling.
J. Neurophysiol., 37:541-559.

Spiridon, M., Chow, C., and Gerstner, W. (1998).
Frequency spectrum of coupled stochstic neurons with refractoriness.
In Niklasson, L., Bodén, M., and Ziemke, T., editors, ICANN'98, pages 337-342. Springer.

Spiridon, M. and Gerstner, W. (1999).
Noise spectrum and signal transmission trough a population of spiking neurons.
Network: Comput. Neural Syst., pages 257-272.

Spiridon, M. and Gerstner, W. (2001).
Effect of lateral connections on the accuracy of the population code for a network of spiking neurons.
preprint.

Stein, R. B. (1965).
A theoretical analysis of neuronal variability.
Biophys. J., 5:173-194.

Stein, R. B. (1967a).
The information capacity of nerve cells using a frequency code.
Biophys. J., 7:797-826.

Stein, R. B. (1967b).
Some models of neuronal variability.
Biophys. J., 7:37-68.

Steinmetz, P. N. ., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K., and Niebur, E. (2000).
Attention modultaes synchronized neuronal firing in primate somatosensory cortex.
Nature, 404:187-190.

Stemmler, M. (1996).
A single spike suffices: the simplest form of stochastic resonance in model neurons.
Network, 7:687-716.

Stevens, C. F. and Zador, A. M. (1998).
Novel integrate-and-fire like model of repetitive firing in cortical neurons.
In Proc. of the 5th Joint Symposium on Neural Computation, page Report. can be downloaded from http://www.sloan.salk.edu/ zador/publications.html.

Strogatz, S. H. (1994).
Nonlinear dynamical systems and chaos.
Addison-Wesley, Reading MA.

Stuart, G. J. and Sakmann, B. (1994).
Active propagation of somatic action potentials into neocortical pyramidal cell dendrites.
Nature, 367:69-72.

Sullivan, W. E. and Konishi, M. (1984).
Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl.
J. Neurosci., 4(7):1787-1799.

Suri, R. E. and Schutz, W. (2001).
Temporal difference model reproduces anticipatory neural activity.
Neural Comput., 13:841-862.

Sutton, R. S. and Barto, A. G. (1981).
Towards a modern theory of adaptive networks: expectation and prediction.
Psychol. Review, 88:135-171.

Swindale, N. V. (1982).
A model for the formation of orientation columns.
Proc. Royal Soc. London B, 215:211-230.

Tanabe, M., Gäwiler, B. H., and Gerber, U. (1998).
L-type Ca2+ channels mediate the slow Ca2+-dependent afterhyperpolarization current in rat ca3 pyramidal cells in vitro.
J. Neurophysiol., 80:2268-2273.

Terman, D. and Wang, D. (1995).
Global competition and local cooperation in a network of neural oscillators.
Physica D, 81:148-176.

Theunissen, F. and Miller, J. P. (1995).
Temporal encoding in nervous systems: a rigorous definition.
J. Comput. Neurosci,, 2:149-162.

Thompson, R. F. (1993).
The brain.
W. H. Freeman and Company, New York, 2nd edition.

Thorpe, S., Fize, D., and Marlot, C. (1996).
Speed of processing in the human visual system.
Nature, 381:520-522.

Tovee, M. J. and Rolls, E. T. (1995).
Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex.
Vis. Cognit., 2(1):35-58.

Tovee, M. J., Rolls, E. T., Treves, A., and Belles, R. P. (1993).
Information encoding and the responses of single neurons in the primate visual cortex.
J. Neurophysiol., 70:640-654.

Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, H. (1991).
A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
J. Neurophysiol., 66:635-650.

Treves, A. (1993).
Mean-field analysis of neuronal spike dynamics.
Network, 4:259-284.

Treves, A., Rolls, E. T., and Simmen, M. (1997).
Time for retrieval in recurrent associative memories.
Physica D, 107:392-400.

Troyer, T. W. and Miller, K. D. (1997).
Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.
Neural Comput., 9:971-983.

Tsodyks, M., Mitkov, I., and Sompolinsky, H. (1993).
Patterns of synchrony in inhomogeneous networks of oscillators with pulse interaction.
Phys. Rev. Lett., 71:1281-1283.

Tsodyks, M. V. and Sejnowski, T. (1995).
Rapid state switching in balanced cortical networks.
Network, 6:111-124.

Tuckwell, H. C. (1988).
Introduction to theoretic neurobiology.
Cambridge Univ. Press, Cambridge.

Uhlenbeck, G. E. and Ornstein, L. S. (1930).
On the theory of the Brownian motion.
Phys. Rev, 36:823-841.

van Hemmen, J. L., Gerstner, W., Herz, A. V. M., Kühn, R., Sulzer, B., and Vaas, M. (1990).
Encoding and decoding of patterns which are correlated in space and time.
In Dorffner, G., editor, Konnektionismus in Artificial Intelligence und Kognitionsforschung, pages 153-162, Berlin Heidelberg New York. Springer.

van Hemmen, J. L., Kistler, W. M., and Thomas, E. G. F. (2000).
Calculation of Volterra kernels for solutions of nonlinear differential equations.
SIAM J. Appl. Math., 61:1-21.

van Kampen, N. G. (1992).
Stochastic processes in physics and chemistry.
North-Holland, Amsterdam, 2nd edition.

van Rossum, M. C. W., Bi, G. Q., and Turrigiano, G. G. (2000).
Stable Hebbian learning from spike timing-dependent plasticity.
J. Neurosci., 20:8812-8821.

van Vreeswijk, C. (1996).
Partially synchronized states in networks of pulse-coupled neurons.
Phys. Rev. E, 54:5522-5537.

van Vreeswijk, C., Abbott, L. F., and Ermentrout, G. B. (1994).
When inhibition not excitation synchronizes neural firing.
J. Comput. Neurosci., 1:313-321.

van Vreeswijk, C. and Sompolinsky, H. (1996).
Chaos in neuronal networks with balanced excitatory and inhibitory activity.
Science, 274:1724-1726.

van Vreeswijk, C. and Sompolinsky, H. (1997).
Irregular firing in cortical circuits with inhibition/excitation balance.
In Bower, J., editor, Computational Neuroscience: Trends in Reserach, 1997, pages 209-213. Plenum Press, New York.

van Vreeswijk, C. and Sompolinsky, H. (1998).
Chaotic balanced state in a model of cortical circuits.
Neural Comput., 10:1321-1371.

Verhulst, F. (1996).
Nonlinear Differential Equations and Dynamical Systems.
Springer, Berlin.

Volterra, V. (1959).
Theory of functionals and of integral and integro-differential equations.
Dover, New York.

von der Malsburg, C. (1973).
Self-organization of orientation selective cells in the striate cortex.
Kybernetik, 14:85-100.

von der Malsburg, C. (1981).
The correlation theory of brain function.
Internal Report 81-2, MPI für Biophysikalische Chemie, Göttingen.
Reprinted in Models of Neural Networks II, Domany et al. (Eds.), Springer, 1994.

von der Malsburg, C. and Buhmann, J. (1992).
Sensory segmentation with coupled neural oscillators.
Biol. Cybern., 67:233-242.

Vreeswijk, C. A. (2000).
Stability of the asynchronous state in networks of non-linear oscillators.
Phys. Rev. Lett., 84:5110-5113.

Wang, D. (1995).
Emergent synchrony in locally coupled neural oscillators.
IEEE Trans. Neural Netw., 6:941-948.

Wang, D., Buhmann, J., and von der Malsburg, C. (1990).
Pattern segmentation in associative memory.
Neural Comput., 2:94-106.

Wehmeier, U., Dong, D., Koch, C., and van Essen, D. (1989).
Modeling the mammalian visual system.
In Methods in Neuronal Modeling, pages 335-359. MIT Press, Cambridge.

Weiss, T. F. (1966).
A model of the peripheral auditory system.
Kybernetik, 3:153-175.

Welsh, J. P., Lang, E. J., Sugihara, I., and Llinás, R. (1995).
Dynamic organization of motor control within the olivocerebellar system.
Nature, 374:453-457.

White, J. A., Rubinstein, J. T., and Kay, A. R. (2000).
Channel noise in neurons.
Trends Neurosci., 23:131-137.

Wiesenfeld, K. and Jaramillo, F. (1998).
Minireview of stochastic resonance.
Chaos, 8:539-548.

Willshaw, D. J. and von der Malsburg, C. (1976).
How patterned neuronal connections can be set up by self-organization.
Proc. R. Soc. (London) Ser. B, 194:431-445.

Wilson, H. R. and Cowan, J. D. (1972).
Excitatory and inhibitory interactions in localized populations of model neurons.
Biophys. J., 12:1-24.

Wilson, H. R. and Cowan, J. D. (1973).
A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue.
Kybernetik, 13:55-80.

Wilson, M. A. and McNaughton, B. L. (1993).
Dynamics of the hippocampal ensemble code for space.
Science, 261:1055-1058.

Wimbauer, S., Gerstner, W., and van Hemmen, J. L. (1998).
Analysis of a correlation-based model for the development of orientation-selective receptive fields in the visual cortex.
Network, 9:449-466.

Wimbauer, S., Wenisch, O. G., Miller, K. D., and van Hemmen, J. L. (1997a).
Development of spatiotemporal receptive fields of simple cells: I. model formulation.
Biol. Cybern., 77:453-461.

Wimbauer, S., Wenisch, O. G., van Hemmen, J. L., and Miller, K. D. (1997b).
Development of spatiotemporal receptive fields of simple cells: Ii. simulation and analysis.
Biol. Cybern., 77:463-477.

Wiskott, L. and Sejnowski, T. (1998).
Constraint optimization for neural map formation: a nuifying framework for weight growth and normalization.
Neural Comput., 10:671-716.

Xie, X. and Seung, S. (2000).
Spike-based learning rules and stabilization of persistent neural activity.
In Solla, S. A., Leen, T. K., and Müller, K.-R., editors, Advances in Neural Information Processing Systems 12, page xx. MIT-Press, Cambridge.

Yamada, W. M., Koch, C., and Adams, P. R. (1989).
Multiple channels and calcium dynamics.
In Koch, C. and Segev, I., editors, Methods in neuronal modeling: From synapses to networks, chapter 4. MIT Press, Cambridge, MA.

Zador, A., Koch, C., and Brown, T. H. (1990).
Biophysical model of a hebbian synapse.
Proc. Natl. Acad. Sci. USA, 87:6718-6722.

Zador, A. M. (1998).
Impact of synaptic unreliability on the information transmitted by spiking neuron.
J. Neurophysiol., 79:1219-1229.

Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., and Poo, M.-M. (1998).
A critical window for cooperation and competition among developing retinotectal synapses.
Nature, 395:37-44.



Gerstner and Kistler
Spiking Neuron Models. Single Neurons, Populations, Plasticity
Cambridge University Press, 2002

© Cambridge University Press
This book is in copyright. No reproduction of any part of it may take place without the written permission of Cambridge University Press.